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Introduction

In the stable homotopy theory, the G-Adams spectral sequence

(1) E(G) = {£(G)*<, dr: £(G)^ -> E(G)s

r

+r>t+r-1} abutting to πt.s(X)

(cf. [4, III, §15]) is useful, where X is a CW spectrum, π^(X) is its homotopy

group and G is a ring spectrum. For X and G = £, F with some conditions,

H. R. Miller [10] introduced the May and Mahowald spectral sequences

(2) £ M a y = {£s

M'/r, </r

May: £s

u'/r -* E*uX\>fr} abutting to £(£) s

2 '
u~' and

£Mah = |£M ? ^Mah. £ M _, £s+M-r + l J converging tO £(F) 2

+ ί ' "

for £(G)2 in (1), which satisfy the following

(0) Es

u\\ = £& = A*'; and for any x e As

u>\

(ii) if x converges to xF in £ M a h , then so does dfΆyx to (— XfdlxF.

Especially, he defined these algebraically in case when

(3) X = 5°, E = BP at a prime p, and F = HZP (BP is the Brown-Peterson

spectrum, and HZP is the spectrum of the ordinary homology H^( Zp))\

and calculated some differential dfz* in (1) for X = 5°.

The purpose of this paper is to argue the existence and relations of these

spectral sequences. Let G denote the mapping cone of the unit S° -+ G of a

ring spectrum G, and Gn the smash product of n copies of G. Then the main

result in this paper, stated in Theorem 7.2, implies the following

THEOREM. For a CW spectrum X and ring spectra E, F, assume that

(4) there is a unit-preserving map λ: E-> F9 and

(5) the FΆdams spectral sequence abutting to π^(E Λ En A X) in (1) converges

and collapses for any n ^ 0.

Then we have the spectral sequences £ M a y and £ M a h in (2) satisfying (o), (ii),

1i) dfaydfahx = d¥*hd¥ayx for any x e As

u>\
(iii) if x converges to xE in EMay, then so does d^ahx to dξxE, and

(iv) if the assumptions in (ii)-(iii) hold, then some y e As

uXlJ converges to

dExE in £ M a y and to ( - iγdFxF in £ M a h .
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Especially, in case (3), we see (4)-(5) by the Thorn map BP -• HZp, and

Ai' = Ext*;(Z,,Ext^Z,,PJ) in(o)

and Ext*:*(Zp9 PJ = Zp[a0, al9 a2,...]

(an e Ext1 ' 2 p n ~ 1 )) , and we obtain Examples 8.3-4 on the differentials d2

p and

άH^ in (1) for X = S°.

For our purpose, we argue in §§ 1-3 the construction of the Adams spectral

sequences. We introduce the notion of an E2-group B = (£f} related to a given

homology theory h^ in Definition 1.8, so that we have in Theorem 1.9 the

spectral sequence of Adams type

(6) {E(B)s

r\ dξ } abutting to ht_s(X) and satisfying £(£) s

2 ' = Bf(X).

Then for any ring spectrum G, we have the £2-group GA = {GAs

t} in (2.1.1-4)

related to π* and define the G-Adams spectral sequence E(G) in (1) by

E(G) = E{GA\ i.e., £(G) 2 ' = GAs

t(X) (see Theorem 2.3).

We note that the £2-term may be seen by the definition of GA even if G#(G) is

not flat over G#(S°); e.g., we have Example 2.5 for the connective X-theory

spectrum bu or the corresponding one buQ2 with coefficients in Q2.

We define an E2-functor B = {B?} to be an £2-group satisfying the func-

toriality on the category of cofiberings in Definition 3.2, so that we can

compare E(B) in (6) for B = C, D (see Theorems 3.4-5)). Then GA is an

E2-ϊunctoτ by definition, λ.E^F in (4) induces the homomorphism λ^\

E(E)S/ -> EiFf/ between G-Adams spectral sequences, and we have Theorem

3.8 on the conditions that λ^ is isomorphic, monomorphic or epimorphic.

Examples 3.9-10 hold when λ is the Thorn map BP-+HZP, etc.; in par-

ticular, we see E(M0) ^ E(HZ2) for the Thorn spectrum MO of the bordism

theory.

Moreover, we introduce in §§4-5 the notion of a double E2-functor A =

{As

u

jt} related to an £ 2

- f u n c t o r D or indirectly related to C (see (Definitions 4.3

and 5.3), so that we have the Mahowald or May spectral sequence

(7) {Es

u% dΓ

Mah} converging to Ds

u

+t(X) with l£ /2 = v4^(X), or

{EH, ^May} abutting to Cs

u.t(X) with EM

U\\ = Ai'(X)

(see Theorem 4.4 and Corollary 5.6)). In particular, for some ring spectra E

and F (e.g., satisfying (4)-(5)), we have the double £2-functor EFA = {EFAS

U

J}

in (4.6.8) and the spectral sequences in (7) by taking A = EFA, D = FA and

C = EA (see Theorems 4.7 and 5.8), which are taken to be £ M a h and £ M a y in

(2). Example 4.8 gives a note on £ M a h for E = BP at p and F = KQp (the

X-theory spectrum with coefficients in Qp) when p is an odd prime.
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Now, we prepare in § 6 some lemmas on commutative diagrams of cofiber-

ings. Then we can consider the case stated in Definition 7.1 that for a CW

spectrum X, a homology theory h#, £2~fu n c t 0 Γ S B = C, D and a double E2-

functor A, the spectral sequences of Adams type in (6) and the Mahowald and

May ones in (7) are all defined (see (7.1.8)); and we prove in Theorem 7.2 some

relations between them. By taking h# — π+9 C — EΛ, D = FA and A = EFA,

Theorem 7.2 implies the above theorem and Examples 8.3-4.

Here, we notice that the cohomology version of £ 2 -f u n c t 0 Γ S c a n be

obtained by the dual consideration, by which we may argue several spectral

sequences, e.g., the Adams universal coefficient one or the one of Bousfield-Kan

type; the details will be discussed in a forthcoming paper.

The author is deeply in debt to Professors M. Sugawara, T. Kobayasi and

T. Matumoto for their valuable suggestions and discussions. He also thanks

Professor J. F. Adams for the kind letter of Nov. 24, 1981 on KQpA(S°) in

Example 4.8.

§ 1. Spectral sequences and £ 2 " g Γ 0 U P s

Throughout this paper, we work in the category ^ of CW spectra (cf. [4]

or [16] for the definition and the basic properties of CW spectra and the

related notions).

Let h# be a homology theory on #, and for a given Xo e % assume that

(1.1.1) there are cofiberings α,: Xn -^-> Wn — Xn+ί (n = 0, 1, 2,...) in <€ (i.e.,
Xn+ί is the mapping cone Wn u / n CXn of fn and gn+ί is the inclusion map, up to
homotopy equivalence).

Then, we have the induced exact sequences

(1.1.2) > ht(Xs) ^U ht(Ws) ^ ht(Xs+1) - ? - V i ( * s )

*''' U* = Js*> 0* ~ 9s+i*>

for any t and any s ^ 0; and the standard argument on exact couples defines

the spectral sequence given by (1.1.3), where dr = d ° • • • o d: h,+r(Xs+r) -* ht(Xs):

(1.1.

z r

s

B

3)
t = g
1 = j

* x I m

' Ker

Λ|+r-"1 \^^S +r)->ft,(*1+1

._Γ+1(Jf,_r+1

)]

)]

Es

r ' = Zs//Bs

r'', dr: E
s;' ΰ Z? '/Zr%Ί S ^ + ϊ ' + Γ - 1 / ^ + r ' + ' - 1 c £j+'.'+'-i ,

E%' = ZS'/flS', F*•' = Im lδ°: h,(X.) -> h,.t(X0)-] , Z& = Ker g% = I m /

As = Im flfφ n Πrgi Im Id': ht+r(Xs+r+1) - Λ,(XS+1)] <= h,(Xt+ί).
,
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PROPOSITION 1.2. For a homology theory h^ on % Xoe%> and cofiberίngs an

in (1.1.1), the exact sequences (1.1.2) associate the spectral sequence {Es/,dr} in

(1.1.3) such that

(1.2.1) E'i' = ht(Ws), dγ = fm o g^: E? = ht(Ws) -> Λ,(XS+ ht(Ws+1) =

f 1 ί

we(1.2.2) fey ίΛέ? filtration ht.s(X0) = F 0 ' ' " 5 ^ => Fst z> F s + M + 1 =>

ί/ze βxαcί sequence

->r /t ( = Z o o / i ^ o o ) - > £ o o - » A ( = Z 0 0 /Zαo ) - > ϋ .

In this paper, we present such a case by the following

(1.2.3) {Es/} abuts to ht_s(X0): E? = ht(Ws) => ht_s(X0) (abut).

To represent the £2-term of this spectral sequence, we consider the following

DEFINITION 1.3. Let C = {Q\s, t e Z} be a collection of covariant functors

Q : ^ -• J / (the category of abelian groups) with Cf = 0 for s < 0 .

Then, we say that C is related to a homology theory h^ at Xo by a natural

transformation φ: ht-> Q0 (t e Z) and cofiberings can in (1.1.1), if

(1.3.1) _φ: ht(Wn) s C?(Wn\ Cs

t(Wn) = 0 for s > 0, and there are homo-

morphisms δ so that the following sequences are exact:

(1.3.2) Then, we have δ: Cf(Xn+ί) ^ Q+1(Xn)(s > 0) and the exact sequence

0 > C?(Xn) - ^ C?{WH) ^ i C?(XΛ+1) - ^ Ci(Xu) — 0 .

Furthermore, for d^* = d1 = / # o g^ in (1.2.1), we have the commutative

diagram

(1.3.3)

— C?(WS)-

Then, (1.3.2) implies that fsj>, is monomorphic and we have the isomorphisms

Z,;1 o φ: Ker di'1 s C?(X,\ Im df1-' s Im gam and

(1.3.4) ^ = δ*-1 o 5 o (/5;i o ̂ ); £••' s C,°(^

(<5s~' = J o S). Thus, we see the following
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THEOREM 1.4. In case of Definition 1.3, we have the associated spectral

sequence {Es

r

ft} in Proposition 1.2, which abuts to h^(X0) and whose E2-term Es

2

a

is isomorphic to C?(X0) by φ in (1.3.4):

Pi' = q(X0)=>h,.g(X0) (abut).

COROLLARY 1.5. In Theorem 1.4, the following (1.5.1-3) are equivalent:

(1.5.1) E'j* = Q(X0) = 0fors>0andφ = φ: £$•' = ht(Xo) s C?(X0).

(1.5.2) 0 -> ht(Xn) - ^ > ht{Wn) - ^ ht(Xn+ι) -• 0 is exact in (1.1.2) for all n ̂  0.

(1.5.3) φ: ht(Xn) s C?(Xn) and Q(Xn) = 0 for alls>0 and n ̂  0.

PROOF. (1.5.2) implies δ = 0 and so (1.5.1) by (1.1.3). (1.5.1) means (1.5.3)

for n = 0; and (1.5.3) for n implies (1.5.2) for n and (1.5.3) for n + 1 by (1.3.2)

and 5-Lemma. Thus, (1.5.1-3) are equivalent by induction. q.e.d.

We use the following terminologies for {Er, dr) in Proposition 1.2:

(1.6.1) drx = x' for x e Es

u\ x' e Es

u

x with u ̂  r, if s' = s + r, t' = ί + r - 1,

x e Zr/Bu, x' G Z'r/B'u and the equality holds for their images x e Er, x' e E'r

(1.6.2) ZES/ = ZS^IBS/ is the subgroup of all permanent cycles in £*' f; and

x e Es/ converges to y e ht_s(X0) if x e ZES;\ y e Fst and they coincide in

(1.6.3) {Er,dr} converges: Es/^ht_s(X0) (conv), if Z^ = Z^ (or A'-' = 0) and

f]n^oFn't+n = 0; and it collapses (for r ^ 2) if dr = 0 or Er = E^ for r ^ 2.

COROLLARY 1.7. /n Theorem 1.4, consider

(1.7.1) ZQ(X 0 ) = ̂ £ 2 f c ^S f = Q(^o) ( ^ regarding φ = id), and
(1.7.2) φ = δsoφ: ht(Xs) - Q°(XS) - Q 1 ^ ) s Q(X 0).

(i) Then, ZCs

t{X0) = Im ̂  and x e Q ( X 0 ) = £ 2 f t converges Wye ht_s(X0)

if and only if x = φys and dsys = y for some ys e ht(Xs). Also drx = x' holds

for x 6 Cf(X0)9 x' e Cf(X0) if and only if sf = s + r, t' = t + r - 1 and

x = <5sxS',/s*xs = φw, gs+1*w = dr~xy and φy = x' for some xs e Cf°(Xa), w e Λt(ws)

and >; G / i , ^ ' ) -

(ii) {Er} converges and collapses if and only if (1.7.3) and one of (1.7.4-6)

hold:

(1.7.3) inv lim, {ht+n{Xn\ d: fc,+II+1(A;+1) - Λf+π(Xπ)} = 0 for any t.

(1.7.4) {£*''} converges weakly (i.e., Z^ = Z^ or As'* = 0) and collapses.

(1.7.5) ^: ftt(Xs) -• C?(XS) is epimorphic for any s, ί.

(1.7.6) Ker dn = Ker 3 /or dn: ht(Xs) -• / i ^ ^ ^ . J , /or any n (1 ̂  n g s) and s, ί.

PROOF, (i) follows immediately from (1.1.3) and (1.3.1-4) and (1.6.1-2).

(ii) Assume (1.7.6), and take any x e C?(XS). Then by (1.3.2-3), we see

fs^x = φw for some w e ht(Ws), and so φf*g*w = 0 and g^w = dy for some
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y e ht+ί(Xs+2). Hence δ2y = 0, g^w = δy = 0 by (1.7.6), and w = f^y' for some
y' G ht(Xs). Thus x = ^ / since /S5|c is monomorphic; and (1.7.5) holds. (1.7.5)
implies Za0=ZO0 = Zr = Z2 (r ^ 2) by (i), and so dr = 0 and (1.7.4).

Conversely, assume (1.7.4), and take any y e Ker dn (n ̂  2) in (1.7.6). Then
by (1.1.3) and (1.7.4), we have f^y e Bn+ί = B2, f*y = f*y\ y — y' = δz and
dy — δ2z for some y' e Ker δ and z e ht+ί(Xs+1). Hence dy e f]r Im δr by
induction. Therefore, dn~1y e Ker δ n f]r Im 3r = A5""''""*1 = 0 by (1.7.4); and
δy = 0 by induction, which shows (1.7-6). Thus (1.7.4-6) are equivalent.

Now, consider p: \ = inv limπ ht+n(Xn) -+Ft= f)nF
n-t+n given by p{yn} =

y0 for yneht+n(Xn) with δyn+1 = yn (n ̂  0); and assume (1.7.6). If p{yn} =
y0 = 0, then yn+1 e Ker δn+1 = Ker δ by (1.7.6), and yn = 0. If y0 e Ft, then we
have yn eht+n(Xn) with 5n>;n = y0. Thus ayM+2 - yn+1 e Ker 5 by (1.7.6), and
{δyn+1} E ht with p{δyn+1} = y0. Therefore p is isomorphic, and we see (ii).

q.e.d.

The exact sequence in the assumption (1.3.1) is given by the following

DEFINITION 1.8. (1) For convariant functors Q'.Ή^s/ (s,teZ) with
Q = 0 for 5 < 0, assume the following (1.8.1):
(1.8.1) For any cofibering α: Xo-^-+X1 -^±-+X2 in % there are given abelian
groups KCt(oc; i) (5, t e Z; i = 0, 1, 2) and exact sequences

(p = pf for p = Ϊ, K, δ) with XQ(α; 3) = XC^(α; 0), KQ(α; i) = 0 for 5 < 0 and

(1.8.2) i ^ o i c ^ / ^ Q ί X , ) >XQ(α;i+l) >Q(Xi+ί) for i = 0, 1 .

Then, we call a collection C = {Q, XCr

s( i)} an E2-group. In this case,
we call X etf C-injective if Q(X) = 0 for s > 0; and α: Xo -• Xx -• X2 a C-
cofibering if XCf

s(α; 0) = 0, and a C-injective cofibering if Xx is C-injective in
addition.

(2) Furthermore, we say that C has enough injectiυe objects if
(1.8.3) any X e V is in a C-injective cofibering ω(X): X — ^ W{X) -^ W(X).

By this definition, we see the following (1.8.4-6):
(1.8.4) For any C-cofibering α: Xo—°-+Xι—^Xi, we have the exact

sequence

• — • Q(x0) -^ qf(AΊ) - ^ σt(x2) -L, Q + 1 (X0) —

by taking δ = KQ1 ° δ, o ^1: C?(Jf2) S KQ(α; 2) -» KQ+ 1(α; 1) £ Q+ 1(X0) in
(1.8.1). In fact, the exact sequences in (1.8.1) show that ι2 and κ0 are iso-
morphic by KQ(tx; 0) = 0, and then the desired one is exact by (1.8.2).
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(1.8.5) If αn's in (1.1.1) are C-cofiberings, then exact sequences in (1.3.1) are

given by (1.8.4); and if they are C-injective cofiberings, then (1.3.2) holds.

(1.8.6) We note that Cf(*) = 0 for any s, ί, where * is the one point

spectrum. In fact, consider /, K in (1.8.1) for α: *-•*-•* and i = 1. Then ιx is

epimorphic and κ1 is monomorphic by (1.8.2); hence Q(*) = 0 by exactness.

Therefore, Theorem 1.4 imlies the following

THEOREM 1.9. Let h* be a homology theory, C = {Cf, K Q } be an E2~group,

and φ:ht^> Cf° be a natural transformation. For Xo e #, let be given

(1.9.1) C-injective cofiberings απ: Xn-*Wn^>Xn+1 with φ: ht(Wn) sC?(WH).

Then, C = {Q} is related to h^ at Xo by φ and {αn}, and we have the spectral

sequence {Es/} in Theorem 1.4 with £ s

2 ' = Q(X0)=>ht.s(X0) (abut).

When C has enough injective objects by ω(X) in (1.8.3) with φ: ht{W(X)) s

C?(W(X))9 this is obtained for any Xo by taking

(1.9.2) απ = ω(Xn): Xn^Wn= W(Xn) - Xn+1 = W{Xn\ inductively.

§ 2. Adams spectral sequences

We recall the Adams spectral sequence for a given ring spectrum E with

unit / = ιE: S° -> E and product μ = μE\ E A E -> E.

For any X e %>, consider the homotopy and homology groups

πt(X) = LΣS°,Xl and Et(X) = πt(E A X).

Then, we obtain the cochain complex

(2.1.1) E*(X) = {Es

t(X) = πt(Es+1 A X) (s^ 0 ) , = 0 (s < 0 ) }

with coboundary δs = Yjtli— l ) 1 ^ ' w ^ere En = E A Λ E (n copies) and

δ?=A Ai A 1: £ s + 1 A X = Es+1-1 A S° A Eι A X

-» £ s + 1 " f A E A Eι A X = Es+2 A X .

(2.1.2) We note that if a map λ.E^F between ring spectra E and F

preserves units (i.e., ιF - λ o ιE: S° -• F), then λs+1 A 1: Es+1 A X -> Fs+1 A X

induces the cochain map λ+ = {(λs+1 A 1)#}: E*{X) -+ F*(X).

Furthermore, for any cofibering α: Xo —°-+ Xx — ^ X2,

(2.1.3) we have the homotopy exact sequences

... , Ei{χo) JϊL> P t { X i ) Jll+ Es

t(X2) J±+ EUiXo) >~ (Λ* = S),

the subcomplexes KE?(<x; i) = {Ker/ίs|{} of Ef(Xι) and the exact sequences

0 -> X£*(α; i) -+ E*^) - KE*fc ί + 1) ̂  0 (X£*(α; 3) = Xfi . ^ α ; 0))
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of cochain complexes. Thus, taking their cohomologies,

(2.1.4) we obtain the E2-group EA = {EAs

t, KEAs

t( i)} given by

EAs

t(X) = HS(E*(X)) (XeV), KEAs

t(oc; i) = Hs(KE*(oc; /)) (α e

Now, the Hurewicz map (i Λ l)+:πt(X)-> E?(X) induced from i A 1: X =

S° A X -• E A X satisfies δ° o (ι A 1)* = 0 for (5° in (2.1.1). Thus we have the

natural Hurewicz map

(2.1.5) ΦE = (IEA l):,:πt{X)->EA?(X) = H0(E*(X)) = Keτδ0 for l e i

Furthermore, we have the induced cofiberings

(2.1.6) ωE:S°—^E —^ E = C z, ωEX: X -^Λ E A X ^X E A X and

*S = ωEΛXH:XH^EΛXH^Xn+1 with Xn = En A XO (n ^ 0).

LEMMA 2.2. ( l Λ / i Λ l ) , o ( ί Λ 1)* = id: Es

t(X) -• Es

t(E ΛX)-* Es

t(X) for

1 A μ A 1: Es A E2 A X -• Es A E A X\ and KEs

t(ωE Λ ! ; 0 ) = 0. Moreover,

φE: πt(E A X) ^ EA?(E A X) and EAs

t(E A X) = 0 (s > 0). Thus ωE A X is an

EA-injective cofibering, and EA has enough injective objects.

PROOF. The first part holds since μ o ( l Λ ή ~ I: E-+E. Consider δ^9

δs: πt(Es+1 A W) -> πt(Es+2 A W) in (2.1.1) for W = E A X when s ^ 0, and

SQ1 = / Λ 1, δ~ι = δ^l when s = — 1; and

σ

s = γfi=0 ( - 1 ) 1 ' ^ : πt(Es+1 AW)-* πt(Es A W) for s ^ 0 ,

where σ? = 1 Λ μ A 1: E8'1 A E2 A Eι A X -+ Es~l A E A Eι A X. Then, σ^+1 o

δj# is δj'ix o σ ^ if i <j, id if i = y, j + 1, a n d δf'1 o σ/_ l5)ί if i>j+ 1; h e n c e

σ ° o r 1 = i d : π , ( ^ ) -• πt(W) a n d

σ s + 1 o ^ s + ^ s - ! o σ

s = id: π f ( £ s + 1 Λ W) -• π,(£ s + 1 Λ W) when s ^ 0 .

Since ^ £ = (5"1 by (2.1.5), these imply the second part. q.e.d.

By this lemma and Theorem 1.9, we see the following

THEOREM 2.3. For the homotopy theory π^ on <& and any ring spectrum £,

we have the E2-group EA in (2.1.4) with the Hurewicz map φ in (2.1.5). Thus, we

have the E-Adams spectral sequence {E8;1} for any CW spectrum Xo, given in

Theorem 1.9 by {aF} in (2.1.6), with

(2.3.1) Er = EAs

t(X0) = HS(E*(XO)) => π f _ s (* 0 ) (abut).

Moreover, it satisfies

(2.3.2) E*ϊ = EAs

t(X0) = Extl ̂ ί E J S ° ) , E*(X0)) when

(2.3.3) the E*(S°)-module E*(E) is flat.
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PROOF. The cofibering {α^} in (2.1.6) induces the one E A Xn-+Xn+1 -•

ΣXn (the subspension of Xn), and we have the filtration Xo <- Σ~1X1 <-

Σ~2X2^- ••• of Xo, which is the Adams filtration. Thus we have the Adams

spectral sequence {Es/} given by Proposition 1.2 for h^ = π* and {α,f}. The

latter half holds by the following:

(2.3.4) If (2.3.3) holds, then E%(X) in (2.1.1) is E+{E) ® ® £*(£) ® E*(X)

(the tensor product over E^(S°) of s copies of £*(£) and £*(*)) (cf. [16, 13.75])

and E*(X0) = (£^(X0), <5S} is just the cobar complex for E+(X0). q.e.d.

In this paper, we consider the following ring spectra as examples:

(2.4.1) For a ring R, HR is the Eilenberg-MacLane spectrum of the ordinary

homology theory H^( R\ SR is the Moore spectrum of type R, and for any

ring spectrum £, ER = E A SR is the corresponding one with coefficients in R.

KO or K is the spectrum of real or complex K-theory, and bu is the one of the

connective K-theory. For G = O, U or SU, MG is the Thorn spectrum of the

G-bordism theory. For a prime p, BP is the Brown-Peterson spectrum at p.

(2.4.2) ([4, III, 15.1]) (2.3.2-4) hold for E = HR or SK when R is a field,

KO, X, MO, ML/ or BP.

(2.4.3) In this case, EA%(X) = PE^{X\ the group of all primitive elements

in E^(X\ by (2.3.2) and definition.

When £*(£) is not flat, we have to calculate EAs

t(X0) = HS(E*(XO)) in

(2.3.1) directly by definition. As examples, we have the following

EXAMPLE 2.5. Consider bu or buQ2 in (2.4.1) for Q2 = {a/b e Q\b: odd}.

Then:

(i) EA?(S°) = Z (resp. Q2) if t = 0, = 0 if t Φ 0, for E = bu {resp. buQ2).

(ii) buQ2A\.(S°) is the direct sum of the groups Z2(hn} in degree n =

2V ^ 2 and Zain)(ocn} in degree In ^ 2, where the generators hn and ccn are given in

(2.5.4,7) below, and a(n) = 2 V + 2 if n is even §; 4 = 2V + 1 otherwise, for n = 2vq

(q: odd).

PROOF. We use the following (2.5.1-3) given by Adams [4, III, §§ 16-17]:

(2.5.1) There is a map j (= f°j in [4]): bu^>HZ2 preserving units such

that

is monomorphic and I m ^ = Z 2 [ £ ί , ξ\, ξ3,...]. Also, the ffZ2-Adams spectral

sequence {£*''} in Theorem 2.3 for Xo = bu2 with (2.3.2) satisfies

£2'< = Ext^(Z 2 , (HZ2Ubu)) => πt.s(bu2) for B* = AJ(ξ2, ξ2, ξ3,...)

by the change-of-rings theorem, which converges weakly and collapses for r ^ 2;
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and ( Λ 1)^ = in o φ: π^(bu2) -> £ 2 ' * ^ (HZ2)*{bu) for its edge homomorphism

φ. Moreover, there is a homomorphism Es/^ Es

r

+1J+1 which for r = 2 is

multiplication by ξ1 and for r = 00 is obtained by passing to quotients from

multiplication by 2.

(2.5.2) HZ^(bun) is a direct sum of groups Zp (p: prime) and groups Z in

even degree; hence so is HZ^(BUn) = HZ^(bun)®Q2 of Z2 and Q2, where

BU = buQ2 in this proof. Also, π^(BUn) = π^(bun)® β 2 , the Hurewicz homo-

morphism h: π^(BU2) -> HZ^(BU2) is monomorphic, and it induces the mono-

morphism h: Fst ® Q2-^ Gst(Hst = Hst/Hs+lt+ί) for the nitrations {Fs<<} of

π*(bu2) corresponding to {Es/} in (2.5.1) and {GSJ = 2sHZt_s(BU2)}. More-

over, the torsion subgroup T£ of π#(BUn+1) is a direct sum of groups Z 2 , and

( Λ 1)* (= (j A 1)* <g> 1): π+(BUn+ί) -> (HZ2)*(BUn) is monomorphic on 7J.

(2.5.3) π^fcu) = Z[ ί ] (deg ί = 2) and π^bw2) ® β = Q[M, 1?] for u =

(1 Λ / ) ^ and U = ( I Λ lj^ί. Moreover, a polynomial /(w, t;) e Q [w, 1;] lies in

Im [π*(BU2) = π*(bu2) ®Q2-+ π^(bu2) ®Q = β[w, 1;]] if and only if

(*) /(/ex, Ix) e Q2[x, x" 1 ] for any odd integers k and /, and /(w, v) e Q2[u/2, v/2].

Proof of (i): The coboundary δ°: 6ιιJ(S°) = Z[ ί ] ^ fcwi(^0) = ^ ( 6 I I 2 ) in

(2.1.1) satisfies ^°ίΠ = un - vn {Φ 0 for n ^ 1) by definition and (2.5.3). Hence

we see (i) for bu, and for BU = buQ2 in the same way.

In (2.5.1), Aξ1 = ξ1 ® 1 + 1 ® ξ1 for the coproduct A: A^ -+ A+ ® A^ -+

B*®A^ hence for n = V ^ 2, j " 1 ^ e (HZ2\{bu) lies in £5'M since zlξ; =

1 ® ξl, and we have xn e πn(bu2) with (j A lj^x^ = ^xn =j*1ξΊ since ^ is epi-

morphic by (1.7.5). Also, ξx -j^ξl = 0 in £ i ' " + 1 since Aξϊ+1 = ξ1®ξn

1 + l®

ξl+\ and so 2xn = 0 in F 1 ' " * 1 c E^. Therefore, in (2.5.2), hxneG°>n for

xn G πn(BU2) is mapped to 0 by x 2: G 0 '" -• β l i l l + 1 , whose kernel is a direct sum

of groups Z 2 ; and so xnehn + F1'"*1 ® Q2 for some hn e T^. Moreover, ( 7 % :

π^(BUs) -> πsj!((/ίZ2)s) is monomorphic on T^"1, and is a cochain map by (2.1.2).

Now, HZ2Al(S°) = Exti;*(//Z2(5°), HZ 2(5 0)) is generated by {£?: n = 2V ^ 1}

(cf. [16, p. 477]). Thus: *

(2.5.4) For any n = T ^ 2, there exists ΛB e Tn

ι a πn(BU2) = BU^(S°)

(BU = /?wβ2) such that ( Λ j)+hn = ξ" in A+, hn is a cocycle and its class hn in

BL^yl^S0) generates Z 2 . Moreover, if a cocycle y e T* is not 0 in BUA^S0),

then rc = 2V ^ 2 and 3; = hn.

On the other hand, let t'u\ BP -+ BU = buQ2 be the map for BP at 2

induced from the Atiyah-Bott-Shapiro map tu: MU -• X (cf. [5]). Then:

(2.5.5) t'^v, = t G π2(bu) ®Q2 = π2(BU) for vt = ICP1] e π2(BP).

(2.5.6) ([11, Cor. 4.23] or [12, Th. 5.5 (b)]) < = ((1 Λ g # -

(1BP Λ 1)*)^" G π2n(BP2) is divisible by α(π) given in (ii) of the example, and

ot'Ja(n) e π2(BP2) = BP^S0) is a cocycle.
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(2.5.7) We have the cocycle αM = (t'u A t'u)*(x'Ja(ή)) e π2n(BU2) = BU2\(S°)

(BU = buQ2) with a{n)ocn = M n - D n i n I m [ ] in (2.5.3), and απ e BUA\n(β°)

generates Za{n).

(2.5.8) ft(u9 v) = (un - υn)IT φ Im [ ] in (2.5.3) for any 2ι" > a(n).

In fact, the first part of (*) in (2.5.3) for f = f implies i ^ v + 2 if v ^ 1 and

i ^ 1 if v = 0 where n = 2xq9 q: odd (cf. [16, 19.21, 25]), and the second one

implies i ^ n. Thus we see (2.5.8).

Proof of (ii): Take any xeπ*(BU2) = π*(bu2) ® Q2 with δίx = 0. Then,

for its image x in π^(bu2) (g) Q, we have δxx = 0 and so x = α(wπ — i;") {a e Q)

by [16, 19.20]. Hence, a = b/a(n) for b e Q2 and x = ban + y for y e T* with

διy = 0 by (2.5.7-8); and we see (ii) by (2.5.4) and (2.5.7). q.e.d.

Here, we notice the following notions due to Miller [10]:

(2.6) f:X->Y splits if gof~l:X-+X for some g: Y^X9 X is E-injectίve
if ιE A 1.X-+E A X splits, and / : X -> Y is E-monic if 1 Λ / : £ Λ AΓ-> £ Λ 7 splits.

LEMMA 2.7. (i) For α rmgf spectrum £, X is EA-injective if X is E-ίnjective;

and α: Xo — % Xx -> X 2

 I S α n EA-cofibering if f0 is E-monic.

(ii) X is HZA-injective but not HZ-injective; and α H Z : S° —U- HZ -> Cz

is α KA-cofiberingy but i is not K-monic.

PROOF, (i) is seen by Lemma 2.2 and its proof.

(ii) By [16, 13.92, 16.25, 17.21],

(2.7.1) πm(K) = Z[ί, Γ 1 ] (deg t = 2), HZ*(K) = β[u, M " 1 ] (deg u = 2) and

K^(K) is torsion free.

Thus, HZ%{K) = π*{HZ)®' - ®π*(HZ)® HZ*(K) by [16, 17.9], which is
β[w, M " 1 ] for any s with δ^ = id in (2.1.1). Hence, HZA%(K) = 0 for s ^ 1,

and X is HZA-injective. Since Ks

t(S°) is torsion free by (2.3.4) and (2.7.1),

ι^:Ks

t(S0)-^Ks

t(HZ) = Ks

t(S°)®Qlu9 t Γ 1 ] is monomorphic. Hence α H Z is a

XA-cofibering. Since (z Λ 1)^: π2(K) = Z -> π2(HZ A K) = Q does not split as

groups, we see that K is not HZ-injective and i is not K-monic. q.e.d.

§3. /^-functors and comparison of spectral sequences

Let denote by # J * the category of cofiberings in % where

(3.1) a mah φ:(x1-^oc2 between cofiberings ccy. Xj0—^-» Xn —^ Xj2 (j = 1, 2)

consists of maps ψt: Xu^X2i (i = 0, 1, 2) which make the homotopy commu-

tative diagram
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of the induced cofiber sequences of α, for the suspension functor Σ.

DEFINITION 3.2. We define an E2-functor on %> to be an £2-group C =

{Q, KCs

t{ 0} in Definition 1.8 with the following (3.2.1) in addition:

(3.2.1) Cf: # - * s/ is a homotopy functor, KQ( ί): ^ -• $0 is a covariant

functor and the exact sequences in (1.8.1) are natural, i.e., i, K and δ commute

with the induced homomorphism ψ^ and φ^ for any map ψ = {ψi}: a1 -• α2 in

(3.1); hence so are the ones in (1.8.4) for C-cofiberings.

By definition, we see immediately the following

(3.2.2) For a ring spectrum £, the E2~group EΛ in (2.1.4) is an E2-functor.

Now, for Xo 6 % a homology theory h^ and £2-functors B = C and D, let

be given

(3.3.1) β-injective cofiberings (*%: X* ^> Wn

B-* Xξ+ί and maps λ = {λn,λn}:

α£ -• α^ in ^ϊF (n = 0, 1, 2,...) in homotopy commutative diagrams

^>ΛS

Σλn λ0 = id on X* = Xo ,

(3.3.2) natural transformations φB\ ht -• Bf° with <^: Λt(W;B) ^ Bt°(W;B), and

(3.3.3) an E2-map λ: C-> D, consisting of natural transformations A:Cf->

KCf^KDf compatible with i, /c and δ in (1.8.1), such that φD = λoφc:ht

Then, φB and {αβ} in (3.3.1-2) give us the spectral sequences

(3.3.4) {E(B)S/} in Theorem 1.9 with £(β)s

2'' - %(X0) => ht_s(X0) (abut).

Furthermore, the maps X in (3.3.1) induce the commutative diagrams

• • • — • h,(x?) -!L h,{\vs

c) ^L h,(xf+1)-^ h^ix?) —

(3.3.5) -u.

ht{χf) JL h,(ws

D) -zL. ht(xz

= id)

of the exact sequences in (1.1.2). Therefore, by Proposition 1.2, we have the

induced map

(3.3.6) X+: {£(C)^} -> {E(D)S/} between the spectral sequences in (3.3.4) with

X* = λs*. E(C)r = ht(Ws

c) -* E(D)r = ht(Ws

D) => id on ftf_s(X0) (abut).
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We see that this is represented on the £ 2 - t e r m s by λ in (3.3.3):

(3.3.7) \ = λ: E{C)f = Q(X0) - £(£>)*•< = D?(X0), more precisely,

φDoλt = λoφC for φB = (δBγ o (/4)" 1 o φ": E(BYi' s # ( * „ ) in (1.3.4).

In fact, we see that ( . O " 1 o ̂  o i s j | t = Jsm o X o (f£)~ι o ̂ c and the diagram

i)

» (^β = κ - Ό ί o Γ 1 in (1.8.4))

q+1(Xc

n) — ^ Drι{xc

n) —?^H. As+1(^n

D)

is commutative by (3.3.1-3) and (3.2.1); and these imply the desired equality

ΦD°K= $D)S ° (Z,*)"1 ° Φ° ° k* = Xθ* ° λ o (^C)S o (/sC)-l oφC = λoφC.

For this induced map A#, we have the following

THEOREM 3.4. //t addition to (3.3.1-3), assume that

(3.4.1) eαc/i α£ is α/so α D-injective cofibering and φD\ ht(Wf) ^ D?(Wf).

Then, the spectral sequences {E(B)s

r

ft} (B = C, D) in (3.3.4) are isomorphic for

r^lby the induced map λ* in (3.3.6), and λ: Cf(X0) ^ Df(X0) for any s and t.

PROOF. By (3.4.1), Theorem 1.9 for φD and {α£} shows that

λ: Q(X0) s As(^o), X ^ ^ C r ^ E φ ) ^ for r = 2;

hence the latter is isomorphic also for any r ^ 2. q.e.d.

By weakening the assumption (3.4.1), we can prove the following

THEOREM 3.5. In addition to (3.3.1-3), assume the following (3.5.1-3) for

some integers a^O and b:

(3.5.1) α£ is a D-cofibering if n ^ a.

(3.5.2) Df(Wn

c) = Oifn<t-b-l=s + n<a {when a ^ 2) .

(3.5.3) φD:ht(Ws

c)-+D?(W8

c)is

(*) monomorphic if t — b = s ^ a and epimorphic if t — b — 1 = s < a.

(i) Then, X* = λ: EiCfi* = C?(X0) - £(D)s

2'
r = AS(XO) m (3.3.7) is (*).

(ii) Furthermore, for the subgroups ZE in Corollary 1.7 (i), the restriction

λ\Zq(X0): ZCf(X0) -> ZD*t{X0) for t = b + s is epimorphic if s ^ a 4- 1; Λβnce it

is isomorphic if s ^ a by (i).

PROOF, (i) By (3.5.1) and (3.3.3), we have the commutative diagram
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• • • — > σt{xc

n) — > q(wn

c) — > ci(x*+1) - ^ cr\xc

n) -

(3.5.4)

• • • > D*t{Xc

n) >D*t{Wn

c) >D*t{Xc

n+1) ^+ Drι{Xc

n)

of the exact sequences in (1.8.4) for n ̂  α, where

(3.5.5) C* = A* = 0 if * < 0, C*(Wn

c) = 0 if * £ 1, and δD: A W - π ) -

D?+1(XΪ-n-i) (0<π<s) and λ = φD o {φcyι: C?(WS

C) - D?(W8

C) are (*) in

(3.5.3),

because φD = λ o φc and φc is isomorphic for Ws

c by (3.3.2-3). Thus, by 5-

Lemma and by induction, we see that

(3.5.6) λ: Q{χc_n) -• D^(X^n) (0 ̂  n S s) is also (*); and (i) holds.

(ii) By (3.3.5-6) and the definition of ZB*t(X0\ λ(ZQ(X0)) c= ZDs

t{X0) holds

and (ii) is proved by showing the following in the commutative diagram (3.3.5):

(3.6.1) Let ί = fc + s ^ 0 + b + l . Then, for any y e ht(X%\ there exist

xn G hb+n(Xn) (0 ̂  n ̂  s) with x 0 = y0 and dln^xn = >;„_! for n > 0, where

In fact, (3.6.1) shows that dXS5|ίxs = dy; hence y — I s s | cx s G Ker d = Im #£, and so

/*D.y — Kχf£xs e Im df (df = f* o gξ) for any y G ht(X?) and some x s G ht(Xf).

Thus, lSϊ ! ί: Im/^/Im rff -• Im/^/Im ίίf is epimorphic, which means (ii).

Now, assume inductively that there exists xn in (3.6.1) for n < s. Then,

λχXn — yn G Ker d = Im g% and so λn:¥f£xn = f£(λ^xn — dyn+1) e Im df (X = >ln).

Thus λj$xn = 0 in £(D)2 'm (m = b + n); hence fξxn = 0 in £(C)n

2'
m by (i), and

f£xn = ί/fw = f£g*w, xn — g%w = δx for some w e / i j ^ ) , x e ! ι m + 1 ( I n

c

+ 1 ) .

Therefore, 32X^x = dX^x,, = dyn (λf = Xπ+1); hence

(3.6.2) g%z = dλ'^x — yn = d(λ^x — yn+ι) for some z G h^W^).

This implies df z = f£g%z = 0, and so we see by (i) that

(3.6.3) z — Λπ_l5|ίw' G Im df for some w' G ̂ (VF^i) with rffw' = f£g*w' =

0; hence gjw' = dx' and so 3λ^x' = λ^g%w' = ̂ f̂ z for some x' G / ι m + i ( ^ + 1 ) .

Thus dX^xπ+1 = yn for xπ + 1 = x — x'; and (3.6.1) is proved by induction. q.e.d.

As applications to Theorems 3.4-5, we compare the Adams spectral

sequences {E(G)s

r

yt} given in Theorem 2.3 for

(3.7.1) ring spectra G = E and F with a unit-preserving map λ.E^F

(ιF~λolE:S°->F).

In this case, λ induces λ: E = ClE -• F = Clp (cf. [16, 8.31]) and the maps

(3.7.2) λ = {λn, λn}\ α,f -* oίζ between the cofiberings of (2.1,6) in

ΛXΪ >XL, >ΣXξ

I.+i UK (X* = XO = X?)

>ΣXF

n
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given by λn = λn A 1: XE = En A XO -> XF = F Λ I 0 and λn = λ Λ Xπ (n ^ 0).

Furthermore, /ί s+1 Λ 1: F s + 1 Λ Jf0 -• F 5 + 1 Λ Xo (s ^ 0) induce the cochain maps

λ*:E*(X)-*F*(X) (Xe<g) and λ+: KE*(<x;i)-> KF*(<x.',i) ( α e W ) , which

induce the £2-map

(3.7.3) λ+\ EA = {EA% KEAs

t( i)} - FA = {FA% KFAs

t( i)}

between the F2-functors GA given in (2.1.4) (see (3.2.2)). This satisfies

(3.7.4) φF = λ^ o φE: πt(X) -» F ^ W -> F f̂°(ΛΓ) for (̂ G in (2.1.5).

Thus, by Theorem 2.3 and (3.3.6-7), we have the map

(3.7.5) X*: {E(Eyr

tt}->{E(F)r

Sit} between the Adams spectral sequences with

X* = λ*: £(£)5 f = EAs

t(X0) - Eί f^ 1 = F^IJ(XO) => id on πf_,(X0) (abut).

Now, (/F Λ 1),, = (λ A 1), o (Ϊ£ Λ 1)*: i?(X) -> F,s(£ Λ X) -• F t

s(F Λ X) is

monomorphic by Lemma 2.2, and so is (ιE Λ l ) r Hence:

(3.7.6) KFt

s(ωE Λ ! ; 0 ) = 0 and ocE = ωE A XE is also an ivl-cofibering,

by definition. Therefore, Theorems 3.4-5 imply the following

THEOREM 3.8. Let λ: E -> F be a unit-preserving map between ring spectra,

and consider WE = E A XE = E A En A XO (n ^ 0) in (3.7.2) for Xo e « Then:

(i) X*: £(£)*'' -• £(F)s

r'
r in (3.7.5) is isomorphic for r ^ 2, if

(3.8.1) eαcft W^£ is FA-injective and φF (or λ+) in (3.7.4) for X = WE is isomorphic.

(ii) Assume that there are integers a ^ 0 and b such that

(3.8.2) F A s

t { W E ) = Qifn<t-b-l = n + s<a (when a ^ 2 ) , a n d

(3.8.3) φF (or λj in (3.7.4) for X = WE is

(*) monomorphic ift — b = s^a and epimorphic ift — b—\—s<a.

Then, X*: E(E)sit -• E(F)S2t in (3.7.5) is a/so (*). Furthermore the restriction

(3.8.4) X* = V Z£(£)^ = ZEAs

t(X0) -+ ZE(F)ψ = ZFAs

t(X0)

for t = b + s is isomorphic if s fka and epimorphic if s = a + 1.

(iii) (ii) holds for a = 1 (resp. 0) and any b, if

(3.8.5) <^F: π+(2i) -> FA%(E) is isomorphic (resp. monomorphic), and

(3.8.6) £*(£) anrf ^ ( X Q ) (resp. E+(X0)) are the flat E*(S°)-modules.

PROOF OF (iii). We see inductively that

(3.8.7) if £*(£) and FJJTo) are flat, then so is E^(XE) for any n,

because then E*(WE) = E^(E) ® E^(XE) by [16, 13.75], and

(3.8.8) the split exact sequence 0 -> E^(XE) -> E*(WE) -> ̂ ( X ί + J -• 0 holds,

by Lemma 2.2. Then, by [16, Note after 13.75], we see that

(3.8.9) if (3.8.6) holds, then for n ^ α = 1 (resp. 0), F^(WE) = π*(Ft+1 A E) ®

E*(XE\ and so FA\(WE) = FA^(E) <g> E^(XE) and φF = φF ® id: π^(WE) =
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Thus (3.8.5-6) imply (3.8.3) for a = 1 (resp. 0). q.e.d.

EXAMPLE 3.9. In Theorem 3.8, (i) is valid when E = F for any unit-

preserving map λ: E -> E, or when λ is the Thorn map Φ: MO -• HZ2.

Also, under the assumption that E^(X0) is flat, (iii) is valid for a = 1 when λ is the

Atiyah-Bott-Shapiro map tu: MU -+ K or tBP: BP -• KQp at a prime p induced

from tu; and for a = 0 when λ is the Conner-Floyd map tsu: MSU -• KO (cf

[15, 7.10]).

PROOF. When F = £, (3.8.1) holds by Lemma 2.2. M0~\/iΣ
n<HZ2

(homotopy equivalent) by [4, p. 207], and so Wn

MO ~ (\JiΣ
riiHZ2) A X^°.

Hence, we see that HZ2A
s

t(Wn

MO) = Ext^(Z 2 , (HZ2)*(Wn

MO)) (A* =

(HZ2\(HZ2)) in (2.3.2) is isomorphic to πt(Wn

MO) by φHZ2 if s = 0 and is 0 if

s > 0; and (3.8.1) holds.

(3.8.6) holds in each case by (2.4.2). φκ:π*(MU) ^ PK^(MU) by the

Hattori-Stong theorem (cf. [4, II, 14.1]). By [4, II, §16], BP is the direct

summand of MUQp9 and so the isomorphism φκ induces φκ': n^(BP) ^

PK'*(BP) (Kf = KQP). Also, φκo: π*(MSU) -> PKO^(MSU) is monomorphic by

[15, 7.10]. Since PF*(X) = FA%{X) by (2.4.3), these show the latter half.

q.e.d.

EXAMPLE 3.10. Theorem 3.8 (ii) is valid for the Thorn map ΦBP: BP -• HZp

at a prime /?, Xo = S°, a = q — r — 1 and b = kq + r with 0 < r < q, where

q = 2(p- 1); and BPAs

t{S°)_{qU\ HZpA
s

nq_+t(S°) (s + 1 < t < q\ ZHZpA
s

nq+t(S°)

{s<t<q) are 0, and Φξp: ZBPAs

nq(S°) -• ZHZpA
s

nq(S°) (s < q) is epimorphic.

PROOF. We use the following (3.10.1) (cf. [4, II, § 16]):

(3.10.1) If q\U then πt{BP\ BPt(BP) and HZpA
s

t+s(BP) are all 0, (for the

last one, we see that Exf$;*(Zp, (HZP)*(BP)) (A* = (HZp)*(HZp)) in (2.3.2) is

Zp[a0, al9...] {at e Ext M ί , tt = lip1 - 1) + 1) by the structure of (HZp)^{BP) in

[7] and by the same argument as in [16, pp. 500-503].)

Then, according to (2.4.2) and (3.8.7-9), we see the following

(3.10.2) If q\t, then BPt

s(S°), BPt(X%p) and HZpA
s

t+s(Wn

BP) are 0, where

χ0 = s°; which implies (3.8.2) and the desired results. q.e.d.

§4. Mahowald spectral sequences and double £ 2 -f u n c t o r s

Let D = {D£, KD*U} be an £2-functor, and for a given Xo, assume that

(4.1.1) there exist D-cofiberings ωs: Xs — ^ Ws - ^ Xs+1 for s ^ 0. Then, by

(1.8.4), we have the exact sequences

(4.1.2) ... > D<u{χs) ^U D<U(WS) - A
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and the same argument as Proposition 1.2 and D*u = 0 (t < 0) imply the

following

PROPOSITION 4.2. For an E2-functor D and Xo with (4.1.1), we have the

spectral sequence {£*„,*„ dr\ Es^r -+ Es

u^
a~r+1) associated to (4.1.2) such that

(4.2.1) dγ = i , o ; - E*u\\ = Dl(Ws) -> fift1'* = Dl(W8+1)9 and

(4.2.2) {£;•/,} converges to Ds

u

+t(X0), £%„ s F^/F:+ί^\ in the sense of

(1.6.2), fcy f/ie jzmte filtration Ds

u

+t(X0) = F u ° ' s + ί =>•••=> FJ f = Im [(5 s: D£(XS) ->

# Γ s ( * o ) ] => f Γ 1 ' ' " 1 =>•••=> F ; + ί + 1 > - 1 = 0.

We now represent the £ 2 - t e r m of this spectral sequence in a similar way to

Theorem 1.9.

D E F I N I T I O N 4.3. Let be given a collection of covariant functors

A = {As
x;

t\c€^stf\KA^\ \\\LA*\ ij): < ^ - s/\s, ί, w e Z; i,j = 0, 1, 2}

with ΛJ 1 = KΛ; r( ; 0 = Li4J ί( /,;) = 0 for s < 0 or t < 0.

(1) We say that A is a double E2-functor on #, if

(4.3.1) for any α: Xo -^-> X1 -^X2 in ^ ^ there hold natural exact

sequences

• > LX^(α; i,;) ^ ^ ' / / α ; i) - ^ L ^ ί f(α; i + ; , ; + 1)

p = p ί ί 7 for p = i, K:, δ, where A^(α; ί) = KAS

U>r(α; i) ( = 0, 2), ^ ( α ; i) =

Aϊ'iXi) and L/4^(α; a, b) = LA^a; a - 3, b) if α ^ 3, = L ^ ί ^ α ; α, & - 3) if

fo ^ 3; and these satisfy the equalities

(4.3.2) fa = ιi+1Λ o κ i + l p 0 o , l + l f 2 o κ ί t x : ^ r W ) - ^ ί f ( ^ i + i ) for i = 0, 1 .

(2) We call a: Xo-^ Xx^ X2 in ^ J ^ an A(l)-ίnjective cofibering if it is an

A(l)-cofibering, i.e., K Λ ^ α ; 0) = 0 = LA^ioc; ij) for = 0 (hence for i = 0 by

(4.3.1)), and Xx is A(l)-injective, i.e., ^ ' ( X J = 0 for s Φ 0.

(3) We say that A is related to an E2-functor D at Xo by φD and {ωs}, if

(4.3.3) each ω s : Xs —'-+ Ws — -̂> Xs+1 is a D-cofibering and ^(l)-injective cofiber-

ing and φD: D<u -• A^' is a natural transformation with ψD: DUWS) ̂  A

By this definition, the exact sequences in (4.3.1-2) imply the following:

(4.3.4) Any Λ(l)-cofibering α: Xo—°-+Xi—'-^X2 induces the exact

sequence

... > AsΛχo) J2U Ai\Xi)-^ AΪ\X2) — ^^'(Xo) >'">

where δ = {κlt0 o ι l 2 o κOΛ)~x o δίtί o (ι2Λ o κ 2 0 o z2 2 ) by the isomorphisms K

and z in it.

Hence, for ω s and ψ in (4.3.3), the following (4.3.5-6) hold:
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(4.3.5) δ: An/(XS+1) ^ An

u

+Ut(Xs) for n ̂  1, and we have the exact sequence

0 > A°ΛXΛ) - ^ A°ΛWS) ̂ > A°ΛXs+i) — Λ 1 ' ^ ) > 0 .

(4.3.6) ψ = δso(i^oψ):El:<2^A°ΛXs)β™Js* = As

u>
t(X0) for {£*;<} in

Proposition 4.2. Moreover, ψ: D^(XS) S 4?'0(J*Q.

In fact, the first isomorphism is seen in the same way as (1.3.4) by the exact

sequences in (4.1.2) and (4.3.5) with ψ in (4.3.3); and the second one by those for

t = 0, D~ι — 0 and 5-Lemma. Thus, we have proved the following

THEOREM 4.4 (Mahowald spectral sequence). In case of Definition 4.3(3),

we have the spectral sequence {Es^r} in Proposition 4.2 which converges to

D*+t(X0) and whose E2-term £*;2 is isomorphic to A^^XQ) by ψ in (4.3.6):

EHi = A'ΆXo) => Dΐ\Xo) (conv).'

The same proof as Corollary 1.7 and the last half of (4.3.6) give us the

following

COROLLARY 4.5. (i) In Theorem 4.4. ZA^\X0) = Im | > = (5s o φ: D^X,) ->

Ai'iXoΏ for ZA^X0) = φ(Z^JB^2) = φ(lmiJί^KQvδ); and ZAS

U>°(XO) =

(ii) When {Es

u\
ι

r} collapses, the similar results to Corollary 1.7 (ii) hold.

By Theorem 4.4, we can construct a spectral sequence which converges to a

given £ 2 " f u n c t o r > 0 Γ t o the E2-term of a spectral sequence in Theorem 1.9, by

finding a double JE 2"fu n c t o r related to it. We call a spectral sequence of this

theorem a Mahowald one according to Miller [10].

For a ring spectrum E and an E 2 " m n c t o r D — {̂ «» KDK \ 0}? w e obtain a
double £2-functor ED in the same way as (2.1.1-4), as follows: For X e% let

(4.6.1) DEt\X) = {DE?(X) = Dl(Es+1 Λ X) (s ̂  0), = 0 (5 < 0)}

be the cochain complex with δs = Σ?=o(— 1) '% f o r ^ : E*+1 Λ x -> E°+2 Λ ̂  in

(2.1.1). Also, for α: Jί 0 ̂ ^ ΛΓX -A+ χ 2 j n ^J^, consider £ s Λ α: £ s Λ XO —%

Es A X, ^ 4 Es A X2 and δf = <5f

s Λ 1: £ s + 1 Λ α -• Es+2 A α in #J*\ Then,

according to (3.2.1),

(4.6.2) KDEϊ\*\ i) = {KDE^fo i) = KD^E^1 A α; i) (s ̂  0), = 0 (s < 0)}

is the cochain complex with <5S = Σ*ίo(~ 1)'$*> a n d by the exact sequences

ίr(α; i) - U D E ^ ^ ) - ! U KDE*^ i + 1)

in (1.8.1) for Es+1 A α, ιit0 = /, z î = K and z ί + l j 2 = 5 give us

(4.6.3) the subcomplexes LDE*'t((x;iJ) = {KeΐiiJ} with the exact sequences
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0 -> LDEϊ'ia; i,j) -> DEjfla; i) -> LD£*'*(α; i +j9j + 1) -> 0

of cochain complexes (Z)E?;<J = DE*^ = KDE*\ D£*;{(α; i) =

DEϊ'iXi), and LD£u*<(α; a, ft) = LDBji^α; α - 3, ft) [a £ 3), = LDE*^1

(α; α, ft - 3) (ft ^ 3)).

(4.6.4) Thus we have the double E2-functor ED, where EDS

U\X), KEDS

U\OL\ ϊ)

and LED^'fa; i,j) are the cohomologies Hs of the cochain complexes in (4.6.1-3).

Moreover, in the same way as φE in (2.1.5), we have

(4.6.5) φD = (ιE Λ 1),: D μo -> Ker 5° = H°{DE^{X)) = ED«-\X)

and by the same proof as Lemma 2.2, we see that

(4.6.6) ψD:Dt

u(EΛX)^ED2't(EΛX), a n d EDS/(E A X ) = 0 if s > 0 .

Now, consider the case that

(4.6.7) each Es A α* for α*: Xn -^-l £ Λ Xn -• ^ π + 1 in (2.1.6) is a D-cofibering.

Then KDEi\u*\ 0) = 0 by definition. Hence K e r z o o = 0 and K e r / 2 0 =

I m / 0 2 = 0 in (*). Also, ι12 = 0, Ker/ 1 > 2 = Im/ 0 > 1 and z1>0 o /0>1 = z o K =

(ιE A 1)^ by (1.8.2), which show that ^ 0 is monomorphic since so is (ιE Ά 1)^

and ι0Λ is epimorphic. Thus LDE^iocf;; i, 0) = Ker ι{ 0 = 0; and we see the

following:

(4.6.8) // (4.6.7) holds, then aξ is an ED(l)-cofibering, and ED is related to

D at Xo by φD and {αf}. In particular, when D = FA in (2.1.4) for a ring

spectrum F, (4.6.7) holds if

(4.6.9) (1 Λ ιE A 1)*: F+{F* A XJ^F^F* A E A Xn) is monomorphic, e.g., there

is a unit-preserving map λ: E -> F.

Therefore, we have proved the following

THEOREM 4.7. Let E be a ring spectrum and D = {D'u, KD*U} an E2-functor.

(i) // (4.6.7) holds, then we have the Mahowald spectral sequence {££',»•} in

Theorem 4.4 for A = ED in (4.6.4):

(4.7.1) Es^2 = EDS

U\XO) => DSΛXO) (conv).

(ii) (Miller [10]) // (4.6.9) holds for another ring spectrum F, then we have

the one {£s

u'/r} in (i) for D = FA in (2.1.4):

(4.7.2) E^2 = EFAϊ'iXo) => FAs

u

+t(X0) (conv).

If G^G) is flat over G*(S°) for G = E, F, in addition, then
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(4.7.3) EFA'SiXo) = Ext| ;(£)(£,(S°), FA^(E A XO)) ,

FA[(X) = Ext^(F)(F*(S°), F+(X)) (X = E A Xθ9 Xo).

In fact, (4.7.3) is seen in the same way as the proof of (2.3.2).

EXAMPLE 4.8. Let p be an odd prime. Then, on the groups in (4.7.3) for

E = BP at p and F = KQp (Qp = {a/b e β|(ft, p) = 1}), we have the following

(i) (Adams-Baird) KQPA
X

U(S°) is Qp if t = u = 0, ZpV if t = 1, u = 2(p -

\)bpv~ι with (ft, p) = 1, Q/Qp if t = 2, u = 0, and 0 otherwise.

(ii) KQpA<u(BP) = 0 for t ^ 2.

(iii) BPAS

U(S°) s KQpAl(S°) (if s = 0, 1)

Ξ BPKQpA
s

u-
21(S°) (if s ^ 4 or s = 2, 3, u / 0).

PROOF. Denote simply by K = KQp in this proof. Then, by [16, § 17],

(4.8.1) K*(K) is flat overπJK) = βp[ί, Γ 1 ] (deg t = 2) and is identified

with the subring of all finite Laurent series /(w, v) e K^(K) ® Q = Q[u, υ,

w"1, Ϊ;" 1 ] (u = (1 Λ z)̂ *, U = ( I Λ l^ί) satisfying

(*) f(λt, μt) e Qp[t9 ί"
1] for any integers λ, μ prime to p.

(i) Let k be a generator for the multiplicative group of reduced residue

classes mod p2 (and so mod pn for any n). Then, we have the exact sequence

(4.8.2)

o —>κ*{s°)-U κ # ( x ) - ί - , K * ( K ) ^ κ * ( S Q ) (= β[ί, r 1 ] ) — . o ,

with it = II, (̂Mit? /) = (fc; - 1)14*̂ ", and φ V ) = 0 (j # 0), = ί1' (j = 0), by

taking z = z,,, ^ = ^ - id (ι^k e K°(K) = Hom^iK)(K*(K\ π+(K)) is the Adams

operation given by ψ^uΨ) = kjti+j) and c = ch* (ch: K^SQ is the Chern

charactor).

In fact, the equalities are seen by definition; and ^ o / = 0 = c o ̂ . Let / =

ΣftjuV e K*(K). If φf = 0, then / 0 = 0 (j Φ 0), / i 0 e Qp (by (*) in (4.8.1)) and

/ = Σfio"1 e Im i. If c/ = 0, then fi0 = 0 and we have # = Σ ^ o ^ " V - " jV

(/cJ' - 1) with ^ = / and g(λt, λt) = 0. Thus g(λt, kμt) = g(λt, μt) + f(λt, μt) by

^̂ f(w, v) = g(u, kv) — g(u9 v\ and g(λt9 k
nλt) e Qp[t, ί"1] for λ prime to p and any

n by (*) for / and induction; hence g(λt, μt) e Qp[t, ί"1] for any λ, μ prime to p,

and geK^(K). Finally, ί ^ ί Π ί ί ^ - ^ ) } / " ^ " " 1 ^ * ^ ) (<* [16, 17.31])

and cqn = l/n\; hence c is epimorphic. Therefore, the sequence (4.8.2) is exact.

Now, consider / = Im φ in (4.8.2). Then, we have the exact sequences

0 • K*(S°) • K+(K) - ^ I • 0 and

0 >I > K*(K) - ί - K+(SQ) > 0

and these induce the long exact sequences for Exts*( —) = E x t ^ ^ K J S 0 ) , —),
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where Exta-*(K+(X)) = KA%{X) and KA%(X) = 0 (s > 0), = πJX) (s = 0) for

X = K by Lemma 2.2 and for X = SQ by taking J Q = 1 A ch: Ks A K A SQ^>

Ks A SQ, W = SQ in the proof of Lemma 2.2. Thus, we see that

(4.8.3) KA%(S°) is isomorphic to Exts'u*(I) if s ^ 2, which is 0 if s ^ 3;

and to Coker ch^ if s = 2, Ker ch^/Im (φ* — id) if s = 1, Ker ( ^ — id) if s = 0,

for ch: π+(K) - π^(SQ) and ^ - id: π+(K) - π^K) = βp[f, ί"1] with ch^ί1' = 0

(i φ 0), = 1 (ί = 0) and ψζt1 = klt\

Then, the order of k e (Z/pxZ)x is pv~x(p - 1), and so (i) is seen by (4.8.3).

(ii) By taking the tensor products over πJ|e(X) with the flat module

K^(BP) = π*(K)[ί;], the exact sequence (4.8.2) gives us the one

(4.8.4) 0 • K*{BP) (l Λ 1)% > K*{K A BP) ( ^ Λ l ) * ~ l d > K^(K A BP)

— ( C Λ 1}* > K^(SQ A BP) • 0

hence, we see in the same way as (4.8.3) that

(4.8.5) KA^(BP) is the cohomology of the cochain complex 0 ->

π^(K A BP) -^-+ π*(K A BP) —c—+ π*{SQ A BP)^>0-+ for ψ' = (φk A 1^- id

and c' = (ch Λ 1)^. Here,

Q = β [ / J - ^ K^BP) ® Q

(π J X ) = β p [ ί , Γ 1 ] , t'0 = l,φ = φκ®l) satisfy by [4, II, 16.1, pp. 63-64] that

c'(t"φαL) = φ = 0), = 0 (n Φ 0), and ^ = ^ j e 0 Γ H ί ί J ^

Now, for any α = JJZ?1' ^ 1 and n ^ 1, consider the elements

Then, by the above equalities for φ and c', we see that x is in K^(BP), so is xΠ

for any n, and c'xΠ = nα/pn"fl, c r(ί"bxΠ) = — 1/p". Thus c' is epimorphic; and

(ii) is proved.

(iii) {£^/r} in Theorem 4.7 (ii) for £ = BP, F = K ( = K β p ) and X o = S°

satisfies

(4.8.6) £ ; /2 = BPXy4^(5°) = 0 if ί ^ 2 and £s

u'/"s = 0 if t ^ 3 or ί = 2,

by (4.7.2-3) and (i)-(ii). Thus, the differential dr: Eft -• E8^'^1 is 0 except

for r = 2, ί = l ; and d2: E^ ^ Es

u+i>° for s ^ 2 or s = 0, 1, u # 0. Since

BPKAS

U°(S°) = BPAS

U(S°) by the Hattori-Stong theorem (cf. [4, II, 14.1]), the

above isomorphism d2 implies (iii). q.e.d.

In the rest of this section, we note on the differential of {£„/,.} in Theorem

4.7 (ii) for ring spectra E and F with (4.6.9). For X e% we consider

(4.9.1) FE^iX) = πu(Ft+1 A Es+ί A X) (s, t ^ 0), = 0 (otherwise), with co-

boundary δG = Σ^(-l)i^*''FEs

u'
t(X)->FEs

u

+Ut(X) or F£S/+1(X) for G = E
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or F, respectively, (* = s or £, δ? = 1 Λ ιG A 1: Y A S° A Z -• Y A G Λ Z,

Z = E1' Λ X or F Λ £ s + 1 Λ JQ; i.e., {F£s

u'*(Jf); <5F} = F * ( £ s + 1 Λ X) with

H\FES^{X)) = FAES

U'\X) and {FΛfiJ 'pO; <5*} with H^FAE^iX)) = EFAS»\X)

are the ones in (2.1.1-4) and (4.6.1-4).

According to the assumption (4.6.9), the cofibering

(i = IEΛ ιj =j Λ 1 for ωE: S° - ^ E — U £)

in (2.1.6) induces the short exact sequence of the cochain complexes {F*; δF}:

(4.9.2)

0 > F ( £ w Λ Xn) ^^ Fu*(Em+1 A Xn) -±+ Fu*(Em A Xn+1) > 0 (k = 1 Λ k):

and by the definition of δG in (4.9.1), we see the equalities

(4.9.3) δFoj^=j^oδF, δFoj>=j oδF and i+ o 7 ; o f = (-1ΓVS + 1 o δ\

for the compositions j s = (jj: FES

U>*(XO)^> FE%>*(XS) and iφ o ^ : F E ° . 'χYs)->

1 ) - F£ t t°'*(Xs+1), where i ^ = (,£ Λ J % : FU*(S° A E A XS) ->

Λ Jf5 + 1).

Moreover, (4.9.2) induces the cohomology exact sequence

(4.9.4) ... > F J J

and by the definition of δ^ and the equalities in (4.9.3), we see the following:

(4.9.5) If δFy = ( - l)s+1δEx for x e F£s

M'ί+1(ΛΓ0) and y e F £ ; + 1 f(X0), then

^ F 7 * r + 1 y = 0 and δ+ϋ*ja+1y] = ίhJ'xl in FAL+1(XS+1) for the cohomology

classes [ ].

On the other hand, by (4.6.9) and the definition of FA in (2.1.1-4), we see that

(4.9.6) (4.9.4) is the one in (1.8.4) for the ivl-cofibering Em A OCE (i.e.
δ* = V

(4.9.7) Thus, {££/r, dr) in Theorem 4.7 (ii) is the one in Proposition 4.2

associated to (4.9.4) for m = 0. So Es

u\\ = FAι

u(E A XS\ d1 = i^ oj^9 and we

have

J+. EFA?(Xo) ^ fiίΛ Educed by J = (j%: FAES

U>*(XO) - FAE°U>*(XS) = £;•• ,

where j s is the composition in (4.9.3).

Therefore, we see the following

LEMMA 4.10. (i) Assume that xt e FE^'^XQ) (0 ̂  i ^ ή) satisfy δFx0 =

0 and δFxi+ί = (—l)s+i+1δEXi for i < n. Then, for the cohomology classes

[x 0 ] e FAEϊ'iXo), [δExJ e FAEs

u

+n^-n(X0) and the differential dr in (4.9.7), there

hold
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drJlxol = 0 (1 ύ r ^ n) and dn+1J[xol = ( - l)s+n+1 J[<5£xJ .

(ii) Assume that χ , . e F £ ; - κ ί+i(X0) (0 g ΐ g s - 1) and xseF^+t(X0)
satisfy δFδExo = 0, δFXi = ( - Vf~i~1δExi+ί for i < s — 1, (5Fxs_! = ί^x, (i.e.,

δj+x,^ = xs). Then, for [<5£x0] e FAE?{X0) and [ x j e FΛs

M

+ί(Jr0) in (4.9.7),

(— VfJ[δEXo] converges to [ x j .

(iii) Assume that we have a unit-preserving map λ\ E -> F and δFEx = 0,

δFδEx = 0 for xEFEs

u-
Ut(Xo\ where δFE = δE o λ* + (-l)sδF\ FEs

u-
Ut{X0)^

FEs

u-
Ut+1(X0) (λ+ = (λ A 1)*: F;(E A Em A XO)->FZ(F A Em A XO)). Then, for

[5£x] G FAEi'iXo) and Iλ+λ'^x] e FAs

u

+t(X0) (λ* = (λj: FEs~Ut{X0)^

FEi'^^Xo)), (-l) s J[(5 £ x] converges to [λ^λ^xl

(iv) J*: EFA%\XQ) -> fij;f

2 is ίsomorphic.

PROOF. By (1.6.1-2), (1.1.3) and (4.9.3), (4.9.5) implies (i)-(ii).

(iii) By the definition of δFE, δFE o λ* = δE o Aί+1 + ( - iγ-ιδF o ̂ (; and so

ό^A'x = ( - 1 Γ I " M £ / I ι + I x (0 ̂  i < s - 1) and δFλs~1x = ί^λ^x. By (ii),

these imply (iii).

(iv) We consider the cochain complexes Mζr)*'* = {M(r)£'', δ(rfM} and

^ , ^(r)^} for r ^ 0 given as follows:

= £;;? in (4.9.7) if s ^ r , = iv4ί,(£s~r+1 Λ Xr) if s > r , and

δ(r)s

M = dx = ( l £ Λ ;% in (4.9.7) if 0 ^ 5 < r, = ̂ s " r in (4.6.1)

(D = FA,X = Xr)iϊs^r,

= 0 if s ^ r , = F ^ L ( ^ s " r Λ Xr) if 5 > r , and

δ(r)s

κ = 0 if 5 ̂  r , = (ιE A 1)+ if s = r 4- 1 , = <5S~Γ~2 in (4.6.1)

{D = FA, X = E A Xr) Ίϊ s ^ r + 2 .

Furthermore, we have the cochain maps i(r) = (ϊ(r)*}: K(r)*ft-^ M(r)*ft and

j{r) = {j(r)*}ι M(r)*-< -> Af (r + l)M*'f by taking

i(rγ = 0 if s ^ r , = (1 Λ 0* if s > r , and

;(r)s = id i f s g r , = ( - 1 Γ ( 1 Λ J \ if s>r.

Then, we have the short exact sequence

0 > K(r)?^ — M(r)M*'' - ^ M(r + 1)*^ • 0

because i# in (4.9.4) is monomorphic for m ̂  1. By (4.6.6) (D = FA, X = Xr),

Hs(K(r)*ft) = 0 for any s; hence ^(r)^ is isomorphic on the cohomology groups.

Thus, by M(0)* ' = FXfi ^Xo) and J = (-l)εj(s)s o - oj(0)s: M ( 0 ) ^ ^

M(s + I)5;' = E'u\\ (ε = s(5 + l)/2), this implies (iv). q.e.d.
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§ 5. May spectral sequences

In this section, we construct another spectral sequence which abuts to an

£2-functor and whose ϋ^-term is a double £2-functor.

Let C = {C*, KCS

U} be an £2-functor, and assume that

CLL ωs,t

*s,t' Xs,t :,ί + l

(5.1.1)

α s + l , f rs+l,t

s, t ^ 0)

are diagrams of cofiberings ξsa (ξ = α, β, ω, η) with the following (5.1.2-4):

(5.1.2) {k} {k = iJJ, g) are maps in <€& (see (3.1)).

(5.1.3) Each ω s 0 is a C-injective cofibering.

(5.1.4) Each β = βst is C°-homological9 i.e., we have the exact sequence

by the composition d = ιoK\ C°(W2) -• KC^iβ; 0) -+ C^^W) in (1.8.1).

(5.1.5) When W9 Y and Py2 are C-injective, (5.1.4) holds if KC*{β; i) = 0

(* Φ 0) for some (or any) i, which is seen by (1.8.1-2).

(5.1.6) For φ: hu -• C^ in (1.3.1), assume that d in the exact sequence

... —> K(w) J^ K{γ) ^^ K{w2) _L+ K_i{w) —

and d in (5.1.4) satisfy φ o d = d o φ (then φ is called natural for β), and that φ is

isomorphic for W and 7. Then, (5.1.4) is equivalent to φ: hu(W2) ^ C°(W2).

Then, the same construction as Proposition 1.2 gives us the following:

(5.2.1) For any s ^ 0, the spectral sequence {£(s)ί/u, dr\ E(s)^u ->

'u+r~1} is associated to the exact sequences in (5.1.4) such that

£(*)*'" = CM°(ySif) =

(5.2.2) G*Jt ID Gf1 ID GJtf 1 and

.o) = G2 _°f (abut), i.e.,

for Z(Sfe" =
I m / * , and Gs

u>< = Im ^ where

On the other hand, ωs 0 in (5.1.3) induces the exact sequence

(5.2.3) 0 > Cu°(Xs,o) - ^ Q ° ( ^ o ) - A C ° ( X )
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by (1.8.4). Also, by (5.1.2) and (3.2.1), we see the following:

(5.2.4) δ = (ioj)^.CΪ(ZSJ)^CΪ(Zs+Ut) for Z = W9 Y satisfy δ o δ = 0,

δ o k^. = k^o δ and δ o d = d o δ for k^ = f^, g# and d = i o K in (5.1.4).

Thus, in (5.2.1-2), we have the cochain complexes

(5.2.5) {£;•< = E(s)r} 3 {Z ' = Z^s&VB} ^ W = B(s%?/B} (B = B{s)Y =

/^(Ker d)) and {GJf} with coboundary δ = (i oj)^.

Taking their cohomologies, we see the following by (5.2.2-3):

(5.2.6) δs o i" 1: Hs{G*i^) ^ Q-t(XOtO). Furthermore, the exact sequence

- » n (<JU ) -> t i ( U u / U u + ί ) -> t i ( U u + 1 ) -+ t i (Cr M ) - > • • •

associates the spectral sequence {£ί'/Γ, dr: E
s^r -> £*+J;ί+Γ} with

Ei\ = H'W/Gΐtf1) s H'iZ -'/B*'*) => Hs(Gϊi?) s q_f(X0,0) (abut),

i.e., FJ 7i?+fΓ c fiί/co for Fί ^ = Im [^(G*^) -, HS(GU*^)].

To represent Hs(E*ft) of {££'} in (5.2.5), we use the following

DEFINITION 5.3. Let A = {ylJΛ XA^, LA^} be a double £2-functor in

Definition 4.3 (1).

(1) W e cal l Xe^ A(2)-injectiυe if A*S(X) = 0 for t Φ 0, a n d α e ^ a n

A{2)-cofibering if K ^ r ( a ; 0) = 0 = LΛ^(a; i, 0) for i = 0, 2 and L^' '(α; 1, 1) = 0

for ί / 0.

(2) We say that A is indirectly related to an E2-functor C at I 0 > 0 by a

natural transformation ψ: Cs

u -• As

u'° and cofiberίngs in (5.1.1) with (5.1.2-4), if

(5.3.1) each ωs0 is an A(l)-cofibering, Ws0 is y4(l)-injective, βSJ is an 4(2)-

cofibering, Yst is 4(1)- and 4(2)-injective, and

(5.3.2) φ: C°{Ys,t) * 4u°'°(ys5ί) for any 5, ί = 0, 1, 2, . . . .

In (1) of this definition, the exact sequences in (4.3.1-2) imply the following:

(5.3.3) Let α: Xo —°-+ X1 — U X2 be an 4(2)-cofibering. Then, ι2Λ o κ 2 0 :

X4ί f (α; 2) ̂  4 ί f (X 2 ) and i l t 2 o κ0Λ: 4 ; f(X0) = ̂ ^ l f t (α; 1) by L ^ ' ^ α ; 0, 1 ) ^

0 £ Lyi ^α; 0,2), κ l i 0 : O f > ; 1) s L ^ ' 0 ( α ; 1, 1) by L^' °(α; l ,0) =

LAi~\a\ 4, 3) = 0; i l i 0 : L4^(α; 1, 0) ^ ^ / ( α ; 1), ιc l f l : A^X,) s L4^(α; 2, 2)

(ί > 0); and we have the exact sequences

... > A'U'°(XO) - ^ X ^ ' 0 ^ ) ^ > L4ί°(α; 2, 2) > 4 ; + 1 o(^o)

• , LAM*; 2, 2) - U Ait(X2) ^-+ A'u-
t+1{X0)

tLAΪ^fcXl) > . . . ,

w h e r e 1 = h,i ° K2,o° h , 2 ( h e n c e T o f c l f l = / l s | s ) a n d K = ( ι l t 2 ° ^ o . i ) " 1 ° z i , o °

*2.2°(*2,1 °^2,θΓ1

(5.3.4) In (5.3.3), if Xι is 4(2)-injective, then



62 Mizuho HIKIDA

κ : A i t ( X 2 ) ^ A 8

t !

t + 1 ( X 0 ) f o r ί > 0 .

If Xo and Xx are ,4(l)-injective, then so is X2. Furthermore, if both of these

hold, then we have the exact sequence

0 > A°-°(X0) - ^ A™(XX) - ^ A°U<°{X2) - ^ A^'iXo) > 0 .

Now, consider the case of Definition 5.3 (2). Then, for βst with (5.3.1),

(5.4.1) 0 > A°-°(Wa,t)^> A°u>°(Ys,t)^ A°u>°(Ws,t+1))-^ A°u>
t+1(Ws,0) > 0

is exact by (5.3.3-4), since Ws t is v4(l)-injective by induction on ί. Thus, in the

same way as Theorem 1.4, (5.4.1) and a natural transformation ψ:CZ-> Af;0

with (5.3.2) imply the isomorphism

(5.4.2) φ = κΌ Cς-1 o ψ): E(sfiu =s A° 0{W8tt)βm g* s A^(WBt0)

for the spectral sequence {E(sY;u} in (5.2.1).

On the other hand, (4.3.4) for the ^(l)-cofibering ω 5 > 0 in (5.3.1) implies the

exact sequence

(5.4.3) 0 > Λ° ' (* , i 0 ) - ^ A^(Ws.o) — ^ ^ s + i . o ) ^ K + ^(Xo,o)—^ 0 ,

and i+ and 7^ commute with K in (5.4.1) (see (5.3.3)) by (5.1.2). Thus:

(5.4.4) The cochain complex {Λjfί(Wί,0)> <5 = (ί °7')*} is isomorphic to

{£;•' = E(sfi\ δ = (ί o;),} in (5.2.5) by ψ in (5.4.2), and δ'oi^: H'(A^(W^0)) s

^ M ' (^O,θ)

Therefore, we have proved the following

THEOREM 5.5 (May spectral sequence). // α double E2-functor A =

{As»\ KAS

U\ LAϊ'} is indirectly related to an E2-functor C = {Q, KCS

U} at Xo,o,

then we have the spectral sequence {£„/,.} in (5.2.6) such that it abuts to C*-t(XOtO)

and

for the cochain complexes E*ft =3 Z* ' ' 3 £* ' ' in (5.2.5).

COROLLARY 5.6 (i) // each {E(s)l:u} in (5.2.1) converges and collapses, then

£* ' ' = Z* ' ' 3 5*^ = 0 and Es

u\\ = ASS{XO,O) in Theorem 5.5.

(ii) The assumption in (i) is equivalent to (5.6.1) and one of (5.6.2-3):

(5.6.1) inv limπ { C / U ^ J , S} = 0 (/or 5 in (5.1.4)).

(5.6.2) ^ : CM° -• A^'° is epimorphic for WStt.

(5.6.3) Ker [δ»: C°u{Ws,t) -* Cu

0_π(^ s, f_J] = Ker 5 /or 1 ^ n ^ ί.

In fact, (ii) is the same as Corollary 1.7 (ii).
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For given ring spectra E and F, and Xo e % we take

(5.7.1) the commutative diagram (5.1.1) defined by X5t0 = Es A Xo and

αS t f = ωF A XSJ , βStt = ωF A WStt, ω s > f = F Λ ωE A XS,0 , ηSjt = F A ωStt ,

where ωG A X:X ^ - > G Λ X -> G Λ JT is the cofibering in (2.1.6). Then, by

Lemma 2.2 and (5.1.5-6), we see the following:

(5.7.2) The above diagram satisfies (5.1.2-4) for C = EA in (2.1.4), where

the exact sequence in (5.1.4) is isomorphic to the homotopy one

• > πM(Wί,t) > π u (7 M ) > πu(Wa.t+1) — n^W^)

by φE: πu(E A X) ^ £Λ?(£ Λ X). Thus the spectral sequence {E(sJ;u} in (5.2.1)

is {isomorphic to) the F-Adams one: E(sfiu = FA^W^Q) =>πu^t(Ws0).

On the other hand, by (4.6.1-5) for D = FA, we have

(5.7.3) the double £2-functor EFA, with the natural transformations φFA:

FAt

u(X)^EFA^t(X) and ψE: EAS

U(X) -+ EFA'U'°{X) induced from φF:πm(Y)-»

FA%{Y) (Y = Es+1 A X\ satisfying φE o φE = φFA o φF: π*(X) -> £Fy4^°(X).

Then, by Lemma 2.2 for F, (4.6.6-9) for D = FA and definition, we see that

(5.7.4) Yst is £Fv4(ι>injective for i = 1, 2, so is WSt0 for i = 1, ψE:

EA°u(\t) s £Fi4j °(ySff) and &,, is an £F^(2)-cofibering. // (4.6.9) holds for

Xn = Xn0 then ω s 0 is an EFA(l)-cofibering so that EFA is indirectly related to

EA at Xoo by φE in (5.7.3) and the cofiberings in (5.7.1).

Therefore, Theorem 5.5 and Corollary 5.6 imply the following

THEOREM 5.8. Let Xoe^ and E and F are ring spectra satisfying (4.6.9) for

Xn = Xn>0. Then, we have the May spectral sequence {££'/r} in Theorem 5.5

abutting to EAs

u_t(X0) in (2.1.4). Moreover, if the F-Adams spectral sequence

{E(s)\:u} in (5.7.2) converges and collapses for any s ^ 0, then we have Es

u\\ =

EFAS>\XO) (in (4.9.1)) => EAs

u_t(X0) (abut).

§ 6. Some preliminary lemmas

For the main result in the next section, we prepare some lemmas.

LEMMA 6.1. // the compositions of maps X'—1—> W • Y' and X' •

V —̂ —• Y' in %> are homotopic to each other, then these are homotopy equivalent

to inclusions

(6.1.1) X^W^YandXaV^Y with X=WnV.

PROOF. The double mapping cylinder X = W utX
f
 A [0, 1]+ u r V of i

and / ' is the union of the mapping cylinders W = W'ViX' A [0, 1/2]+ and
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V =V KJΓ X' Λ [1/2, 1]+ and X = X' A {l/2}+ = WnV. Furthermore, /, / '
and a homotopy h'\ X' A [0, 1]+ -• Y' of /o i to f o/' define the map h: X -• 7'
and 7 = y uΛ X Λ [0, 1]+ ID X, as desired. q.e.d.

According to this lemma, we may assume the following:
(6.1.2) In (5.1.1), denoting by Zst = Z, Z s + 1 t = Z1 and Z s ί + 1 = Z2, we have

X =WnV^X =WvVczY, X1 = W/X = X/V <= Y/V = Fx ,

γ/w = w2, xβ + M + 1 = γ/x = vjx, = w2/x2,

and the horizontal and vertical sequences α, β, ω, and η are the cofiberings
ξ: A cz B Λ B/y4 with the inclusions α •= /, i and the collapsing maps b = g, j .

(6.1.3) Hence, {/}, {;}, {/} and {g} are maps in ̂ J^, and (5.1.2) holds.

LEMMA 6.2 For a homology theory h^, consider the induced exact sequences

1) > hu(A) - ^ K(B) - ^ MB/Λ) ^ U ̂ ^ μ )

o/ the above cofiberings ξ, and the diagram formed by them. Then:

(6.2.2) dω oda,= -dao dω.: hu+1(Xs+Ut+ι) - h^X^)

for ξ = ξStt9 oc' = α s + l ί and ω' = ω s ί + 1 ; and the other squares are commutative.
(6.2.3) For y e hu(YSJ) with j*g*y = 0, there are xk e hu(Xk) (Xk =

X s + 2_M_ 1 + f c, k = 1, 2) wiί/z a ω x! = - a α x 2 , f^x1 =j*y and i*x2 = g+y. Con-
versely, for xk with the first equality, there is y with the last two ones. In
particular, if each i^: hu(Vst) —• hu(Yst) is monomorphic, then for any xx e ΛM(XΊ),
there is x2 G hu(X2) with dωxί = dax2.

(6.2.4) For z e hu+ί(Xs+ίjt+1) with dωda,z = 0, there are w e hu(Wst) and
v e hu(Vs t) with j^w = da.z, g^v = dω>z and f^w = — i^v. Here, if w or v is given,
then there is v or w.

PROOF. In addition to ξ with the maps in (6.1.2-3), we have also
(6.2.5) the cofiberings γ: X -^ X - ^ X/X = Xί v X2, p : ϊ c Y-^ Y/X and
Xk-^Xίv X2-^Xt (1 = 3-k) with the maps {1,/i: W c X, ix}: ω -> y,
{l,/2: F c ϊ , / 2 j : α^y, {j[,j, 1}: p -• oc', {j'2,g, 1}: p - W Uk=h°ϊ) for ί, α'
and ω' in (6.2.2), so that

(6.2.6) δω = 5y o ίls|c, 3α = ay o i2j|c, 3α, =/ l j | ( o dp, dω, =j2* o dp, and
(6.2.7) (Λ*,72 ): Λ * ^ v X2) ^ fc^XJ Θ Λ#(X2) with (j^, j 2 ^ =

(6.2.2)1 5ω°^α' + ̂ o ^ ω ' = δy°0Ί*°7i* + «2* °72*)θ5P = dy°J*°dp =
0 by (6.2.6-7); and the other squares are commutative by (6.1.3).

(6.2.3): If ;*#*}> = 0, then g^y = 0 and y = f^x for some x G hu(X); hence
xk=jkx are the desired ones, since ^Xi + dax2 = dyj#x = 0. Conversely, if
dωχι = — dΛx2, then dyx = 0 for x = i^Xi + i2*

x2» a n d ^ = 7 * ^ f°Γ some
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x E hu(X); hence y = f^x is the desired one. The last holds, since f*dωx1 = 0

by i^f^Sωx1 = f^ί^dωx1 = 0 and assumption.

(6.2.4): If dωda,z = 0, then dadω.z = 0 by (6.2.2), and there are w and v with

the first two equalities. Hence j'^x = 0 for x = / l5 | ίw + f2^v — dpz, and x = i'^x

for some x e hu(X). Thus f^w + î y = f*(x + dpz) = i*f*x = f*ix', and (6.2.4)

holds for w and t; — f^x, or w — i^x and t;. q.e.d.

According to (3.2.1), (6.1.3) and (6.2.5-7), the same proof gives us the

following

LEMMA 6.3. For an E2-functor D = {£)£, KDX

U}9 we assume that

(6.3) ξ in (6.1.2) and y, p in (6.2.5) are all D-cofiberings, and D splits with wedge

sum, i.e., for ik and j k in (6.2.5), there holds the isomorphism

(h*,J2*Y D'uiXi v X2) = DUX,)® D'U(X2) with (h hj-1 = i u + i2*

(6.3.1) Then, ξ induces the exact sequence in (1.8.4):

• • > Dr

u(A) - ^ Dr

u(B) -Hu Dr

u(B/A) ^U Dr

u

+1 (A) >- (δξ = δ).

(6.3.2) These sequences form the diagram, which is commutative except for

δω o 4 - - 4 ° δω.: Dr

u-HXs+Ut+1)^ Dr

u

+1(XStt) (by the notations in (6.2.2)).

(6.3.3) For yD e Dr

u(YSJ) with j^g^yD = 0, there are xξ e D'u(Xk) (for Xk in

(6.2.3)) satisfying the equalities <5ωxf = — δaxξ, f*x? =j*yD and i^x% = g*yD.

Conversely, for xk with the first equality, there is yD with the last two ones.

(6.3.4) For zD e ZΪ~ 1 (X J + l i t + 1 ) with δωδa,z
D = 0, there are wD e Dr

u(WStt) and

vDeDr

u(VSJ) with j*wD = δά.z
D

9'g*vD = δω,zD and / / = -i*vD. Here, if wD

or vD is given, then there is vD or wD.

LEMMA 6.4. Furthermore, let φD: hu^> D° be a natural transformation.

Then:

(6.4.1) ij and / # for D® are monomorphic, and φD o dξ = 0 for dξ in (6.2.1).

(6.4.2) For xk e hu(Xk) with dωXl = -dax2 (cf. (6.2.3)), δωφDx, = -δaφ
Dx2

holds.

(6.4.3) In (6.3.3) for r = 0, the last two equalities imply the first one.

(6.4.4) For z, w and v in (6.2.4), there is xD e D°(XS t) with i^xD = φDw and

PROOF. (6.4.1): We see the first half by (6.3.1) and D'1 = 0, and so the

second half since a^ o φ o dξ = φ o a^ o dξ = 0 (a = i,f), where φ = φD.

(6.4.2): j*g*φy = 0 for y in (6.2.3), and there are xk in (6.3.3) for yD = φy

and r = 0. Then /*xf = φj+y = f^φxχ and xf = φxx by (6.4.1); and xf = φx2

similarly. Thus (6.4.2) holds.
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(6.4.3) holds, since the last two equalities determine xf uniquely by (6.4.1).

(6.4.4): f*j*φw = Φf*da,z = 0, and j*φw = 0 by (6.4.1); hence φw = ί^xD

for some xD. Then ί*f*xD = f*φw = —i*φv, and f^xD = —φv by (6.4.1).

q.e.d.

§ 7. Comparison of spectral sequences by a double /^-functor

Under Definitions 1.8, 4.3 and 5.3, we consider the following

DEFINITION 7.1. We say that a double £2-functor A = {As

u'\ KAs

u-\ LAS

U

J}

is related to a homology theory h^ at Xo = Xo,o by

(7.1.1) £2-functors B = {Bs

u9 KBS

U} (B = C, D\ natural transformations φB:

hu - βu°, φ
c: c ; -> As

u>°, φD: Df

u -> ̂ J f with ψc o φc = ψD o φD, and cofiberings

f 9 i j
(7.1.2) ocst: Xst • Vsj • XSjt+ι , ω S ί f : A S f t • v4^5ί ^As+i. f?

/? w ^ Y
 g > w M v ι \ Y J * v

Ps,f vvs,t * £s,t * yvs,t + l 9 rls,f vs,t * is,ί ^ κs+l,ί J

in (5.1.1) with (6.1.2), if these satisfy the following (7.1.3-5):

(7.1.3) For each η8tt9 0 -> hu(Vs,t) ^ hu(\t) -±> hu(Vs+Ut) - 0 is exact.

(7.1.4) ξSJ(ξ = α, β, ω, /̂) and 7, p in (6.2.5) are all D-cofiberings, and D splits

with wedge sum (cf. (6.3)).

(7.1.5) Each βSJ is also a C°-homological Λ(2)-cofibering, {£(s#'"} in (5.2.1)

converges and collapses, φc is natural for βst (cf. (5.1.4-6)), and ωs0 is a C-

and A(l)-injective cofibering; Yst is D- and X(i)-injective (ί = 1, 2); ^ c , φD and

ι/̂ c: C,? -• A®-0 are isomorphic for 7Stt9 and so are ̂ c and φD for H^ 0 .

Under this definition, we see the following:

(7.1.6) Lemmas 6.2-4 hold by (7.1.4). φD is isomorphic also for VStt which

is D-injective, by Corollary 1.5 for ηst.

(7.1.7) For WStt, φ
c and ψD are isomorphic since so are for Yst and WSt0,

and φD is epimorphic; and Ker dj} = Ker dβ for t ^ n ̂  1 and δ^: /ίu(W^ ,) -•

Λ«-Λ(W;.r—) in (6.2.1), by (5.1.6) and (5.6.2-3).

(7.1.8) Moreover, A is indirectly related to C at Xo by φc and (7.1.2); and

A (resp. C, D) is related to D (resp. /i^, /î ) by φD and {ωSt0} (resp. φc, φD and

{ωs 0 }, {αOί}). Thus, Theorem 1.9, 4.4 and Corollary 5.6 gii e ws ί/iβ following

spectral sequences:

the May one £ M a y = {£;•/„ d r

M a y: ^ ' / r -> £ s

Mt1

r;Γ r} ,

ί/ze Mahowald one £ M a h = {£s

u'/r, d r

M a h: £s

u'/r -• £ ^ r

r ' ί " r + 1 } and

E(B) = {E(B)s

r\ df:
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ϊ'iXo) = Es

u>:u=>tσu-t(Xo) =

(7.1.9) If £ M a h collapses, then φD is epimorphic also for XSj0 and

55 = Ker5β, for s^n^l and δn

ω: D^X^)^ Dl+n(Xs^0) in (6.3.1), by

Corollary 4.5 (ii).

The purpose of this section is to argue some relations betwen these spectral

sequences by the following main result.

THEOREM 7.2. In case of Definition 7.1, consider the condition

C(a, b, n): hb-a+i(Wit0) = 0 for a^i < a + n (this is nothing when n = 0).

Then, the spectral sequences in (7.1.8) satisfy the following (i)-(iv) for xe
Λs,t(χ \ _ ps,t _ ps,t .

(i) d^aydfahx = dfahd^ayx in ^ ' ' ( A Γ Q ) . More generally, if C(a, b, n) for

a = s + 2, 5 + 3 and b = u — t + 1 hold for an integer n^O, then dr

Mahx =

0 = rfr

Mah<ayx for r S min {n + 1, t}; and d^ayd^x = d^dfayx when n < t,

and x converges in EMah when n^. t.

(ii) // x converges to xD e Ds

u

+t(X0) in £ M a h , then so does dγayxe

Λu+i' ί+1(*o) to (-l)tdξxDeDs

ut[
+2(X0). If EMah collapses and d%xD = 0 in

addition, then so does d%ayx e As

u

+

+ψ+2{X0) to ( - l) ί d?x D e DS

U?2

+3(XO).

(iii) // x converges to xc e C^t(X0) in EMay, then so does df^xe

As+2,t-i(X^ t0 dcχc e cs

utf+1{X0). If C(s + 2,u-t+ 1, ή) holds in addition,

then d™ahx = 0 = dfxc for r ^ min {n + 1, ί}; and d^x e A;+"+ 2 ί-fl"1(JKΓo) con-

verges to dn+2x
c e Cs

ut
n

ttn+i{Xo) i n EM&y w n e n n < t, and x converges in EMah

when n^t.

(iv) // x converges to xc in EMay and to xD in EMah, then there is y e

AlXΪ^Xo) converging to dξxc in EMay and to {-Vfdζx0 in £ M a h . //

C(s + 2, u - t + 1, ή) holds in addition, then d?xc = 0 for r ^ n + 1, d?xD = 0

for r t^n — t + 1, and there is y' e ,4*+"+|'α(X0) converging to d£+2x
c in EMay and

to (-\yd^+2x
D in £ M a h , where a = max {t - n, 0} and b = max {n - t, 0}.

Here, 'converge" is used in the sense of (1.6.2). Thus, in the same way as

Corollary 1.7 (i), we see the following by the definitions of EMah and EMay in

§§4-5:

(7.3.1) xeA^iXo) converges to xD e Ds

u

+t(X0) in EMah if and only if

x = φωxD and δs

ωxD = xD for some xD e Dl(XBt0), where φω = (δ*Y o ψD:

DL(Xa.o) - Λ°ΛXs,o) ^ Λr(X0), δ* = δ, is in Corollary 4.5, and δω in (7.1.9).

(7.3.2) For x in (7.3.1) and xr e AS

U^\XO), d™ahx = xr in £ M a h (cf. (1.6.1)) if

and only if s' = s + r, t' = t - r + 1 and x = (δ£)sx, i^x = φDwD, j#wD =
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δ^ιxr

D and ψωxr

D = xr for some x e A°u-'(Xs,o\ ™D e D'u(WSt0) and xr

D e Bζ{X,,0).

(7.3.3) x in (7.3.1) converges to xc e Cs

u.t(X0) in £ M a y if and only if

x = (δ£γχ, i^x = t / ^ w , ^C3jw = i + x c and (<5£)sxc = xc for some x in (7.3.2),

w e Λu(^, t) and xc e CU°_,(XS,O), where φβ = δ'βo φD: hu(W5,,) - DU

O(WS,() ->

βί(W..o). ^ = 5, is in Corollary 1.7 (i) for β = β.,,, dβ in (7.1.7), and δ<; = δ:

C'u(Xs,o)^C'u
+1(Xs-i,o) in (1 8 4).

(7.3.4) For x in (7.3.1) and yr e AS

U, '\XO\ dr

Mayx = yr in £ M a y if and only if

s' = s + 1, ί' = ί + r, «' = M + r and x = (c5^)sx, i^x = φDφβw, i*j*d'βw = d'βwr,

ψDφβwr = ΐ^yp and (δ£γ'yr = yr for some x, w in (7.3.3), wr e hu\Ws,χ) and

Also, (6.2.3) and (7.1.3) imply inductively the following:

(7.4.1) For any z e hu{XStt), there are zf e hu(Xitj) (j = s + t - i) for

s ^ i ^ 0 with zs = z and dαzf = δ ω z i + 1 ; hence

(7.4.2) b*-%z = ( - l ^ ' ΰ z ; (ε(Λ t) = S~Jt k)

by (6.3-4.2) for φa = 4* ° 0 β : KPt.*) - ^°(^,*) ^ ί>ί(^.o)
Moreover, (6.2.3-4), (7.1.3) and (6.4.4) imply the following:

(7.4.3) For x D eD t t ° (I M ) , wehu(Ws,t) and zeΛ M + 1 (^ β + l f f + 1 ) with ί*xD =

φDw and jχW = daz, there are z^ hu+1(XiJ+2\ xf* e D2{Xitj)9 vt e hu(Vitj), wte

ΛM(Wί-i.j+i) a n d ^ e M^ί-i.j) ( = s + ί - 0 for s ^ i ^ 0 with 3αzi = dωzi+1 =

G*vt (zs+ι = z), *>,- = -/ l | lw ί + 1 (ws+1 = w), i^xP = ^Dw ί + 1, f+χP = -φDvh

v. =j^.yh w( = g^yi and so j^wi = ^ z ^ hence ^jc1^ = ί'̂ xf and so xD = xf by

(6.4.1); and 5ωxi

D = 4xf_x by (6.4.3). Thus,

(7.4.4) 5Γ'ήί* D = (-l^WMJ, t) is in (7.4.2)) by (6.3.2).

O n the other hand, C(α, ft, n) implies δ ^ = 0: M ^ u ) -• ^ - m ( ^ , j - m )

(fc = fc + / + j — α) for a^i < a -\- n, j ^ m ^ 1, by (7.1.7); hence for any

zehk(Xιj), there is z r G / i k ( J i l + 1 ^. i) with dωz'= dΛz when 7 ^ 1 , and z ' e

fifc+iCYi+^o) w ^ h ^ ω z ' = z when 7 = 0. Thus:

(7.4.5) Assume C(α, b, ή). Then for any z e ftM(XβfC) (w = b + c), there are

Zj G hu(Xitj) (j = a + c — ϊ) for α :g i 5̂  α + min {n, c} with za = z and dωz f =

3 az f_ l 5 hence δiJaφazi = (—\f(Cij)'φaz in the same way as (7.4.2); and moreover

when n > c, we have zf G hb+i_a(Xi>0) for c < i — α ^ n with δ ω z f = z ^ .

Also, by (6.2.2,4) and (6.4.4), we see the following:

(7.4.6) Assume C(α, b, ή) and C(α + 1, b, ή). Then for xD, w and z in

(7.4.3) with s = a, t = c and w = b + c, there are zt e hu+1(Xi+1J+1)9 yt e / i u (^_ 1 > ; ) ,

^ = 7 * ^ e ΛM(FU), w, G ̂ (WJ^ ) and x f G ̂ ( X ^ ) ( j = α + c - i ) f o r α < i ^ +

min {n, c} with 5ωz f = δ . z ^ ! = g^ (za = z), g^yt = w^ (wa = w), j ^ = dazi9

f**ι = ~i*vi9 i*x? = φDwi9 and f+xf> = -φD

Vi; hence δ^δίx? = (-iγ«Ή;xD

by the same way as (7.4.4); and moreover δ£xD = 0 when n> c, since

wfl+c G hu(Wa+Ct0) = 0 and so xfl

D

+c = 0.
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PROOF OF THEOREM 7.2. (i) For x,

(1) put y1 = d™ayx, a' = a + 1, and take x, w, wx and j x in (7.3.4) for

r = 1.

Then, dβW' = 0 for w' = ί ^ w — dpwl9 and δ^w' = 0 by (7.1.7). Thus, w' = g^y

for some y e hu(Ys.%t.γ\ and j*gJDy = -ύΦDdβ^=0 by (6.4.1) (in (7.1.6)).

Hence, there are xf e D°(Xs+3_kt_2+k) in (6.3.3) with <5ωxf = -<5αxf, /*xf =

Λc^y and ***? = 9*ΦDy Therefore, i+xξ = i*j*φDw and x f = 7 * ^ D w by

(6.4.1). Thus, by (6.3.2), (1) and (7.3.2),

(2) jjβw = δlxξ = δωx° for xf = ( - l y ^ x f , and so ψωx? = d?*hx.

Also, dβi^j^Wi = —i^j^dβW = 0 and dβi^j^iw1 = 0 by (7.1.7); hence daj^wί =

dωz for some z e hu.(Xs+3tt)9 and δaφ
Dj^w1 = δωφDz by (6.4.2). Thus, in the

same way,

(3) UΦβ^=ΦJ^i=(-irδωφaz9 and so (-l)tφJaz = d^hy1(φa = δt

aoφD).
Moreover, dωz =j*dβw1 = —g*j*y. Hence, (6.2.4) and (6.4.4) for v= —j*y

give us w J + 2 e M ^ + 2 , t - i ) a n d χD e Du(^s+i,t-i) with ; s | cw s + 2 = daz, /s |cws+2 =

— i*v = i*j*y> i*χD = ΦDχvs+i a n d / * ^ D = ΦDj*y = /*^f Thus x D = xf by

(6.4.1), and

(4) i*ψDx? = (-iYψDφβw,+2 and so d ^ ί ^ x f ) = {-iyφJΛz for xf
in (2),

by (7.3.4). Now, (l)-(4) show the desired first equality in (i). (Note that w', z,

w s+2 and xD are all 0 when t = 0.)

Assume C(α, b, n) and C(α -f 1, b, n) for a = s + 2 and b = u — t + 1.

Then, by (7.4.6) for xD, z and wfl (α = s + 2, c = ί — 1) of above, we have

elements x?, zi9 wt (α ^ i ^ α + min {n, c}) in (7.4.6) with xf = xD, zα = z,

i^xf = φDw. and 7^w, = dΛzt. Thus^by (7.3.2-4) and (l_)-(4),

(5) φωxt

D = dVfx and d^φωχP = ( - l)"(c Λ + ^ ω A ^ = d^yx for xf =

( - l)ε(c j)+ί<5ίxf (these are 0 when i < a + min {n, c}); and when n ^ ί, dr

Mahx = 0

for any r ^ 2 by taking χr

D = 0 in (7.3.2), and so x converges in £ M a h .

These imply the last half of (i).

(ii) Assume that x converges to xD in £ M a h . Then, by (7.3.1), (7.1.4, 6-7)

and (1.3.2),

(1) we have xD e ^ (X S f 0 ) , x D e D u ° ( I M ) , w e M » i l t ) and z e M ^ . r )
(a' = a+ 1) with x = φωxD, xD = δ^xD

9 xD = ^x D , i*xD = ^Dw and

7*w = ^ ^
because the fourth equality implies ^ D / * 7 * w = f*J*i**D = 0 and so /^j^w = 0.

Hence,

(2) d^ayx = φωφaz by (7.3.4), and this converges to δs

ωφαz in £ M a h by

(7.3.1).

Now, by i^x^ = φDw and j^w = 3αz, we have elements zi9 xf, vh yt and wf

(s ^ i: ̂  0) in (7.4.3). Then,
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(3) dξ(δί+sxg) = -φaz0 by the last part of Corollary 1.7 (i) for E(D),

xD = δϊ)x
D = δ^xD = (-ψs+t>t)δϊ+tx° by (1) and (7.4.4), and δ£φaz =

( - l ^ ' ^ o ^ Z o by (7.4.2).

By (7.3.1), (2)-(3) imply the first half of (ii).

Assume in addition that £Mahcollapses and dξxD = 0. Then, δs

ωφΛz = 0 by

(3), and so δωφaz = 0 by Corollary 4.5 (ii). Hence, (7.1.4), (7.1.6-7) and (1.3.2)

imply that φaz =j*φβw\ φDz — j*φDw' = g*φDv' and z — j+w' — g^v' = daz' for

some w'e hu.(WSft.), vfehu\Vs,t) and z' ehu.+ι(Xs.tt.+1)\ and dfz'^j+w" and

φDw" = ί'̂ jc^ for w" = w — dβWf. Therefore,

(4) d?'x = ΦJ*z' by (7.3.4).

Then, we have z[ e hu.+1(Xitj) (j = s' + t' - i + 1) for s' ^ ί ^ 0 in (7.4.1) with

z = z'. Also, we have v'i9 y , w/ and x D (s^i^ 0) in (7.4.3) for xD, w" and ^αz'

with d£z'i = — dωdaz'i+1= ( — l ) s ~ ι ^ % ^ and the equalities in (7.4.3). Thus, in the

same way as (3),

(5) dξ(δfx§) = (-iYφaz'09 xD = (-iγδ;+txξ (ε = e(s + ί,ί)λ and

δίΦJ = ( - l) ε >α4 (£r = Φ 7 + ί' + 1, ί' + 1)).
(4)-(5) imply the last half of (ii) by ε' - ε - s = t + 2s + 2.

(iii) Assume that x converges to xc in £May. Then,

(1) we have x, w and x c in (7.3.3), and so z e hu(Xs+2tt-i) with

dω* = δj^w;

because φcdβi^j^w = 0 by the third equality in (7.3.3), and ittdΛj4tw = dβiitiji)tw = 0

by (7.1.7). ThmfoτeJ^w = ( - l Γ 1 ^ " ^ by (6.2.2), and < U D z = 4 ^ D 7 >

and δωφaz = (-l)t-1φj*w by (6.4.2), (6.3.2). Thus, by Corollary 1.7 (i) and

(7.3.2),

(2) dξxc = (-ly-'φtd^z (φ£ = (δϊ)* o φc) and d^x = (- l Γ ^ ^ z .
Hence d ^ x converges to dξxc by (7.3.3).

Assume in addition C(α, ft, n) for a = s + 2 and b = M — t + 1. Then,

(3) we have zf (fl ^ i ^ α + min {w, c}); and when n> c, z f l + c + 1 in (7.4.5),

for z and c — t — \.

Then, dίΓa+1dίzt = (-l)ε+cj*dc

β

+1w and δ ^ φ ^ =J-iγ+cφJ^w where ε =

ε(c,y); and when n ̂  ί, ^Dzα + C = 0 by (6.4.1), and φaj*w = 0. Therefore, by

Corollary (1.7) (i) and (7.3.2),

(4) dfxc = {-\f+cφ^dizi and dΓ

Mahx = (-IY+'^ΨJA (Γ = f - α + 2,

ε = ε(c,7')) for α g i• ^ α + min {n, c}; and when π > c, d™ahx = 0 for any r ^ 2

and so x converges in £ M a h .

These imply the last half of (iii).

(iv) Assume that x converges to xD in £ M a h and to xc in £ M a y . Then, we

have xD, xD, w and z in (1) (in the proof) of (ii), and x, w' (this is w in (7.3.3)),
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xc in (7.3.3). Now, ψDxD - x = j*ψDφβw1 for some wt e hu(Ws.Ut) (w1=0

if s = 0) by ^ ω χ D = x = (<5 )̂sx, (7.1.5) and (7.1.7), and so W / Ϊ W * ^ =

Φ%*D - i*x = ΨDδβi**D - ΨDΦβw' = ψDΦβ(w - w') by (1) of (ii) and (7.3.3).

Hence, φD(w - w' - i+j+wj = φDg*y' and w - w' - i^j^wx - g^y' = dβw2 for

some y' e M ί , f - i ) (yr = 0 if t = 0) and w2 e hu\WStt.) {a' = a + 1) by (1.3.2) and

(7.1.5-6). Therefore, by taking w — dβw2, z — 7*w2, ψ
D x D and x c +j*φcdt

βw1 to

be new w, z, x, x c , respectively,

(1) we have xD, xD, w, z, x and x c with the equalities in (7.3.3) and (1) of

(ii).

Then, by the same way as (1) of (iii), we have zf ehu.(Xs.+ltt) with dωz' =

daz=j^w; and so (—l)tdωdt

az' = dt

0['z=j^dt

βw. Therefore, by Corollary 1.7 (i)

and (7.3.3),

(2) y = ( - l y ^ A z ' converges to dc

2x
c = ( - l y ^ ^ z ' in £ M a y .

Also, by the same way as (3) of the proof of (ii), we have zt {zs. = z), xP

(xf = xD), vi9 yt and wf (vvs. = w) in (7.4.3) for s ^ i: ̂  0, and

(3) d | (^ + s xo)_= - λ z o , ^ D = δJ,xD = (-lY'δΓxS (β' = Φ + ί, OX and
(-\YδZ + 1Φaz

f = bίφΛz = ( - l r ^ V Λ
Therefore,

(4) y = (-iyψωφaz' in (2) converges to ( - VfdξxD in £ M a h .

(2) and (4) imply the first half of (iv).

Assume C(s + 2, u — t + 1, π) in addition. Then, we have zf (zα = z') in

(7.4.5) forα = s + 2, b = u — ί + 1 and c = ί. Hence, for a ̂  i ^ a + min {n, ί},

^ " ' ^ — ( - l ^ ' ^ ^ w by (6.2.2) and 3ω3β

fz' = ( - l ) % ^ w ; and for

α + ί < i ^ α + n, di~Λ-1zi = % + 1 z s + f + 2 = (-l) ε ( ί + 1 ' 0 ) 7*^w. Therefore, by

Corollary 1.7 (i) and (7.3.3),

(5) df.sx
c = 0 for s + 2 ̂  i < s + n + 2, and / = ( - l)εφωφazs+n+2 con-

verges to dn

c+2x
c in £ M a y (ε = ε(t H- 1, ί - n) if n ̂  ί, = ε(ί + 1, 0) if n > ί).

Also, when n ̂  ί, ( - l ^ ' ^ ^ ^ ^ z . ^ = ̂ αz' by (6.3.2), and so {-\γδa

ω

+nφaza+n =

(-l) ε ( s '+ ί ' ' 'Vα2 0 (β = e(ί + 1, r - n)) for z0 in (3) by za = zr. Therefore, by (3),

(6) when n£t,y' in (5) converges to ( - VfdξxD in £ M a h .

If n > ί, then we have z[ (zr

a+n = za+n) for a + n ̂  i: ̂  0 in (7.4.1) for z = zα+n;

and zfl+f = di-%+n = ( - i Γ ^ - ' z ^ , (ε" = ε ( n - ί , 0 ) ) by (6.2.2), and δ.z, =

( - l) ε "+edΓt+1z'i (e = (a + t - i)(n - ή) ϊoτ a + t > i^O by induction. In fact,

Zi-i-lf'^d^z'i = g*v' for some v' e / i u + 1 (^, ;- i) , (g+υ' = 0 for i = a + t9

; = 0) by the assumption of induction, and so 3 ^ - ! = 3ωzi = (— l)e"+β3ωδ;" tz{ =

^ ^ ε ' + β + n - ^ n - t + i ^ ^ b y ( g ^ ^ ( 7 ! 3 ) Especially, ( - l ) " " + β 3 β "- f + 1 ^ =

daz0 = g^v0 (e = (s + t + 2)(n — ί)) for z 0 and v0 in (3). Therefore,

(7) dfiδ^xg) = 0 for r < n - t + 2, d^iδfxξ) = (-lf"+e+1φaz'o, and

« + V ^ f l + n = ( - l) ε ">α4 (£'" = β(fl + π, 0)). Thus, by (3) and ε'" - ε" - ε' + ε -

α - 1 = t2 + 2ί + 2s,



72 Mizuho HIKIDA

(8) when n > t, d?xD = 0 for r < n — t + 2, and y' in (6) converges to

(6)-(8) imply the latter half of (iv). q.e.d.

§ 8. The case B = GA for ring spectra G = E, F

For ring spectra G = E, F and a CW spectrum Xo, consider

(8.1.1) the £2-functors GA with φG: π* -> GA% in (2.1.1-6), the double £2-functor

EFA with φF = φFA: FA*U -> EFA°U\ φE: EAS

U -• £ i v l * ' 0 in (4.6.1-8) for D = FA

and in (5.7.3), and the diagram (5.1.1) of the cofiberings given by (5.7.1), by

assuming the following (8.1.2):

(8.1.2) (4.6.9) holds for Xn = Xn0 (e.g., there is a unit-preserving map λ\ E -> F),

and the F-Adam spectral sequence {£($•"},. E(sYiu = FAt

u(WSiO)=>πu-.t(Ws,o), in

(5.7.2) converges and collapses for any s ^ 0.

(8.1.3) Then, for A = EFA, C = EA, D = FA, h* = π* and the ones in

(8.1.1), (7.1.3-5) hold by (4.6.1-9), (5.7.1-4) and Lemma 2.2; and

(8.1.4) we have the spectral sequences in (7.1.8), which are the G-Adams ones

E{G) = {E(GY/9 d?}, the Mahowald and May ones £ M a h = {Es

u^} and £ M a y =

{El'*,} given in Theorem 2.3, 4.7 and 5.8, respectively:

Xo) = EH2^FAl+t{X0) = E(FY2

+t>uF-^amsπu-s-t(Xo)

(8.1.5) Moreover, Theorem 7.2 holds for the spectral sequences in (8.1.4).

In the rest of this section, we consider the case that

(8.2.1) Xo = S°, E = BP at a prime p and F = HZP with the Thorn map ΦBP

BP -> HZp,

(cf. Example 3.10). We notice that

(8.2.2) the Thorn map ΦBP induces a monomorphism Φξp: (HZp)^(BP) =

P* = ZpltJ^iHZp^HZp) = A+, and Φ f ί; = ηt if p is an odd prime, = ηf if
p = 2, where ηt is the conjugate of Milnor's ξi9 and we regard P# as a sub-

algebra of A^ by Φ^p.

Then {E(sYr>
u} in (5.7.2) satisfies

(8.2.3) { £ ( # " , d(s)r} = {£(0yr " ® BP+iX.,0), d(0)r ® 1} ,

because BP+(XSt0) is flat over BP^(S°) for s ^ 0 by (3.8.7); and

(8.2.4) £((%" = Ext^(Z p , P J = Z p [ α J ,

(fli G Ext1'*, * = 2(p' - 1) + 1), which is 0 if u - t ^ 0 mod 2p - 2, by (3.10.1).
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Thus, d(0)r = 0, d(s)r = 0 and {E(s)l:u} collapses. Also, this converges by

[16, 19.12]. Thus:

(8.2.5) In case (8.2.1), the assumption (8.1.2) and so (8.1.4-5) hold.

(8.2.6) Moreover, C{a, b, ή) in Theorem 7.2 holds if b — 1 = 0 mod 2p — 2

and n = 2p - 3, by (3.10.2); and £ M a h collapses if p is odd, by [10, 8.15].

Therefore, Theorem 7.2 implies the following

EXAMPLE 8.3. In case (8.2.1), the spectral sequences in (8.1.4) satisfy the

following (i)-(iv) for x e EFA^iS0) (E = BP, F = HZp):

(i) d^d^x = d^d^x if t^2p-2, and x converges in £ M a h if

t<2p-2.

(ii) // x converges to xF e FAs

u

+t(S°) in £ M a h , then so does d^ayx to

(-\ydζxF. If p is odd and dFxF = 0 in addition, then so does d™ayx to

(-iydFxF.

(iii) // x converges to xE e EAs

u_t(S°) in £ M a y , then so does dψ^x to

dE

p-1x
E when t g: 2p — 2, and x converges in £ M a h when t < 2p — 2.

(iv) // x converges to xE in E M a y and to xF in £ M a h , then there is y e

EFΛs

u

+

+

2

m

p-Uv(S°) (v = max {t - 2p + 3, 0}, m = max {1, 2p - t - 2}) which con-

verges to d\p_xx
E in £ M a y and to ( - Vfd¥

m^x¥ in £ M a h .

Now, by [4, II, 16.1],

(8.3.1) n*{E) = QpLVil and £*(£) = π # ( £ ) [ ί j (E = BP) with At, =

1 ® ίi + ίx ® 1, r\vx = υx + ptx for the copoduct A: E^(E) -• E^(E) ® E^(E) and

the (right) unit η: π^(E) -• £„,(£) (τ/Lx = x for the lef unit ηL).

Then, for the cochain complex E*(S°) in (2.1.1), E%(S°) = E^{E) ® ® E^ίE) (s

times), and <5S = Σϊ ίo(-1) 1 ' ^ , % = 1 ® A ® 1: E - 'ίS0) ® £*(£) ® EjrHS0) ^
E -^S0) ® £„(£) ® £,,(£) ® E^iS0) for 0 < i ̂  s, ^ + x = x ® 1 and δs

s

+1*(x) =

1 ®x.

(8.3.2) Thus, we have the elements

αf G EAl(S°) and ^ 6 £^J(S°) for q = pn (E = BP) (cf. [11]),

represented respectively by αf = (ηv[ — v[)/p in £i(S 0) («! = ?!) and βE

/t =

{ηvΓ* ® t[q ~ ηvξ"'* ® t\ - v\-χ - At[q + ι?f«"f Jίf + ϋf-^f* ® 1 -

^Γ-'ί? ® l}/p in £J(S°).
(8.3.3) Also, we have the elements

4 ^ : e F 4 ( S ° ) and bn e FΛl(S°) {F = HZP),

represented respectively by aF = e0, hF = η\ (q = pn) in Fl(S°) = A^ and

K = Σ"=i crfΓi)q ® rj[q (q = p\ pct = (f)) in F£(S°) = A* ® ̂ , where et and i/,

are the conjugates of Milnor's τ{ and ξh respectively.

Moreover, for E = BP, F = HZp and X = S°, consider
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FE'JiS0) = (ΛJ® (PJ+1 with δG = Σϊ=o(-l)%% (* = s 0 Γ 0 i n ί4-9-1)>

where (NJ = N*®- ® N* (t times) (cf. (2.3.2)). Then for x e (ΛJ* ® (P*)5*1,

55 x = x ® 1 if G = E and i = 0, = 1 ® x if G = F and i = t + 1, and δg =

1 ® A ® 1 otherwise, where the coproduct z/: ,4^ -• A^ ® ,4^, P^ -• A+ ® P^ or

Λc -+P* ® P* satisfies Δη^ = η1 ® 1 + 1 ® ηί9 Λη2 = η2 ® 1 + η± ® η[ + 1 ® η2,

Λt1 = t1®\ + \®t1. Also, by (4.9.1) (cf. (2.3.2)),

iS0); δF) = Fi4f

φ(£) ® (PJ,

= Zplaβ in (8.2.4) and FEA ^S0) = H\C^ δξ).

Here, by (8.2.3-5) and dimensional reason, we take at so that

(8.3.4) a{ converges to vt e π+(E) (v0 = p) in (8.3.1) in {E(θyr-
U}.

(8.3.5) Hence, for E = BP and F = HZp, we have the elements

K , bn, a0 , α,, αf, j8 ί/f, α ? ^ ^ (« = p") in

represented respectively by the elements

ό" i " 1 «ί®ίΓ ί » αί = l ® ί i ® ® ί i (5 times),

ft/r = «β-r ® i f , « ί/Wi = α ί + 1 ® i f (q = Pn) in Q y ,

where, (u, ι>) = (1, 0), (2,0), (0,1), (1, t - 1), (5, 0), (2, 4 - ί - 1), (s + 2, 0),

respectively.

(8.3.6) In particular, when p = 2, the following elements a(n) (n = 0, 1, 2)

in Fl{E) = A^®A*® P*, represent α Γ X e i 7 ^^^) (£ = βP at 2, F = /fZ2):

1 , «(1) = f/x ® η2 ® 1 + ηi ® /̂i ® ίi ,

Άi + /̂i ® ^1^2 + ΆxΆi ® ηl) ® 1 + *li ® Vi ® tj + ηl ® ηl ® tx

(h = rji)

Moreover, for Δ.P^^P^® P^, (1 ® A)a{ri) — a(n) ® 1 is equal to 0 if n = 0,

a(0) ®t1iϊn = l, and α(0) ® t\ + /̂f ® η\ ® 1 ® ίx if n = 2.

Now, by (8.2.3) and (8.3.4),

(8.3.7) {Gϊ<} in (5.2.2)_satisfies G ^ = (1% c= π^E), (/V/ί+1)* = F ^ + f ( £ ) ,

Gίi f = r ^ ί F ) cz E*(ES) (Es = Xs,0) and G^/G^ = FA\(E A ES) = E%'Λ for

the ideal / = (v0 = p, ϋ l 9 . . . ) of π^ίE) (£ = BP at p, F = HZp). Moreover, for

G ^ ί Γ r F,(F s) cz £;(S°) with C ί V ^ ί ί 1 = F>l£J f(S0) = Q f , / : E S - . F S of j:

E -• £ induces the following maps:
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JE = (j%: E%(S°) -• £*(£*), the restriction JG = JE\GS^: (%' -• G J f ,

J : CJ f -> fiJli in (4.9.7) and J ' = pr o JG = J o pr: (%' -> 2%,Ί

for the projections pr: G ^ -• Es^tί and G£f -» Cs^\

Furthermore, for δ* in (2.1.1) and (ΐ 0;%: E*(ES) - n*(Es+1) -• ̂ ( f i 5 * 1 ) in (5.2.5)

(E*(X) ^ EA%{E A X)),

(8.3.8) (i oj)^ ojE = (_ l ) s + 1 J £ o δ*; hence we have the map

Jξ = (J%- EAS

U(S°) = //s(£u*(5°); 5 ) -> i ί s (£ u (£ s ); (i °j)*) = EA'U(S°).

Then, by (8.3.8), (5.2.6) and (1.6.1-2), we see the following:

(8.3.9) Assume that x e G*uit c £S

U(S°) satisfies (5sx e G^rVr

+r c £;+1(S°).

Then, J'xeEs

u>ltΛ and J '^ s x 6 E^l+rtϊ represent the elements in £*;J = £*;ί

such that d r

M a y[J'x] = (-iγ+1[J'δsx] ([J'x] = ^ [ p r x] for J*: 2%^ i £ 5 ^ in

Lemma 4.10 (iv)). If δsx = 0, then [^x] = ^ [ p r x ] converges to J^[x] in

EXAMPLE 8.4. In Example 8.3 (£ = £ P at p, F = HZP and Xo = S°)9 the

elements given in (8.3.2-5) satisfy the following:

(i) In £ M a h , J+hn (resp. J*bn, J*(aobn)) converges to hF

n {resp. bπ

F, aF

obζ\ In

£ M a y , J*at (resp. J*βq/t, J^otlβq/q-i) for q = pn) converges to Jξaf {resp. Jξβ$t,

(ii) For n ^ l d?*yJ*hn+i = - ^ > ( A ) ; hence dF

2h
F

+1 = -aFbF.

(iii) Assume p = 2. Then df*%<x3 = J > ? ) and d™*hJJq/q_3 = JMβ^-i)

for q = 2"; hence dξJξ*3 = (J*αf) 4 (cf - [13]) and dE

3Jξβq

E

/q-3 = JE((ocfγβq

E

/q^)

for q = 2\

PROOF, (i) The first half is seen by the equality of Φξp in (8.2.2) and

Lemma 4.10 (iii). By (8.3.9) and pr αf = α, (αf e G^'" 1 ) , Jat converges to JξocE.

Also, βE

t = (ηv\-t-v\-t)lp®t[q^Iq-t'E^E)®E^E)eGlq-t-1 and pr βE

t =
βq/t; hence we see (i) by (8.3.9).

(ii) tψ E £i(S°) = GJ ° and δH? = -pΣ?=ί cιt(Γi)q ® Aq (mod p2) e G^\
and so pr t[q = hn+1 and pr (δ1^) = -aobn. Hence dfΛyJ^hn+ί = -J*aobn by

(8.3.9). Thus, (i) and Example 8.3 (iii) imply (ii).

(iii) By (8.3.5-6), α3 = Σ2

n=0 a{n) <g> ί j + 1 e A\ ® P^ represents α 3 . Then, for

x = η2

i®t1®t1®tίeAχ®P* and y = ίx ® ίx ® tt ® tί e P*, we see that

^ £ ά 3 = η\ ® n\ ® 1 ® ί t (x) ίx = δFx , (5£x = ^ F j ; and δEy = a\ .

Thus, dfahJ^(x3 = J^ocrf by Lemma 4.10 (i). Also, α 3 ® t\q {q = 2n) represents

βq/q-3; and the above equalities hold for α 3 ® t\q, x ® t\q, y ® t\q and (x\®tι®

t\q instead of α3, x, y and α?, which show the second equality by Lemma 4.10

(i). Thus, Example 8.3 (iii) implies (iii). q.e.d.
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