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Let Fbe an ordered field. A pair (A, B) of subsets of Fis called a cut of Fif A[jB
= Fand a < b for any aeA and beB. In this paper we define the breadth of a cut of F
which, in some sense, gives a measure of the gap between the lower class and the
upper class.

The notion of pseudo-convergence with respect to the finest valuation among
all compatible valuations in F plays an important role. Namely we can build up
intrinsic relations between the cuts and the pseudo-convergent sets of elements of F.
The limit of a pseudo-convergent set is by no means unique and the totality of limits
can be described by the breadth of the pseudo-convergent set. We can show that the
breadth of a pseudo-convergent set coincides with the breadth of the
corresponding cut. As an application we give the following theorem: F has no
strongly proper cut (see Definition 1.7) if and only if A0/M0 = R and (F, v) is
maximal as a valued field, where v is the finest valuation and (Ao, Mo) its valuation
ring (Theorem 3.7).

§1. The finest valuation and cuts

For an ordered field F, let v be the finest valuation of F. The valuation ring of v
is A0: = A(F, Q) = {aeF; \a\<b for some beQ}. The maximal ideal and the value
group of v will be denoted by Mo and G respectively. A pair (A, B) of subsets of Fis
called a cut of F if F= A{JB and A < B.

DEFINITION 1.1. For a cut (A, B) of F, we put E(A, B) = {eeF; b — a > \e\ for any

aeA and beB} and we call it the breadth of the cut (A, B).lΐA = φovB= φ, then we
put E(A, B) = F. The breadth E(A, B) is a convex additive subgroup of F.

The breadth of a cut (A, B) is characterized by E(A, B) = {eeF; a + \e\ eA for any
aeA} or E(A, B) = {eeF; b-\e\eB for any beB}. It is clear that a cut (A, B) is
archimedean (for the definition, see [2], Definition 1.1) if and only if the breadth of
(A, B) is zero.

DEFINITION 1.2. For a convex subgroup D of F, we put A1(D) = F~\D, BX(D)
= F+(JZ>, Ar(D) = F-[)D, Br(D) = F+\D, where F + (resp. F") is the set of positive
(resp. negative) elements of F. Clearly (Aί (/)), Bx (D)) and (Ar(D\ Br(D)) are cuts of
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F a n d it is easily shown that D = E(A1(D% B1(D)) = E(Ar(D), Br(D)).

PROPOSITION 1.3. For a subset D ofF, the following statements are equivalent.
(1) D is a convex additive subgroup of F.

(2) (v(F\D), v{D)) is a cut of G (i.e. v(F\D){Jv(D) = G and v(F\D)<v(D)).

(3) D is the breadth of some cut {A, B) of F.

Moreover if A # φ and BΦφ, then D: = E(A, B) is an {integral or fractional) ideal

ofA0.

PROOF. (1)=>(2): Since D is a convex additive subgroup of F, \a\ < \b\ for any

aeD and beF\D, and so we have v(a)^v(b) by the compatibility of v. Hence it is

sufficient to show that v(a)φv(b)ίoτ any aeD and beF\D. lϊv(a) = v(b\ then v(b/a)
= 0 and so \b/a\ < r for some re Q. This implies that there is a positive integer n such

that \b\<n\a\eD, and this contradicts the fact that beF\D.

(1)=>(3): A convex subgroup D is the breadth of (Ax {D\ B1 (D)) and also that

of (Ar(D% Br{D)).

The converse assertions (2)=>(1) and (3)=>(1) are easily shown and we omit the

proofs. Q.E.D.

We borrow from I. Kaplansky [1] the following definitions. Let y be a

valuation of a field K and A be its valuation ring. A well-ordered set {a{, ieϊ) of

elements of AT, without a last term, is said to be pseuudo-convergent if and only if v{a^

— ai)<v(ak — aj)for all i<j<k. If {a^ is pseudo-convergent, then v(aj — ai) = v(ai+1

— a^ίoτ all /<y([l] , Lemma 2). We denote it by γt; {yj is a monotone increasing set

of elements in the value group G. The set of all elements y of K such that v(y) > γt for

all /forms an (integral or fractional) ideal of the valuation ring A; this ideal is called

the breadth of {a^ and denoted by ^({# J) . An extension of v, or its valuation ring 2?,

is said to be immediate, if the value group and the residue class field coincide with

those oft; respectively. The extension of v will be also written by the same symbol v.

Let B be an immediate extension of A and L its quotient field. An element x' of L is

said to be a limit of the pseudo-convergent set {αj of elements of K'ύ υ{x' — ai) = yi

for all /.

Let x' be an element in L but not in K; then the set & (x'): = {beK; v (b) > v (xf

— a) for all aeK} is called the breadth oϊxr. It is an (integral or fractional) ideal of A.

For an element a of K, the breadth 31 (a) of a is zero (cf. [4], Definition 3). The

definition in this paper is slightly different; namely in [4] the breadth & (xf) is

defined for an element xr of B and it is an integral ideal of B.

DEFINITION 1.4. Let D be a convex subgroup of the ordered field F. We say

that D is principal if the minimal element of v(D) exists; it is equivalent to the

condition that D is a principal fractional ideal of Ao. We say that D is coprincipal if

the maximal element of v(F\D) exists; it is equivalent to the condition that D is
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isomorphic to M o , i.e. D = aM0 for some non-zero element a of F.

For a cut (A, B) and an element c of i% we put A + c = {a + c; aeA) and B + c

= {b + c; beB}. It is clear that {A + c, B + c) is a cut of Fand the breadth of (A + c,B

coincides with that of (̂ 4, 2?).

DEFINITION 1.5. Let {αf; /e/} be a pseudo-convergent set of elements of F. We
put ^4L({#J): = {ceF; there exists /e/ such that c<a} for anyy>/} and BL({a^)\
= F\AL. We also put BR({ai}): = {ceF; there exists ze/such that a^<c for anyy>/}

THEOREM 1.6. For 0 pseudo-convergent set {αj of elements of F, we have

PROOF. First we show that ^ ( { ^ c z ^ ^ } ) , 5L({ΛJ})). Let c be any
element of @l({a^). We must show that \c\<b — a for any aeAL({ai}) and
ie5L({αf}). By the definition of (AL({a^\ BL({a^)\ there exist elements /,7'e/such
that a<ai<ai<b. It follows from the condition υ(c)>υ{aj — ai) that |c| <aj — at<b
— a.

Next we show that ^{{a^)^E{AL{{ai\\ BL({at}). Let c be any element of F
which is not contained in ^({αj). Then there exist sye I such that t (c) < yj (note that
{ŷ ; /G/} has no largest element). Put d: = \aj+ί—aj\9 a\ = aj — 2d and b\ = aj

Jt2d.
Since v(b — a) = v(Ad) = yj>v(c\ we have 6 —α<|c|. Hence it is sufficient to show
that aGAL({ai}) and beBL({ai}). For any element kel, k>j+1, ι;(β k-α i + 1) = yJ + 1

>y7 = ι;(J), and so |αk — aj+1\<d. Now it is easily shown that a<aj+1<b, b — aj+1

^.da,ndaj+ί— a^d. Hence a<ak<bϊoτ any k>j+ 1. This shows that

Similarly we can show ^({αί}) = £'(^R({αί}), ^({αj) . Q.E.D.

In [3], Definition 2.1, we gave the definition of a proper cut. In the following
definition, we define a strongly proper cut.

DEFINITION 1.7. Let (A, B) be a cut of F and put D = E{A, B). Since D is a
convex subgroup of F, F/D has a structure of an ordered group. We put A = {a + D,
aeA} a F/D and 5 = {b + D, beB} a F/D. It is easy to see that Af]B= φ, and so (A, B)
is a cut oϊF/D. We say that (A, B) is strongly proper \iAΦφ,BΦφ and neither max
A nor min B exists.

REMARK 1.8. Let D(DΦF) be a convex subgroup of/7. It is clear that (A1(D\
B^D)) and (^4rφ), Br(D)) are not strongly proper cuts. Moreover (Aί(D)-\-c,
B1(D) + c) and (Ar(D) + c,Br(D) + c) are also not strongly proper cuts for any ceF.
Conversely, let (A, B) be any cut with the breadth D, and suppose that (A, B) is not
strongly proper. Then we can easily show that there exists an element c of F such
that (A, B)={A1(D) + c9 B1(D) + c) or (A, B) = (Ar(D) + c, Br(D) + c).
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Let {at; iel} be a pseudo-convergent set of elements of F and put D =

Since {yt} has no maximal element, D is not coprincipal. By [1], Lemma 1, either

f(a f) < v(aj) for all / <y, or v (#f) = i;(^) from some point on. We can easily show that

zero is a limit of {at} if and only if v^) < v(aj) for all i<j, and so v(ai) = γt for all iel.

Suppose that zero is a limit of {at}. Then we can show that if {iel; at < 0} is a cofinal

subset of/, then (Ax (D), Bx (D))= {AL{{at)), BL({at})) and if {iel; at > 0} is a cofinal

subset of/, then (Ar(D), Br{D))={AR{{a^), BR({aι})).

Put b{. = ai-\-c, ceF. Then {b^ is a pseudo-convergent set of elements of Fand it

is clear that (AL({bt})9 ΛL({6 i}))=μL({ f l |}) + c, 5L({fl£}) + c) and

PROPOSITION 1.9. L^/ (̂ 4, 5) be a cut of F such that AΦφ, BΦφ. Then the

following statements are equivalent.

(1) (A, B) is not strongly proper and D: = E(A, B) is not coprincipal.

(2) There exists a pseudo-convergent set {αj which has a limit in F such that (A,

B)=(AL{{a,}),BL{{a,})).

(3) There exists a pseudo-convergent set {a^ which has a limit in Fsuch that (A,

Moreover, for a pseudo-convergent set {at}9 if{AL({a^\ BL({at})) (or (^({α,-}),
BR({ai}))) is not strongly proper, then {at} has a limit in F.

PROOF. (1)=>(2): By Remark 1.8, we may assume that (A,B)=(A1(D),B1(D))

or (A, B)=(Ar(D), Br(D)). Since D is not coprincipal, there exists a well-ordered

cofinal subset {gt; iel} oϊv(F\D). For any iel, we take an element at such that v(a{)

= gt and a{ > 0. Then {at; iel} and {— at; iel} are pseudo-convergent sets of elements

ofF,and wehave ( Λ ( W ) , ^ * ( { ^
= (Aί(D),B1(D)).

(2)=>(1): By Theorem 1.6, D is the breadth of {a^, and so it is not coprincipal.

Let xeF be a limit of {αj. We can show that if {iel; at<x} is cofinal in /, then

( ^ L ( W ) > BL({ai}))=(A1(D) + x, B1(D) + x) and if {iel; at<x} is not cofinal in /,

then (AL({at})9 BL({ai}))=(Ar(D) + x, Br{D) + x). Hence (AL({at}\ BL{{av)))={A,

B) is not strongly proper.

The equivalence of (1) and (3) are proved similarly. The proof of the last

statement is similar to the proof of (1)=>(2) and we omit it. Q.E.D.

PROPOSITION 1.10. Let {at; iel} be a pseudo-convergent set of elements of F and

put D: = &({ai}). Then the following statements are equivalent.

(1) Zero is a limit of {at}.

(2) v (at) < v (QJ ) for all i < j .

(3) ( Λ L ( M ) , BL({at}))= (A^D), BX(D)) or (Ar(D), Br(D)).

(4) (AR({at})9 BR({ai})) = (AX{D)9 Bt(D)) or (Ar(D), Br{D)).
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The proof of Proposition 1.10 is a routine exercise and left to the reader.

PROPOSITION 1.11. Let {a(; iel} be a pseudo-convergent set of elements ofF. If

{cii} has no limit in F, then we have

(AL({at}), BL({ai}))=(AR({ai}), BR({at})).

PROOF. Suppose that there exists an element xeAR\AL. Let / be any element
of /. Then we have x^a^ for somey>/ since xeAR and ak^x for some k>j since
xeBL. Hence v(x — aj)^v(aj — ak)==gj>gi = υ(aj — ai)9 and so v(x — ai) = v(x — aj

+ aj — ai) = gi. This shows that x is a limit of {αj, and we have a contradiction.

Q.E.D

Let υ be a valuation of a field K and G be its value group. A ^-section of a

valuation v is map s: G^K satisfying

(1) j ( 0 ) = l

(2) v(s(g)) = g

(3) s{

for all g, gu g2eG (cf. [5], §7). Let A^be the set of orderings of .K which are compatible

with v. Then every ordering PeX induces a character σP of the group G/2G defined

by σP(g)s(g)eP. Let Kv be the residue field of υ and Y be the set of orderings of Kv.

We denote by P the ordering of Kv which is canonically induced by P. Then the map

ψ: X-+χ(G/2G) x Fdefined by φ(P) = (σP, P) is bijective (cf. [5], Theorem 7.9). From

this fact, we have immediately the following Proposition 1.12.

PROPOSITION 1.12. Let L/Kbe an extension of fields. Let vκ, Gκ andsκ (resp.

vL, GL andsj) be a valuation, its value group and a q-section ofK(resp. L). Suppose that

vκ (resp. sκ) is a restriction ofvL (resp. sL). Let Xκ (resp. XL) be the set of orderings of

K(resp. L) which are compatible with vκ (resp. vL). Then for PeXκ and P'eXL, the

following statements are equivalent.

(1) F is an extension of P.

(2) F is an extension of P and σP = σP,°p where p is the canonical morphism

GK/2GK^GJ2GL.

We now go back to the ordered field F. Let Bo be a maximal immediate

extension of Ao and K be the quotient field of Bo. By Proposition 1.12, there exists a

unique ordering of K which is compatible with the valuation of K and is an

extension of the ordering of F.

PROPOSITION 1.13. In the above situation, let x be an element ofK\Fand let {at

ieϊ} be a pseudo-convergent set of elements of F such that {a^ has no limit in Fandx is

a limit of{at} (cf. [1], Theorem 1). Put A: = {aeF; a<x) andB: = {beF;x<b}. Then
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we have

@{{ai}) = @{x) = E(A, B) and {A, B) = (ΛL(W), BL({at})) = (AR({at})9 BR{{at})).

PROOF. First we show that A c AL({at)). Let a be any element of A. Since a is

not a limit of {ΛJ, there exists an element i of/such that v{x — a)<υ(x-ai). Hence

v(x-a)<v(x-aj) for any j>i, and so we have \x — aj\<x-a. Thus a<a} and this

implies aeAL({a-}). Similarly we have B^BR({at)\ and by Proposition 1.11, (A, B)

= (AL({at})9 BL({ai}))=(AR({ai}). BR({ai})). It is known that Λ({flί}) = Λ(jc) (cf.

[4], Remark 1), and this implies that @{x) = E(A, B) by Proposition 1.6. Q.E.D.

§2. Strongly proper cuts

Let {αj be a pseudo-convergent set of elements of Fwhich has no limit in F. We

put (A, B)=(AR({at})9 BR{{ai}))={AL({aι)\ BL({ai})). By Proposition 1.9, (A9 B) is

strongly proper. Conversely, in this section, we show that for any strongly proper

cut (A9 B) for which E(A9 B) is not coprincipal, there exists a pseudo-convergent set

{tfj of elements of Fsuch that {«J has no limit in Fand (A, B) = {AR({a^), BR({a^))

= (AL({aι}), BL({at})). Throughout this section, we fix a cut {A, B) and assume that

it is strongly proper and D: = E(A, B) is not coprincipal.

LEMMA 2.1. For any gev(F\D), there exist aeA andbeB such thatv(b — a) = g.

PROOF. Let g' be an element of v (F\D) such that g<g'.Letc and d be positive

elements of F such that v(c) = gf and υ(d) = g. Since c is not contained in D9 there

exist a'eA and &ei? such that b — a'<c, and we have v{b — a')^g'. Put a\ — a' — d.

Then ι;(6-α) = ι;((Z>-α/) + rf) = t;(ί/) = gf. Q.E.D.

LEMMA 2.2. The following statements hold.

(1) For anyelement x of A, there exists an element y of A such that x<y and

v(y-x)ev(F\D).

(2) For anyelement x of B, there exists an element y of B such that y<x and

v(y-x)ev(F\d).

(3) For any aeA, beB andgev(F\D), there exist elements xeA andyeB such

that a<x, y<b and v(y — x)>g.

PROOF. First we show (1). If v(y — x)ev(t>) for any yeA,x<y, then>> — x is an

element of D by Proposition 1.3, and so ΐ = max A where (A, B) is a cut of F\D. This

contradicts the fact that (A, B) is strongly proper. The assertion (2) is proved

similarly. Next we show the assertion (3). Let g' be an element of v(F\D) with g'

>max{v(b — a), g] (note that D is not coprincipal). By Lemma 2.1, there exist a'eA

and b'eB such that v(b' — a') = g'. We take elements xeA and yeB so that max {a, a'}

<x and j<min{ft, b'}. Then we have υ(y — x)>g. Q.E.D.
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Let {gt; iel} be a well-ordered cofinal subset of v(F\D). Since D is not

coprincipal, there is no last element in {g^. For any iel, we choose elements ateA

and b{eB such that v(bi — ai) = gi.

LEMMA 2.3. In the above situation, at least one of the following statements

holds.

(1) υ(x — bi) = gi for any xeA, at<x.

(2) v(y-ai) = gi for any yeB,y<bt.

PROOF. Suppose to the contrary that v(x-bi)>gi for some xeA, at<x and

v{y—ai)>gi for some yeB, y<bt. Then for any x'eA, x<x', and y'eB, y' <y, we

have v(y' — at) >gt and v(x' — b{) > gt. These facts imply v(y' — bt) = υ(y' — at + at — bi)

= gt. Hence v(x'—y') = v(x' — bi + bi—y') = gi. This contradicts (3) of Lemma 2.2.

Q.E.D.

DEFINITION 2.4. We put ci = biifv(x—bi) = gt for any xeA, a{<xand ct = at if

v(y — ai) = gi for any yGB,y<bi. (Iϊv(x — bi) = gi and v(y — ai) = gi for any xeA and

yeB, then we optionally put c£ = flf or c~bt.)

LEMMA 2.5. {cj w a pseudo-convergent set of elements ofF, and it has no limit

in F.

PROOF. First we show that {ct} is a pseudo-convergent set. It is sufficient to

show that v(Cj — ci) = gi for any ί<j.

Case 1. Suppose c(eA and C/ei?. We take xeA and >^G5 SO that max{cί5 a})

<x,y< min{bi9 c3) and t;(y — x)>gt (cf. Lemma 2.2, (3)). Then v(ci — x) = v(ci—y+y

— χ) = 9i Hence we have v(cj — ci) = v(cj — x + x — ci) = gi.

Case 2. Suppose c{eA and CJGA. Let j be an element of B such that y

<min{Z>ί , bj}. Then v(cj-ci) = v(cj-y+y-ci) = gi.
The other cases can be proved similarly; thus {cf} is a pseudo-convergent set.

We now show that {cj has no limit in F.Let x be any element of A. By Lemma

2.2 (1), there exists an element y of A such that x <y and ϋ(y — x)eι;(i\D). Let i be an

element of / with gi>v(y — x). To show that x is not a limit of {cj, it is sufficient to

show that v{at — x) <g{. In fact, if v(at — x) < gh then υ(bι — x) = v{bt — a{ + a{ — x) < gb

and so we have v{ci — x)<gi. Suppose to the contrary that v(ai — x)^.gi. Then v{bt

— x) = vφi — ax + a{ — x) ^ g{, and this implies v(y — x) ^ υφi — x)^gt since y — x < bt

— x. Thus we have a contradiction. Hence x is not a limit of {cf}. Similarly no

element of B is a limit of {ct }. Q.E.D.

THEOREM 2.6. Le/ (̂ 4, 5 ) be a cut ofF. Suppose that {A, B) is strongly proper

andD: = E(A, B) is not coprincipal. Then there exists a pseudo-convergent set {cj of

elements ofF, without a limit in F such that
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(A, B) = (AR({ct})9 BR({Ci}) = {AL({ct})9 BL({Ci})).

PROOF. Let {ct} be a psuedo-convergent set defined in Definition 2.4. Let a be
any element of A. By Lemma 2.2. (1), there exists an element x of A such that a<x
and v(x — a)ev(F\D). For any /e/with g^vix-a), we have c f>a, and so <z is an
element of AL{{ct)). Similarly we have BaBR({c^). By Proposition 1.11, (AR({ct})9

(ΛL(fcU ^L({Q}))> and so (A, B)=(AR({Ci})9 BR({cί}))=(AL({ci}\
Q.E.D.

REMARK 2.7. Let 2?0 be a maximal immediate extension of Ao and AT be the
quotient field of Bo. We define an equivalence relation ~ in the set K\F. For x,
yeK\F, we put x ~y if there is no element of F such that x<α<7or_y<fl<x We
can readily see that ~ is an equivalence relation in the set K\F. Put S = (K\F)/ ~. Let
W be the set of pseudo-convergent sets of elements of F without limits in F. We also
define an equivalence reltion~in the set W. For {at}9 {bj}eW, we put {at} ~ {bj} if
{flj and {bj} have a common limit. Note that if {at} and {ft,-} have a common limit,
then ̂ ({<zj) = &({bj}), and it is easy to see that ~ is an equivalence relation. We put
T— Wj ~. For {ΛJ, {όf} e Ŵ  let x and y be limits of {ΛJ and {ft,.} respectively. Then x
~ j if and only if {«J ~ {ftj. Thus we have a canonical bijection φ: S-+T (cf. [1],
Theorem 1). Let ί/ be the set of strongly proper cuts of F whose breadths are not
coprincipal. For {a^eW, we put φ({ai})=(AR({ai}% BR({ai}))=(AL({ai}),
BL({a^)). The map φ: W^>U canonically induces the map (denoted by the same
symbol) φ: T^> U. From the arguments in this section and by Proposition 1.13, we
can see that φ: T-> U is bijective.

REMARK 2.8. Let (A, B) be a cut of F. Then (A9 B) is filled in ΛΓ(i.e. there exists
an element x of K such that A < x < B) if and only if the cut (A9 B) is strongly proper
and E(A, B) is not coprincipal (cf. Proposition 1.13). Suppose that a cut (A9 B) is
filled in K and take xeK so that A<x<B. Then we have {yeK; A<y<B}=x
+ 8l(x) (here, we regard &(x) as an ideal of Bo).

REMARK 2.9. The set L of elements of K whose breadths are zero forms a
subfield of ̂ (cf. [4], Theorem 5). In [4], L is called the π-completion of F. For any
element xeL \F, the equivalence class of x in K\Fis {x}9 and the cut of Fdetermined
by x is a proper archimedean cut (for the definition, see [2], Definition 1.1 or [3],
Definition 2.1). The π-completion L coincides with the completion of ,F(cf. [3],
Definition 2.5).

§3. Applications

THEOREM 3.1. For an ordered field F9 the following statements are equivalent.

(1) F has no strongly proper cut {A, B) such that E(A9 B) is not coprincipal.
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(2) (i% υ) is a maximal valued field.

PROOF. (1)=>(2): Let {at; iel} be any pseudo-convergent set of elements oϊF.

Put (A, B):=(AL({ai}l BL({a })). By Proposition 1.6, we have E(A, Λ) = Λ({fli}),

and so D: = E(A, B) is not coprincipal. Hence (A, B) is not a strongly proper cut, and

so {βt} has a limit in Fby Proposition 1.9.

The assertion (2)=>(1) is clear from Theorem 2.6. Q.E.D.

For a cut (A, B) and a positive element c of F, we put cA = {ca; aeA} and cB

= {cb; beB). It is clear that (cA9 cB) is also a cut of F. Let D be a convex subgroup of

Fwhich is contained in E(A, B). We put AD = {a + D; aeA} and BD = {b + D; beB}.

{ADi BD) is a cut of the ordered group F/D. lϊD = E(A, B\ then (A, B) = (AD9 BD) (cf.

Definition 1.7).

LEMMA 3.2. For a cut (A, B) and a positive element c of F, the following

statements hold.

(1) E(cA, cB) = cE(A, B). Moreover E(A, B) is coprincipal (resp. principal) if

and only if E(cA, cB) is coprincipal {resp. principal).

(2) (A, B) is strongly proper if and only if so is (cA, cB).

PROOF. The assertion (1) is easily shown. Suppose (A, B) is not strongly

proper. Let x be an element of F such that x = max A orx = min B. (For the

definition of (A, B\ see Definition 1.7.) Then ex = maxcA or ex = mincϊ?. Hence (cA,

cB) is not strongly proper. Q.E.D.

The following Lemma 3.3 and Lemma 3.4 follow immediately from the

definitions.

LEMMA 3.3. For a cut {A, B) and a convex subgroup D ofF which is contained in

E(A, B\ the following statements are equivalent.

(1) D = E(A,B).

(2) {AD, BD) is archimedean; namely for any positive element α of F/D, there

exist βeAD and yeBD such that β — γ<oc.

LEMMA 3.4. Let {A, B) be a cut ofF. Suppose that E(A, B) = Mo, Af]A0 φ φ and

Bf)A0Φφ. We put A' = {α + M o ; aeA(\A0} and B' = {b + M0\beB(\A0}. Then (A\

B') is a cut ofA0/M0 and (A, B) is strongly proper if and only if (A\ B') is proper.

LEMMA 3.5. IfA0/M0 = R, then F has no strongly proper cut {A, B)for which

E(A, B) is coprincipal.

PROOF. Let (A, B) be a cut of Ffor which D: = E(A, B) is coprincipal. We must

show that (A, B) is not a strongly proper cut. By Lemma 3.2, we may assume that D

= Mo. We fix a positive element a oϊA0\M0. Since a is not an element of Z>, b — c < a

for some beB and ceA. We put d= (b + c)/2. Then the cut (A-d,B-d) satisfies the
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condition of Lemma 3.4. By the fact Ao/Mo = R and Lemma 3.4, {A-d,B—d) is not

strongly proper, and so (A, B) is also not strongly proper. Q.E.D.

THEOREM 3.6. For an ordered field F, the following statements are equivalent.

(1) A0/M0 = R.

(2) F has no strongly proper cut (A, B)for which E(A, B) is coprincipal

PROOF. By Lemma 3.5, it is sufficient to show the assertion (2)=>(1). Suppose

that there exists an element s of R\A0/M0, Let (C, D) be a cut of Ao/Mo determined

by s. Since Ao/Mo is a convex subgroup of the additive group F/Mθ9 we can extend

(C, D) to the cut (C, D') of F/Mo. Let (A, B) be the cut of Fwhich is the pullback of

(C, D'); namely (AMQ9 BMQ)= (C, D'). By Lemma 3.3, we have E(A, B) = M o; hence

E(A, B) is coprincipal. It is clear that neither maxC nor minZ>' exists, and so (A9 B)

is strongly proper. This contradicts the assumption of (2). Q.E.D.

The following Theorem 3.7 follows immediately from Theorem 3.1 and

Theorem 3.6.

THEOREM 3.7. For an ordered field F9 the following statements are equivalent.

(1) A0/M0 = R and (F, υ) is a maximal valued field.

(2) F has no strongly proper cut.
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