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The notion of maximal ordered fields was first introduced in [2] and [3] by the
authors. The existence and the uniqueness for a given rank were mainly discussed
there.

In this paper, we say that K is a maximal extension of an ordered field F if /- is
bijective and K is a maximal ordered field. The aim of this paper is to develope
serveral basic properties of maximal extensions. Namely, for maximal extensions
K,/F;(i=1, 2) and a given isomorphism a: F, ~F, as ordered fields, there exists an
extension ¢’: K, ~K, of g; we also show that there can be infinitely many such
extensions. Moreover we show that, for any extension K/F, such that K is a
maximal ordered field, there exists an F,-embedding K, —K.

§1. Maximal extensions

For an ordered field F, A,:= A(F, Q)={a€F; |a| <b for some beQ} is the finest
valuation ring, that is, every convex valuation ring of F is a localization of 4, and
conversely. The set €(F) of all convex valuation rings of F is a totally ordered set
under the inclusion relation. Let G, be the value group of the finest valuation
defined by A,. It is clear that €(F) is isomorphic to the set #(F) of all convex
subgroups of G, as totally ordered sets. If K/F is an extension of ordered fields, we
have a surjection Y g r: €(K)—%(F) defined by y/(B;) = B,NF, B;e4(K) (cf. [2],§1). A
pair (A, B) of subsets of F is called a cut of F if AyB=F and a<b for any ae A4 and
be B, where A or Bmay be an empty set. It follows from [ 1], Theorem 1.2, that if F is
real closed, then there is a one to one correspondence between the set of all cuts of F
and the set of all orderings of F(x), where F(x)/F is a simple transcendental
extension. For a subset C of F and an element a of F, we write C <a if ¢ <a for any
ceC. We say that K is a maximal ordered field if i/,  is not bijective for any proper
extension L/K of ordered fields (cf. [3], Definition 2.1).

DEerINITION 1.1.  For an ordered field F, let K/F be an extension of ordered
fields. When K is a maximal ordered field and g is bijective, we say that K is a
maximal extension of F.

For any ordered field F, there exists a maximal extension of F by [3], Theorem
3.3

LEMMA 1.2. Let F be a real closed field and K be a maximal extension of F. Let
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F(x)/F be a simple transcendental extension of ordered fields such that g r is
bijective. Let G (resp. Gg) be the value group of the finest valuation of K (resp. F); we
suppose that G is a subgroup of G . If Gp= Gy, then there exists o€ K\ F such that the
isomorphism F(x)~F(a)< K, sending x to a, is an order preserving isomorphism.

Proor. Weput A= {aeF,a<xin F(x)} and B={beF, x <binF(x)}; then (4,
B) is the cut of F which corresponds to the ordering o of F(x). We first show that
there exists an element o of K satisfying A <o <B.

If not, then (Ag, Bg) is a cut of K, where Ay ={d’€K; a’ < a for some ae A} and
By ={b'eK; b<b' for some beB}. Since K is real closed by [3], Proposition 2.3, we
can take the ordering 7 of the simple transcendental extension K(x)/K which
corresponds to the cut (4, By); it is easy to see that 7 is an extension of ¢ (cf. [1],
Theorem 1.2). Let G, (resp. Gg(,)) be the value group of the finest valuation of K(x)
(resp. F(x)); here we suppose that Gp=Gg< Gpyy <Gk The group Gy is
isomorphic to a Hahn product H(I') for some totally ordered set I" by [3],
Proposition 2.4. Since Y g, r is bijective and G coincides with G, we see G = G
On the other hand, the maximality of the ordered field K implies G # G, Let v be
the finest valuation with the value group Gy, By applying the similar argument to
the proof of [1], Lemma 2.2, we can show that there exists an element b of K such
that v(x — b)e G \Gg. We can also show that there exists ae F such that 0 <|x—a|
<|x —b|. Infact,if x> b, then be A and b < a for some ac A. Therefore we have 0 < x
—a<x—b. If x<b, then we have x—b<x—a<0 for some aeB. Since v is
compatible with t and v(x —b)¢Gg = G, we have v(x —a)> v(x —b). This shows
that v(x —b)=v(x —a—(x—b))=v(b—a)e G, a contradiction. Therefore 4 <a<B
for some aeK. It is clear that « is transcendental over F, and we can see that the F-
isomorphism F(x)— F(«), sending x to a, is an order preserving isomorphism by [1],
Corollary 1.7, (1). Q.E.D.

A divisible ordered group can be embedded in the Hahn product determined
by its skeleton (cf. [4], A, Théoréme 2). However, the embedding map is not
determined uniquely. For the convenience of readers, we first give the following
lemma concerning the above embedding.

LemMA 1.3.  Let G = G’ be divisible ordered groups and let \y be the map from the
set of convex subgroups of G’ to that of G (cf. [3], §1). Suppose that \y is bijective. Let
(R) and (R), ieT be skeletons of G and G’ respectively. Then for a given embedding G
—HR,, we can find an embedding G'>HR; so that the following diagram

G — HR,

| l

Gr —_ HRi/
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is commutative. (The map HR,—HR; is the embedding induced by the canonical
embeddings R;—R;.)

Proor. For each iel, R;=H;/H¥ and R;:=H;}/(H})* are isomorphic to
subgroups of R. Here H; (resp. H}) is a non-zero principal convex subgroup of G
(resp. G') and H} (resp. (H;)*)is a maximal convex subgroup properly contained in
H; (resp. H}) and HN\G=H,, (H)*NG=H}.

Now let ¥ be a vector space over a field K and S be a non-empty set of
subspaces of V. There exists a mapping y from S to the set of subspaces of Vsatisfying
the following properties (cf. [4], A, Lemme).

(1) V=W®y(W) forany WeS.
(2 IfWicW, in S, p(W)>9(W,).

The embedding G—HR; is given as follows. G is a vector space over Q. Let S be
the set of all convex subgroups of G and y be a map defined on S which satisfies the
above two properties. We denote by A; the composition of the projection G
=H,®yH,)->H; and the canonical homomorphism H;—H;/(H)*=R; The
embedding G—HR, is defined by sending xeG to (14(x)), iel.

We put S,:={L@y(H); L is a convex subgroup of G, H =L "G}. There exists y,
defined on S; which satisfies the properties (1) and (2). Let S’ be the set of all convex
subgroups of G'. For LeS’ and H = LNGeS, we have G’ = LOy(H)®y (LD y(H)). We
define Y’ on S’ by y'(L)=y(H)®y,(LBy(H)). Then G'=LBYy'(L) for any LeS'. For
convex subgroups Land L' of G', we suppose Lc L'. Then H=LNG<H' =L'NG,
and y(H)c G L'@y(H'), therefore L®y(H)< L'®@y(H'). Hence we have y'(L)
>9'(L). We have seen that )y satisfies the properties (1) and (2). Clearly it also
satisfies the following property (3).

(3) Forany LeS, y(L)o>y(H) where H=LNGeS.
We now apply the embedding theorem to G’ by using y'. We put
A G'=H;®y (H;)->H—H/(H)*=R/.

By (3) the restriction of the projection G'— H; to G coincides with the projection G
—H,, and so the following diagram commutes.

G — H; — HJ/H* =R,

1 | |

¢ — H/ — H//H)*=R/

Thus the assertion is proved. Q.E.D.
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THEOREM 1.4. Let K, and K, be maximal extensions of ordered fields F |, and
F, respectively. If F is isomorphic to F, as ordered fields, then there exists an order
preserving isomorphism K ; — K, which is an extension of the isomorphism F,—F,.

Proor. It is sufficient to show that if F, = F, =F, then there exists an order
preserving F-isomorphism K; —K,. We consider the set S={(L,f); F=Lc K, fis
an order preserving F-injection L—K,}. For (Ly, f), (L, f>)€S, we write (Ly, f;)
S(L,, f,)if Ly =L, and f,|L, =f;. Then S is an inductive set. By Zorn’s lemma, we
can find a maximal element (L,, f) of S. Let M, (resp. M ,) be the algebraic closure of
L, (resp.f(Ly)) in K, (resp. K ,); then M, (resp. M ,) is a real closure of L, (resp. f(Lo)).
Then, since f can be extended to M ; - M,, we have L, = M ; this implies that L, is
real closed. Let v, (resp. v,) be the finest valuation of K, (resp. K,). We denote by G,
(resp. G,) the value group of v, (resp. v,). Let G, be the value group of the finest
valuation of L, and G’ be that of f(L,). We may assume that G, = G, and G, =G,.

First we show that G, = G,. Suppose to the contrary that G, # G,. Take ae K,
so that v, (#)eG;\G, and o >0. Then we have a cut of G, determined by v, (). We
claim that there exists an element 0<pfeK,\f(L,) such that the cut of G,
determined by v, (f) is the same as the cut by v, («) (here we identify G|, with G,). The
claim is proved as follows.

For a totally ordered set I', we denote by H(I') the Hahn product HR}, ieT,
where each R; is a copy of R. By [3], Proposition 2.4, G, and G, are maximal
ordered groups isomorphic to H(I') for some totally ordered set I'. Take an
embedding G,—HR,, iel’, where (R;) is the skeleton of G,. By Lemma 1.3, there
exists an embedding G, »H(I') such that the following diagram (a) commutes. Here
note that the above embedding is an isomorphism because G, is maximal. Since G,
~G,, we can take the isomorphism Gy—HR,;, which is the same as the above
embedding G,—HR,. Similarly there exists an isomorphism G,—H(I') so that the
following diagram (b) commutes.

G, — HR; G, — HR
@ | | CHE |
G, — H®I) G, — H{I)

For the injections j;: R;— R;=R which are used to determine HR;—»H(T") in (a)
and j;: R,—~R;=R which are used to determine HR,—~H(T') in (b), there exists an
isomorphism 4: R— R such that 4j/ =j,. This shows that we may assume j; =, and so
the injection HR,—H(I') in (a) coincides with the injection HR;,—»H(I') in (b).
Therefore we can take v, (f).

It is easy to show that « and f§ are transcendental over L, and f(L,), and they
determine the same cuts of L, and f(L ;) respectively. Thus the isomorphism L(«)
—f(Lo)(B), sending o to B, is order preserving, and so we have a contradiction.
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Therefore we get G,=G,, and so G,'=G,.

We now proceed to the proof of the statement L, =K. Suppose that L, #K .
Then there exists an element xe K\ L,. It is clear that x is transcendental over L,
and yp, (L, is bijective. Let (4, B) be the cut of L , corresponding to the ordering of
Lo(x)= K. There is an ordering of f(L,)(y) which corresponds to the cut (f(4), f{B))
of f(L,) where y is a variable. Then the isomorphism Ly(x)—f(L,)(y), sending x to y,
is order preserving (cf. [1], Corollary 1.7). We may assume that yeK, by Lemma 1.2.
We can extend f'to Lo(x)—f(Lo)(y), a contradiction. Therefore we conclude that L,
=K, and f(Ly)=K,. Q.E.D.

In Theorem 1.4, we showed that there exists an isomorphism K, — K, which is
an extension of the given isomorphism F,—F,. However such an extension is
generally not unique; moreover there can be infinitely many extensions. We
consider the case rank one in order to verify these situations.

ExampLE 1.5. Let K =R((x))® and v be the canonical valuation of K. Then K is
a maximal ordered field of rank 1 (cf. [2], Proposition 3.3), and moreover v is the
finest valuation of K and the value group of vis R. Let {g,}, iel, be a basis of R as a
vector space over Q. For each g;, we fix an element ,€K so that v(ocgi)= g; and o,
>0. Since K is real closed, 0 <(ocgi)"/"' is determined uniquely for any integers m, n
with m>0. For a rational number r=n/meQ, we put oz,gi=(ocg'_)"/"' and for a real
number seR, we put a,= n“ngi where s =Y r,g;,r,€Q. Itis clear that v(a,)=s, and we
can easily show that there exists an R-isomorphism a: R(x*; seR)— R(o; seR), where
a(x®)=(a,). The map o is an isomorphism as valued fields. It is clear that K is an
immedaite extension of R(x%; seR) and R(x, seR) as valued fields. Since K is a
maximal valued field, there exists an isomorphism ¢’: K— K which is an extension of
o (cf. [2], Proposition 3.2).

Now we write 1 =Yrg; i=1,---,n,1,€Q, and we put o, =x%i=1,---,n. For
ieN\{1,---,n}, we fix an element o, EK so that v(a, ) gi and o, >O We have
infinitely many such sets {a, }, iel. Then the automorphxsm g’ K—»K determined
by (« l) iel, fix the element xeK and so the fixed field of ¢’ contains R(x). Thus there
exist infinitely many R(x)-automorphisms of K.

§2. Main theorem

In [1], we studied the.theory of cuts of real closed fields under the assumption
that a real closed field is of finite rank. We can get similar resuits for a real closed
field of any rank.

Let F be a real closed field and let €(F)={A;; ie A'(F)} be the set of convex
valuation rings of F, where the totally ordered set A’(F) has the initial element O (i.e.
Ay = A(F, Q)and the final element A (i.e. 4, = F). Let X be the set of orderings of F(x),
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where F(x) is a simple transcendental extension of F. Let Cy be the set of cuts of F.
There exists a canonical bijection gy: X—C,. We introduce an equivalence relation
~;namely o ~ 7 in X if (F(x), ) is F-isomorphic to (F(x), t) as ordered fields. Then
~induces an equivalence relation in C through the bijection gr. Let X be the set of
orderings of F(x) such that /g, is not bijective. For 6€ X , Yz, 4)/r 18 nOt bijective
at some je A'(F) and we can define the map N: X,/~ — A'(F) by N(o)=j (cf. [3],
Proposition 1.2). By virtue of [1], Theorem 3.9, N is bijective. We write X, =(JY},
Jj€ A'(F), where each Y is an equivalence class of X, satisfying Y;=N~'(j).
Now for a cut (C, D)eCy, we put M(C, D):={xeF; +xeC or +xeD} and M(C, D)
:=M(C, D)\{0}. Let v; be a valuation corresponding to A; for ie A'(F). It can be
shown that the set v(M(C, D))Nv{F\M(C, D)) consists of at most one element (cf.
[1], Proposition 3.2). For ie A’(F)\{4}, we put T;={(C, D), a proper cut of F;
v(M(C, D))Nv{F\M(C, D))= ¢ and there exists min v,(M(C, D)) or max v(F\M(C,
D))}. We also put W:={(C+a, D+a); (C, D)eT, acF} and denote by W, the set of
non-proper cuts of F. (By [ 1], Proposition 1.4, a non-proper cut of F corresponds to
an ordering of F(x) such that F is not cofinal in F(x).)

PROPOSITION 2.1.  For a real closed field F, the following statements hold.
(1) For any je A'(F), ge(Y) =W,
(2) Fis a maximal ordered field if and only if Cr=\)W,, je A'(F).

The proof of Proposition 2.1 is similar to [ 1], Theorem 3.10 and Theorem 3.11,
and so we omit it.

PROPOSITION 2.2 Let K/F be an extension of ordered fields. Suppose that K is a
maximal ordered field and for any L, FsLc K, Y is not bijective. Then F is a
maximal ordered field.

ProoF. It is clear that F is real closed. We must show that /g, 5 is DOt
bijective for any ceX (cf. [3], Proposition 2.3). For ce X, we put (4, B)=gg(0). If (4,
B)is a non-proper cut, F is not cofinal in (F(x), 6). SO ¥ ().« r 1S NOt bijective at the
final element Az A’(F). We now assume that (4, B) is a proper cut of F. We consider
the case when A <a < ff for some aeK. The element « is transcendental over F and
the F-isomorphism F(x)— F(«), sending x to «, is order preserving (cf. [1], Corollary
1.7, (1)). Since Y g r is not bijective by the assumption, S0 is Y gy, 4 r- SUPPOSE NOW
that there exists no element ae K such that A <« < B. In this case, we have a cut (A4,
By) of K which is a unique extension of (4, B) similarly to the discussion in the proof
of Lemma 1.2. Obviously (4,,Bg) is a proper cut of K. The ordering 7 of K(x)
corresponding to (Ag, By) is an extension of o. By Proposition 2.1, (2), (Ax, Bx)eW;
for some ie A'(K)\{Ax} and so (Ax—a, Bx—a)eT; for some aeK. Let L be the
algebraic closure of F(x) in K. Let v; be the valuation with the valuation ring
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A;of K. We denote by w; (resp. B) the restriction of v; (resp. 4;) to L.We put(Cy, D)
:=(Ag—a, By —a)and (C, D;): =(CxNL DxND. It follows from the fact (Cx,Dg)eT;
that v(M(Cg, D))o K\M(Cg, Dg))= ¢ and max v(K\M(Cy, D)) or min v(M(Cy,
Dy)) exists. It is clear that w{(M(Cy, D))\w{L\M(C, D))= ¢. Suppose j=4,. Then
w; is a trivial valuation of L and wyL)={0}. Therefore w{M(C,, D;))=¢ and
wiL\M(C, D))= {0}, or w{M(C_, D))= {0} and w{L\M(C,, D))= ¢. The former
case implies that max C; =0 or min D, =0 and the latter case implies that (C,, D)
=(L, ¢)or (¢, L) . In either case, we have a contradiction, since (C;, D;) is a proper
cut. So we have je A'(D\{4.}. Next we show (C,, D )eT(L). We suppose, for
example, that max v(K\M(C, Dg))=g and 0eCy. Then there exists yeDyg such that
v{(y)=g, so we can write y =by —a, bxe Bg. There exists be B such that b < by and we
put z=>b—a. Since zeL, 0<z=<y and w{z)=g=max w{L\M(C,, D;), we have (C,,
D)eT{L). In other cases, we have the same conclusions. We now put (A4,, B,):
=(AxNL, BxNL). Then (A, —a, B, —a)=(Cy, D;)e T{L) and so (4, B;)eW|(L). It
follows from Proposition 2.1, (1), Y, is not bijective. In the following diagram

(F(x),0) — Fl,x) — Lx) — (K1) -

I I T I

F — Fo — L — K

¥ p(a,x)/F(a 18 DOt bijective since L /F(«) and L(x)/F(a, x) are algebraic extensions (cf.
[2], Proposition 1.2). If F & F(a), then Y g, r is not bijective by the assumption. So
Y rayr 18 DOt bijective, since the transcendental degree of F(u, x)/F is two (cf. [3],
Proposition 1.2). If F(«)=F, then Yr y/r@ =¥ reyr and O Y, r is not bijective.

Q.E.D.

CoOROLLARY 2.3. Let K/F be an extension of ordered fields. Suppose that K is a
maximal ordered field. Then there exists an intermediate field F', F c F' = K, which is
a maximal extension of F.

PrOOF. We may assume that yg r is not bijective. Put S={F'; Fc F'& K and
Y, r is bijective}. It is easy to see that S is an inductive set; therefore there exists a
maximal element F’ of S by Zorn’s lemma. Note that K/F’ satisfies the assumption
of Proposition 2.2, and so F’ is a maximal ordered field and is a maximal extension
of F. Q.E.D.

The following Theorem 2.4 follows from Theorem 1.4 and Corollary 2.3.

THEOREM 2.4. Let K,/F be an extension of ordered fields and K | be a maximal
extension of F. Suppose that K, is a maximal ordered field. Then there exists an F-
embedding K, —K,.

COROLLARY 2.5. Let o: F— Lbe an embedding of ordered fields. Let K, and K,
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be maximal extensions of F and L respectively. Then there exists an order preserving
embedding K, — K, which is an extension of o.

ExaMPpLE 2.6. In [3], Example 1.4, we considered the extension K/F:=Q(x,,
X3,-++)/Q(x3, x3,-++) of ordered fields. K/F is a proper extension for which rank K
=rank F but Yy is not bijective.

Let L be a maximal ordered field. By the definition, there exists no proper
extension M/L of ordered fields such that y,,,, is bijective. However it is possible
that there exists a proper extension M/L of ordered fields such that rank M =rank
L. We give such an example. Let L and M be maximal extensions of F and K
respectively. There exists an F-embedding L— M by Corollary 2.5. Since y,, is not
bijective, the extension M/Lis proper, and it is clear that rank M =rank L

REMARK 2.7. Let B be an ordered field. Then the following statements are
equivalent.

(a) B is a maximal ordered field.

(b) For any ordered field C for which rank B=rank C, there is an order
preserving injection C— B such that {5 is bijective. The equivalence of (a) and (b) is
clear by [3], Theorem 3.4.

We give an example which shows that the bijectivity of i/ 3 can not be dropped
from the assumptions in (b). Similarly to Example 2.6, let L and M be maximal
extensions of F and K respectively. By Corollary 2.5, We can regard L as a subfield
of M. We put B:=L (x,)= M. Then rank B=rank L and B is not maximal ordered
field since B is not real closed. For any ordered field C for which rank B=rank C,
there is an order preserving injection C— B since L (< B)is a maximal ordered field.
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