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Let Fbe an ordered field. A pair (4, B) of subsets of Fis called a cut of Fif AYB
= Fand a<b for any ae 4 and be B. In this paper we define the breadth of a cut of F
which, in some sense, gives a measure of the gap between the lower class and the
upper class.

The notion of pseudo-convergence with respect to the finest valuation among
all compatible valuations in F plays an important role. Namely we can build up
intrinsic relations between the cuts and the pseudo-convergent sets of elements of F.
The limit of a pseudo-convergent set is by no means unique and the totality of limits
can be described by the breadth of the pseudo-convergent set. We can show that the
breadth of a pseudo-convergent set coincides with the breadth of the
corresponding cut. As an application we give the following theorem: F has no
strongly proper cut (see Definition 1.7) if and only if 4,/M,=R and (F, v) is
maximal as a valued field, where v is the finest valuation and (4,, M) its valuation
ring (Theorem 3.7).

§1. The finest valuation and cuts

For an ordered field F, let v be the finest valuation of F. The valuation ring of v
is Ag:=A(F, Q)={a€F; |a|<b for some be Q}. The maximal ideal and the value
group of v will be denoted by M, and G respectively. A pair (4, B) of subsets of Fis
called a cut of Fif F=A(B and A<B.

DErINITION 1.1.  Foracut (4, B) of F, we put E(A4, B)={e€F,b—a>|e| for any
ae A and be B} and we call it the breadth of the cut (4, B). If A= ¢ or B= ¢, then we
put E(A4, B)=F. The breadth E(A4, B) is a convex additive subgroup of F.

The breadth of a cut (4, B)is characterized by E(4, B)={ee F;a+ |e|e A for any
acA} or E(A, B)={ecF, b—|eleB for any beB}. It is clear that a cut (4, B) is
archimedean (for the definition, see [2], Definition 1.1) if and only if the breadth of
(4, B) is zero.

DerFmnITION 1.2.  For a convex subgroup D of F, we put 4,(D)=F~\D, B,(D)
=F*D, A,(D)=F" D, B,(D)=F*\D, where F* (resp. F") is the set of positive
(resp. negative) elements of F. Clearly (4, (D), B, (D)) and (4,(D), B,(D)) are cuts of



90 Daiji Kuima and Mieo NisHI

F and it is easily shown that D=E(4,(D), B,(D))= E(A,(D), B,(D)).

PROPOSITION 1.3.  For a subset D of F, the following statements are equivalent.

(1) D is a convex additive subgroup of F.

(2) W(F\D), v(D)) is a cut of G (i.e. v(F\D) Jv(D)=G and v(F\D)<v(D)).

(3) D is the breadth of some cut (A, B) of F.

Moreover if A# ¢ and B+ ¢, then D: = E(A, B) is an (integral or fractional) ideal
of A,.

PRrOOF. (1)=(2): Since D is a convex additive subgroup of F, |a| <|b| for any
aeD and be F\ D, and so we have v(a) 2 v(b) by the compatibility of v. Hence it is
sufficient to show that v(a) #v(b) for any ae D and be F\D. If v(a) = v(b), then v(b/a)
=0and so |b/a| <r for some re Q. This implies that there is a positive integer # such
that |b| <nlaleD, and this contradicts the fact that be F\D.

(1)=(3): A convex subgroup D is the breadth of (4, (D), B, (D)) and also that
of (4,(D), B,(D)).

The converse assertions (2)=>(1) and (3)=>(1) are easily shown and we omit the
proofs. Q.E.D.

We borrow from 1. Kaplansky [1] the following definitions. Let v be a
valuation of a field K and A be its valuation ring. A well-ordered set {a; i€} of
elements of K, without a last term, is said to be pseuudo-convergent if and only if v(a;
—a;)<v(a,—a;)foralli< j<k.If {a;} is pseudo-convergent, then v(a;— a;) =v(a; +
—a;)forall i< j([1], Lemma 2). We denote it by y; {y;} is a monotone increasing set
of elements in the value group G. The set of all elements y of K such that v(y)>1y; for
all i forms an (integral or fractional) ideal of the valuation ring 4; this ideal is called
the breadth of {a;} and denoted by %Z({a;}). An extension of v, or its valuation ring B,
is said to be immediate, if the value group and the residue class field coincide with
those of v respectively. The extension of v will be also written by the same symbol v.
Let B be an immediate extension of 4 and L its quotient field. An element x’ of L is
said to be a limit of the pseudo-convergent set {a;} of elements of K if v(x' —a;)=y;
for all i.

Let x’ be an element in L but not in K; then the set # (x'):={beK; v(b)>v(x’
—a)for all ae K} is called the breadth of x'. It is an (integral or fractional) ideal of A.
For an element a of K, the breadth % (a) of a is zero (cf. [4], Definition 3). The
definition in this paper is slightly different; namely in [4] the breadth % (x’) is
defined for an element x’ of B and it is an integral ideal of B.

DEerFINITION 1.4. Let D be a convex subgroup of the ordered field F. We say
that D is principal if the minimal element of v(D) exists; it is equivalent to the
condition that D is a principal fractional ideal of 4,. We say that D is coprincipal if
the maximal element of v(F\D) exists; it is equivalent to the condition that D is
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isomorphic to M,, i.e. D=aM, for some non-zero element a of F.

For a cut (4, B) and an element ¢ of F, we put A+c={a+c; acA} and B+c
={b+c; be B}.Itis clear that (4 +c, B+ c)is a cut of F and the breadth of (4 +¢, B
+¢) coincides with that of (4, B).

DErINITION 1.5.  Let {a;; i€} be a pseudo-convergent set of elements of F. We
put A, ({a;}):={ceF, there exists iel such that c<a; for any j>i} and B ({a;}):
=F\A,. We also put Bg({a;}): = {ceF; there exists ieI such that a;<c for any j> i}
and Ag({a;}):=F\Bg.

THEOREM 1.6. For a pseudo-convergent set {a;} of elements of F, we have

g({ai} )= E(AR({ai} ) BR({ai} )= E(AL({ai} ), BL({ai} )

Proor. First we show that #({a;})<= E(4,({a;}), B.({a;})). Let ¢ be any
element of #({a;}). We must show that |c|<b—a for any aeA,({a;}) and
be B, ({a;}). By the definition of (4, ({a;}), B.({a;})), there exist elements i, jeI such
that a<a;<a;<b. It follows from the condition v(c)>v(a;—a;) that |c| <a;—a;<b
—a.

Next we show that #({a;})> E(AL({a;}), B.({a;}). Let c be any element of F
which is not contained in #({a;}). Then there exists je/ such that v(c) <y; (note that
{ys iel} has no largest element). Put d:=|a;,; —aj|, a:=a;—2d and b:=a;+2d.
Since v(b—a)=v(4d)=y;>v(c), we have b—a<|c|. Hence it is sufficient to show
that ac 4, ({a;}) and be B, ({a;}). For any element kel, k>j+1, v(ay—a;1+1) =741
>y;=v(d), and so |a,—a;, | <d. Now it is easily shown that a<a;,, <b,b—a;,,
>dand a;,, —a=d. Hence a<a, <b for any k> j+ 1. This shows that ac 4, ({a;})
and be B, ({a;}).

Similarly we can show %({a;})=E(Ag({a;}), Bx({a;}). Q.E.D.

In [3], Definition 2.1, we gave the definition of a proper cut. In the following
definition, we define a strongly proper cut.

DEerINITION 1.7. Let (A4, B) be a cut of F and put D=E(A, B). Since D is a
convex subgroup of F, F/D has a structure of an ordered group. We put A= {a+ D,
acA}c F/Dand B={b+ D,be B} c F/D.ltis easy to see that A"\B= ¢,and so (4, B)
is a cut of F/D. We say that (4, B) is strongly proper if 4 # ¢, B+# ¢ and neither max
A nor min B exists.

REMARK 1.8. Let D(D # F) be a convex subgroup of F. It is clear that (4, (D),
B;(D)) and (4,(D), B,(D)) are not strongly proper cuts. Moreover (4,(D)+c,
B;(D)+c)and (4,(D)+c, B,(D)+c) are also not strongly proper cuts for any ceF.
Conversely. let (4, B) be any cut with the breadth D, and suppose that (4, B) is not
strongly proper. Then we can easily show that there exists an element ¢ of F such
that (4, B)=(A4,(D)+c¢, B;(D)+c) or (A, B)=(A(D)+c, B,(D)+c).
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Let {a; iel} be a pseudo-convergent set of elements of F and put D=%({a;}).
Since {y;} has no maximal element, D is not coprincipal. By [1], Lemma 1, either
v(a;)<v(a;)forall i< j, or v(a;) =v(a;) from some point on. We can easily show that
zero is a limit of {;} if and only if v(a;) <v(a;) for all i < j, and so v(a;) =y, for all i€ .
Suppose that zero is a limit of {a;}. Then we can show that if {ie I; a; <0} is a cofinal
subset of 7, then (4, (D), B, (D))= (A.({a;}), BL({a;})) and if {ie]; a;>0} is a cofinal
subset of I, then (4,(D), B,(D))=(4r({a;}), Br({a;})).

Putb;:=a;+ ¢, ceF. Then {b,} is a pseudo-convergent set of elements of F and it
is clear that (4,.({b;}), B.({b:}))=(4.({a;})+c, B.({a;})+c) and (Ar({b:}),
Br({b:})) = (Ar({a;}) + ¢, Br({a;})+c).

ProposITION 1.9. Let (A, B) be a cut of F such that A+ ¢, B# ¢. Then the
following statements are equivalent.

(1) (4, B) is not strongly proper and D:= E(A, B) is not coprincipal.

(2) There exists a pseudo-convergent set {a;} which has a limit in F such that (A,
B)=(A4.({a;}), BL({a;})).

(3) There exists a pseudo-convergent set {a;} which has a limit in F such that (A,
B)=(A4gr({a;}), Br({a})).

Moreover, for a pseudo-convergent set {a;}, if (A ({a;}), BL({a;})) (or (Ag({a;}),
Br({a;}))) is not strongly proper, then {a;} has a limit in F.

ProoF. (1)=>(2): By Remark 1.8, we may assume that (4, B)= (4, (D), B,(D))
or (4, B)=(A,(D), B,(D)). Since D is not coprincipal, there exists a well-ordered
cofinal subset {g;; iel} of v(F\D). For any i€, we take an element g; such that v(a;)
=g;and q;>0. Then {a;;iel} and { —a;; ieI} are pseudo-convergent sets of elements
of F,and we have (4g({a;}), Br({a;}))= (4,(D), B,(D))and (4, ({ —a;}), BL({ —a:}))
=(4,(D), B,(D)).

(2)=>(1): By Theorem 1.6, D is the breadth of {a;}, and so it is not coprincipal.
Let xeF be a limit of {a;}. We can show that if {iel; q;<x} is cofinal in /, then
(A.({ai}), BL({a;}))=(A4,(D)+x, B{(D)+x) and if {iel;, a;<x} is not cofinal in I,
then (4, ({a}), B, ({a;}))= (4,(D)+x, B,(D)+x). Hence (4, ({a;}), B,({ag})= (4,
B) is not strongly proper.

The equivalence of (1) and (3) are proved similarly. The proof of the last
statement is similar to the proof of (1)=(2) and we omit it. Q.E.D.

PrOPOSITION 1.10.  Let {a;; i€ I} be a pseudo-convergent set of elements of F and
put D:=2RB({a;}). Then the following statements are equivalent.

(1) Zero is a limit of {a;}.

(2) wv(a;))<v(a;) for all i<j.

3 (e}, Bu({a})) = (4,(D), B,(D)) or (4,(D), B,(D)).

@) (x({a}), Ba({a})) = (4,(D), B,(D)) or (4,(D), B,(D)).
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The proof of Proposition 1.10 is a routine exercise and left to the reader.

PROPOSITION 1.11.  Let {a;; ieI} be a pseudo-convergent set of elements of F. If
{a;} has no limit in F, then we have

(A.({ai}), BL({a;})) = (Ar({a;}), Br({ai})).

ProoF. Suppose that there exists an element xe Ag\4;. Let i be any element
of I. Then we have x <a; for some j> i since xe A¢ and g, < x for some k> since
xeB;. Hence v(x—a;)2v(a;—a)=g;>g;=v(a;—a;), and so v(x—a;)=v(x—a;
+a;—a;)=g;. This shows that x is a limit of {g;}, and we have a contradiction.

Q.ED

Let v be a valuation of a field K and G be its value group.A g-section of a
valuation v is map s: G—K satisfying '

(1 s(0)=1
2 vis@@)=yg
(3)  s(g:+92)=s5(g,) s(g,) mod K>

forallg,g,,9,€G (cf. [5],§7). Let X be the set of orderings of K which are compatible
with v. Then every ordering Pe X induces a character o of the group G/2G defined
by op(g)s(g)eP. Let K, be the residue field of v and Y be the set of orderings of K.
We denote by P the ordering of K, which is canonically induced by P. Then the map
Y: X—3(G/2G) x Y defined by y (P) = (o, P) is bijective (cf. [5], Theorem 7.9). From
this fact, we have immediately the following Proposition 1.12.

PROPOSITION 1.12.  Let L /K be an extension of fields. Let vy, G and sg (resp.
vy, G, and s;) be a valuation, its value group and a g-section of K(resp. L). Suppose that
v (resp. sg) is a restriction of vy (resp. s;). Let Xy (resp. X;) be the set of orderings of
K(resp. L) which are compatible with vy (resp. v). Then for Pe Xy and P'e X, the
following statements are equivalent.

(1) P is an extension of P.

(2) P is an extension of P and op=apop where p is the canonical morphism
Gy/2Gx—GL/2G,.

We now go back to the ordered field F. Let B, be a maximal immediate
extension of 4, and K be the quotient field of B,. By Proposition 1.12, there exists a
unique ordering of K which is compatible with the valuation of K and is an
extension of the ordering of F.

PROPOSITION 1.13.  In the above situation, let x be an element of K\F and let {a;;
ieI} be a pseudo-convergent set of elements of F such that {a;} has no limit in F and x is
a limit of {a;} (cf.[1], Theorem 1). Put A:={aeF, a<x} and B:={beF, x<b}. Then
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we have
A({a;}) = B(x)=E(A, B) and (4, B) = (AL({ai} ) BL({ai})) = (Ar({a;}), BR({ai}))'

Proor. First we show that 4 = 4, ({a;}). Let a be any element of A. Since a is
not a limit of {a;}, there exists an element i of 7 such that v(x —a)<v(x—a;). Hence
v(x—a)<v(x—a;)for any j>i, and so we have |x —a;| <x—a. Thus a<ajand this
implies ae 4; ({;}). Similarly we have B< Bg({a;}), and by Proposition 1.11, (4, B)
=(4.({a:}), BL({a;}))=(4r({a;}). Bx({a;})). It is known that % ({a;})=B(x) (cf.
[4], Remark 1), and this implies that #(x)= E(4, B) by Proposition 1.6. Q.E.D.

§2. Strongly proper cuts

Let {a;} be a pseudo-convergent set of elements of F which has no limit in F. We
put (4, B)=(4g({a;}), Br({a:}))=(4.({a;}), B.({a;})). By Proposition 1.9, (4, B) is
strongly proper. Conversely, in this section, we show that for any strongly proper
cut (4, B) for which E(A, B)is not coprincipal, there exists a pseudo-convergent set
{a;} of elements of Fsuch that {a;} has no limitin Fand (4, B)= (4z({a;}), Br({a;}))
= (A4.({a;}), BL({a;})). Throughout this section, we fix a cut (4, B) and assume that
it is strongly proper and D:= E(A, B) is not coprincipal.

LEMMA 2.1.  For any gev(F\D), there exist ac A and be B such that v(b—a)=g.

Proor. Let g’ be an element of v(F\ D) such that g <g'. Let c and d be positive
elements of F such that v(c)=g' and v(d)=g. Since c is not contained in D, there
exist @€ A and be B such that b—a’ <c, and we have v(b—ad)=g. Put aa=d —d.
Then v(b—a)=v((b—a')+d)=v(d)=g. Q.E.D.

LEmMMA 2.2. The following statements hold.

(1) For anyelement x of A, there exists an element y of A such that x<y and
v(y—x)ev(F\D).

(2) For anyelement x of B, there exists an element y of B such that y <x and
v(y —x)ev(F\d).

(3) For any ac A, be B and gev(F\D), there exist elements xe A and ye B such
that a<x, y<b and v(y—x)>g.

PRrROOF. First we show (1). If v(y — x)ev(D) for any ye 4, x <y, then y— x is an
element of D by Proposition 1.3, and so X =max 4 where (4, B) is a cut of F\D. This
contradicts the fact that (4, B) is strongly proper. The assertion (2) is proved
similarly. Next we show the assertion (3). Let g’ be an element of v(F\D) with g
>max {v(b—a), g} (note that D is not coprincipal). By Lemma 2.1, there exist a'e 4
and b'e Bsuch that v(b'—a’)=g'. We take elements xe 4 and ye B so that max {a, a'}
<x and y<min{b, b'}. Then we have v(y —x)>g. Q.E.D.

!
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Let {g;; iel} be a well-ordered cofinal subset of v(F\D). Since D is not
coprincipal, there is no last element in {g;}. For any i€/, we choose elements a;c 4
and b,e B such that v(b;—a;)=g;.

LEMMA 2.3. In the above situation, at least one of the following statements
holds.

1) v(x—b;,)=g; forany xe€A, a;<x.
2 vl—a)=g; forany yeB, y<b,.

PrOOF. Suppose to the contrary that v(x —b;)>g; for some xe A4, a;<x and
v(y—a;)>g; for some yeB, y<b; Then for any x'e4, x<x', and y'eB, y' <y, we
have v(y’ —a;) >g; and v(x’ — b;) > g;. These facts imply v(y' — b;)=v(y' —a; + a;— b;)
=g;. Hence v(x'—y")=v(x'—b;+ b;—)')=g,. This contradicts (3) of Lemma 2.2.

Q.E.D.

DEFINITION 2.4. We put ¢;=b; if v(x—b;) =g, for any xe A4, a;< x and ¢;=aq; if
v(y—a;)=g; for any yeB, y<b,. If v(x—b;)=g; and v(y —a;) =g, for any xe 4 and
yeB, then we optionally put ¢;=a; or ¢;=b,.)

LEMMA 2.5. {c;} is a pseudo-convergent set of elements of F, and it has no limit
in F.

Proor. First we show that {¢;} is a pseudo-convergent set. It is sufficient to
show that v(c;—c;)=g; for any i<

Case 1. Suppose ;€4 and c;e B. We take xe A and ye B so that max{c; a;}
<x,y<min{b;, c;} and v(y —x)>g; (cf. Lemma 2.2, (3)). Then v(¢;— x) =v(c;—y+y
—x)=g;. Hence we have v(c;—c¢;)=v(c;(—x+x—¢;)=g;

Case 2. Suppose c;eA and c;eA4. Let y be an element of B such that y
<min{b; b;}. Then v(c;—c;)=v(c;—y+y—c;)=g:

The other cases can be proved similarly; thus {¢;} is a pseudo-convergent set.

We now show that {c;} has no limit in F.Let x be any element of 4. By Lemma
2.2 (1), there exists an element y of 4 such that x <y and v(y — x)ev(F\D). Let i be an
element of 7 with g;> v(y — x). To show that x is not a limit of {¢;}, it is sufficient to
show that v(a;— x) <g;. Infact,if v(a;— x) <g;, then v(b;— x)=v(b;— a; + a;— x) < g;,
and so we have v(c;— x) <g;. Suppose to the contrary that v(a;— x)=g;. Then v(b;
—x)=v(b;—a;+a;— x)=g,, and this implies v(y — x) = v(b;— x) = g; since y —x < b;
—x. Thus we have a contradiction. Hence x is not a limit of {¢;}. Similarly no
element of B is a limit of {c;}. Q.E.D.

THEOREM 2.6. Let (A, B) be a cut of F. Suppose that (A, B) is strongly proper
and D:= E(A, B) is not coprincipal. Then there exists a pseudo-convergent set {c;} of
elements of F, without a limit in F such that
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(4, B) = (Ag({c:}), Br({c:}) = (AL({c:i}), BL({c:}))-

ProOF. Let {¢;} be a psuedo-convergent set defined in Definition 2.4. Let a be
any element of 4. By Lemma 2.2. (1), there exists an element x of 4 such that a<x
and v(x—a)ev(F\D). For any iel with g;>v(x—a), we have ¢;>a, and so a is an
element of 4, ({c;}). Similarly we have B< Bg({c,}). By Proposition 1.11, (4z({c;}),
Br({c:}))=(4.({ci}), B.({c;})), and so (4, B)=(A4g({c;}), Br({c:}))= (AL({ei})s
B.({ci}))- Q.E.D.

REMARK 2.7. Let B, be a maximal immediate extension of 4, and K be the
quotient field of B,. We define an equivalence relation~in the set K\F. For x,
yeK\F, we put x ~y if there is no element of F such that x<a<y or y<a<x. We
can readily see that ~is an equivalence relation in the set K\ F. Put S= (K\F)/~. Let
W be the set of pseudo-convergent sets of elements of F without limits in F. We also
define an equivalence reltion~in the set W. For {a;}, {b;}€ W, we put {a;} ~ {b;} if
{a;} and {b;} have a common limit. Note that if {¢;} and {b;} have a common limit,
then % ({a;})=%({b;}), and it is easy to see that ~is an equivalence relation. We put
T=W]|~.For{a;}, {b;}eW,let x and y be limits of {a;} and {b;} respectively. Then x
~y if and only if {a;} ~ {b;}. Thus we have a canonical bijection ¢: S— T (cf. [1],
Theorem 1). Let U be the set of strongly proper cuts of F whose breadths are not
coprincipal. For {a}eW, we put ¥({a})=(4r({a;}), Bgr({a;}))=(4.({a;}),
B, ({a;})). The map y: W— U canonically induces the map (denoted by the same
symbol) y: T— U. From the arguments in this section and by Proposition 1.13, we
can see that y: T— U is bijective.

REMARK 2.8. Let (4, B) beacut of F. Then (A4, B)is filled in K (i.e. there exists
an element x of K such that 4 <x < B)if and only if the cut (4, B)is strongly proper
and E(A, B) is not coprincipal (cf. Proposition 1.13). Suppose that a cut (4, B) is
filled in K and take xeK so that 4 <x<B. Then we have {yeK; A<y<B}=x
+ %(x) (here, we regard %#(x) as an ideal of B).

REMARK 2.9. The set L of elements of K whose breadths are zero forms a
subfield of K (cf. [4], Theorem 5). In [4], L is called the n-completion of F. For any
element xe L \ F, the equivalence class of x in K\ Fis {x}, and the cut of F determined
by x is a proper archimedean cut (for the definition, see [2], Definition 1.1 or[3],
Definition 2.1). The n-completion L coincides with the completion of F (cf. [3],
Definition 2.5).

§3. Applications

THEOREM 3.1.  For an ordered field F, the following statements are equivalent.
(1) F has no strongly proper cut (A, B) such that E(A, B) is not coprincipal.
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(2) (F, v) is a maximal valued field.

PrROOF. (1)=>(2): Let {a;iel} be any pseudo-convergent set of elements of F.
Put (4, B):=(A.({a;}), B.({a;})). By Proposition 1.6, we have E(4, B)=%({a;}),
and so D:= E(4, B)is not coprincipal. Hence (4, B)is not a strongly proper cut, and
so {a;} has a limit in F by Proposition 1.9.

The assertion (2)=>(1) is clear from Theorem 2.6. Q.E.D.

For a cut (4, B) and a positive element ¢ of F, we put cA={ca; acA} and cB
={cb; be B}. It is clear that (cA4, cB)is also a cut of F. Let D be a convex subgroup of
F which is contained in E(4, B). We put A, ={a+ D;ac A} and B,={b+ D; be B}.
(Ap, Bp)is a cut of the ordered group F/D.If D= E(A, B), then (4, B)=(Ap, Bp) (cf.
Definition 1.7).

LemMA 3.2. For a cut (A, B) and a positive element ¢ of F, the following
statements hold.

(1) E(cA, cB)=cE(A, B). Moreover E(A, B) is coprincipal (resp. principal) if
and only if E(cA, cB) is coprincipal (resp. principal).

(2) (A, B) is strongly proper if and only if so is (cA, cB).

Proor. The assertion (1) is easily shown. Suppose (4, B) is not strongly
proper. Let x be an element of F such that Xx=max A4 orXx=min B. (For the
definition of (4, B), see Definition 1.7.) Then éx =maxé4 or ¢x =min¢B. Hence (cA,
¢B) is not strongly proper. Q.E.D.

The following Lemma 3.3 and Lemma 3.4 follow immediately from the
definitions.

LemMA 3.3.  For acut (A, B) and a convex subgroup D of F which is contained in
E(A, B), the following statements are equivalent.

(1) D=E(4, B).

(2) (Ap, Bp) is archimedean, namely for any positive element o of F/D, there
exist fe Ay and ye By, such that f—y<a.

LEMMA 3.4. Let (A, B) be a cut of F. Suppose that E(A, B)= M, ANAy# ¢ and
BNAo#¢. Weput A'={a+ M, ac ANAo} and B ={b+ My, be BN\A,}. Then (4,
B) is a cut of Ay/M and (A, B) is strongly proper if and only if (A', B') is proper.

LEMMA 3.5. If Ay/My=R, then F has no strongly proper cut (A, B) for which
E(A, B) is coprincipal.

PrOOF. Let (4, B) be a cut of Ffor which D: = E(A, B)is coprincipal. We must
show that (4, B) is not a strongly proper cut. By Lemma 3.2, we may assume that D
= M. We fix a positive element a of 4,\ M. Since a is not an element of D,b—c<a
for some be B and ce A. We put d= (b+c)/2. Then the cut (4 —d, B— d) satisfies the
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condition of Lemma 3.4. By the fact 4,/M,=R and Lemma 3.4,(4 —d, B—d)isnot
strongly proper, and so (4, B) is also not strongly proper. Q.E.D.

THEOREM 3.6. For an ordered field F, the following statements are equivalent.
(1) Ao/My=R.
(2) F has no strongly proper cut (A, B) for which E(A, B) is coprincipal.

Proor. By Lemma 3.5, it is sufficient to show the assertion (2)=-(1). Suppose
that there exists an element s of R\ 4,/M, Let (C, D) be a cut of A,/M, determined
by s. Since 4,/M, is a convex subgroup of the additive group /M, we can extend
(C, D) to the cut (C', D') of F/M,. Let (4, B) be the cut of F which is the pullback of
(C, D’); namely (AMO, BMo) = (C', D’). By Lemma 3.3, we have E(4, B)= M,; hence
E(A, B)is coprincipal. It is clear that neither max C’' nor min D’ exists, and so (4, B)
is strongly proper. This contradicts the assumption of (2). Q.E.D.

The following Theorem 3.7 follows immediately from Theorem 3.1 and
Theorem 3.6.

THEOREM 3.7. For an ordered field F, the following statements are equivalent.
(1) Ayo/My=R and (F, v) is a maximal valued field.
(2) F has no strongly proper cut.
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