Relations between several Adams spectral sequences

Mizuho Hikida

(Received January 18, 1988)

Introduction

In the stable homotopy theory, the G-Adams spectral sequence

$$
\begin{equation*}
E(G)=\left\{E(G)_{r}^{s, t}, d_{r}: E(G)_{r}^{s, t} \rightarrow E(G)_{r}^{s+r, t+r-1}\right\} \quad \text { abutting to } \pi_{t-s}(X) \tag{1}
\end{equation*}
$$

(cf. [4, III, §15]) is useful, where X is a $C W$ spectrum, $\pi_{*}(X)$ is its homotopy group and G is a ring spectrum. For X and $G=E, F$ with some conditions, H. R. Miller [10] introduced the May and Mahowald spectral sequences

$$
\begin{array}{ll}
E^{\text {May }}=\left\{E_{u, r}^{s, t}, d_{r}^{\text {May }}: E_{u, r}^{s, t} \rightarrow E_{u+r, r}^{s+1, t+r}\right\} & \text { abutting to } E(E)_{2}^{s, u-t} \text { and } \tag{2}\\
E^{\text {Mah }}=\left\{\widetilde{E}_{u, r}^{s, t}, d_{r}^{\text {Mah }}: \widetilde{E}_{u, r}^{s, t} \rightarrow \widetilde{E}_{u, r}^{s+r, t-r+1}\right\} & \text { converging to } E(F)_{2}^{s+t, u}
\end{array}
$$

for $E(G)_{2}$ in (1), which satisfy the following
(o) $E_{u, 1}^{s, t}=\widetilde{E}_{u, 2}^{s, t}=A_{u}^{s, t}$; and for any $x \in A_{u}^{s, t}$,
(ii) if x converges to x^{F} in $E^{\text {Mah }}$, then so does $d_{1}^{\text {May }} x$ to $(-1)^{t} d_{2}^{F} x^{F}$.

Especially, he defined these algebraically in case when
(3) $X=S^{0}, E=B P$ at a prime p, and $F=H Z_{p}$ ($B P$ is the Brown-Peterson spectrum, and $H Z_{p}$ is the spectrum of the ordinary homology $H_{*}\left(; Z_{p}\right)$); and calculated some differential $d_{2}^{H Z_{p}}$ in (1) for $X=S^{0}$.

The purpose of this paper is to argue the existence and relations of these spectral sequences. Let \bar{G} denote the mapping cone of the unit $S^{0} \rightarrow G$ of a ring spectrum G, and \bar{G}^{n} the smash product of n copies of \bar{G}. Then the main result in this paper, stated in Theorem 7.2, implies the following

Theorem. For a $C W$ spectrum X and ring spectra E, F, assume that
(4) there is a unit-preserving map $\lambda: E \rightarrow F$, and
(5) the F-Adams spectral sequence abutting to $\pi_{*}\left(E \wedge \bar{E}^{n} \wedge X\right)$ in (1) converges and collapses for any $n \geqq 0$.

Then we have the spectral sequences $E^{\text {May }}$ and $E^{\text {Mah }}$ in (2) satisfying (o), (ii),
(i) $d_{1}^{\text {May }} d_{2}^{\text {Mah }} x=d_{2}^{\text {Mah }} d_{1}^{\text {May }} x$ for any $x \in A_{u}^{s, t}$,
(iii) if x converges to x^{E} in $E^{\text {May }}$, then so does $d_{2}^{\text {Mah }} x$ to $d_{2}^{E} x^{E}$, and
(iv) if the assumptions in (ii)-(iii) hold, then some $y \in A_{u+1}^{s+2, t}$ converges to $d_{2}^{E} x^{E}$ in $E^{\text {May }}$ and to $(-1)^{t} d_{2}^{F} x^{F}$ in $E^{\text {Mah. }}$.

Especially, in case (3), we see (4)-(5) by the Thom map $B P \rightarrow H Z_{p}$, and

$$
\begin{aligned}
& \left.A_{u}^{s, t}=\operatorname{Ext}_{P_{*}, u}^{s, Z_{p}}, \operatorname{Ext}_{A_{*}^{t}, *}^{*}\left(Z_{p}, P_{*}\right)\right) \text { in (o) } \\
& \left(A_{*}=\left(H Z_{p}\right)_{*}\left(H Z_{p}\right), \quad P_{*}=\left(H Z_{p}\right)_{*}(B P), \text { and } \operatorname{Ext}_{A_{*}, *}^{*, *}\left(Z_{p}, P_{*}\right)=Z_{p}\left[a_{0}, a_{1}, a_{2}, \ldots\right]\right. \\
& \left.\left(a_{n} \in \operatorname{Ext}^{1,2 p^{n}-1}\right)\right), \text { and we obtain Examples } 8.3-4 \text { on the differentials } d_{2}^{Z} \text { and } \\
& d_{2 p-1}^{B P} \text { in (1) for } X=S^{0} .
\end{aligned}
$$

For our purpose, we argue in $\S \S 1-3$ the construction of the Adams spectral sequences. We introduce the notion of an E_{2}-group $B=\left(B_{t}^{s}\right\}$ related to a given homology theory h_{*} in Definition 1.8, so that we have in Theorem 1.9 the spectral sequence of Adams type
(6) $\left\{E(B)_{r}^{s, t}, d_{r}^{B}\right\}$ abutting to $h_{t-s}(X)$ and satisfying $E(B)_{2}^{s, t}=B_{t}^{s}(X)$.

Then for any ring spectrum G, we have the E_{2}-group $G A=\left\{G A_{t}^{s}\right\}$ in (2.1.1-4) related to π_{*} and define the G-Adams spectral sequence $E(G)$ in (1) by

$$
E(G)=E(G A) \text {, i.e., } E(G)_{2}^{s, t}=G A_{t}^{s}(X) \quad \text { (see Theorem 2.3). }
$$

We note that the E_{2}-term may be seen by the definition of $G A$ even if $G_{*}(G)$ is not flat over $G_{*}\left(S^{0}\right)$; e.g., we have Example 2.5 for the connective K-theory spectrum $b u$ or the corresponding one $b u Q_{2}$ with coefficients in Q_{2}.

We define an E_{2}-functor $B=\left\{B_{t}^{s}\right\}$ to be an E_{2}-group satisfying the functoriality on the category of cofiberings in Definition 3.2, so that we can compare $E(B)$ in (6) for $B=C, D$ (see Theorems 3.4-5)). Then $G A$ is an E_{2}-functor by definition, $\lambda: E \rightarrow F$ in (4) induces the homomorphism $\bar{\lambda}_{*}$: $E(E)_{r}^{s, t} \rightarrow E(F)_{r}^{s, t}$ between G-Adams spectral sequences, and we have Theorem 3.8 on the conditions that $\bar{\lambda}_{*}$ is isomorphic, monomorphic or epimorphic. Examples 3.9-10 hold when λ is the Thom map $B P \rightarrow H Z_{p}$, etc.; in particular, we see $E(M O) \cong E\left(H Z_{2}\right)$ for the Thom spectrum $M O$ of the bordism theory.

Moreover, we introduce in $\S \S 4-5$ the notion of a double E_{2}-functor $A=$ $\left\{A_{u}^{s, t}\right\}$ related to an E_{2}-functor D or indirectly related to C (see (Definitions 4.3 and 5.3), so that we have the Mahowald or May spectral sequence
$\left\{\tilde{E}_{u, r}^{s, t}, d_{r}^{\text {Mah }}\right\}$ converging to $D_{u}^{s+t}(X)$ with $\widetilde{E}_{u, 2}^{s, t}=A_{u}^{s, t}(X)$, or $\left\{E_{u, r}^{s, t}, d_{r}^{\text {May }}\right\}$ abutting to $C_{u-t}^{s}(X)$ with $E_{u, 1}^{s, t}=A_{u}^{s, t}(X)$
(see Theorem 4.4 and Corollary 5.6)). In particular, for some ring spectra E and F (e.g., satisfying (4)-(5)), we have the double E_{2}-functor $E F A=\left\{E F A_{u}^{s, t}\right\}$ in (4.6.8) and the spectral sequences in (7) by taking $A=E F A, D=F A$ and $C=E A$ (see Theorems 4.7 and 5.8), which are taken to be $E^{\text {Mah }}$ and $E^{\text {May }}$ in (2). Example 4.8 gives a note on $E^{\text {Mah }}$ for $E=B P$ at p and $F=K Q_{p}$ (the K-theory spectrum with coefficients in Q_{p}) when p is an odd prime.

Now, we prepare in $\S 6$ some lemmas on commutative diagrams of cofiberings. Then we can consider the case stated in Definition 7.1 that for a $C W$ spectrum X, a homology theory h_{*}, E_{2}-functors $B=C, D$ and a double $E_{2^{-}}$ functor A, the spectral sequences of Adams type in (6) and the Mahowald and May ones in (7) are all defined (see (7.1.8)); and we prove in Theorem 7.2 some relations between them. By taking $h_{*}=\pi_{*}, C=E A, D=F A$ and $A=E F A$, Theorem 7.2 implies the above theorem and Examples 8.3-4.

Here, we notice that the cohomology version of E_{2}-functors can be obtained by the dual consideration, by which we may argue several spectral sequences, e.g., the Adams universal coefficient one or the one of Bousfield-Kan type; the details will be discussed in a forthcoming paper.

The author is deeply in debt to Professors M. Sugawara, T. Kobayasi and T. Matumoto for their valuable suggestions and discussions. He also thanks Professor J. F. Adams for the kind letter of Nov. 24, 1981 on $K Q_{p} A\left(S^{0}\right)$ in Example 4.8.

§ 1. Spectral sequences and E_{2}-groups

Throughout this paper, we work in the category \mathscr{C} of $C W$ spectra (cf. [4] or [16] for the definition and the basic properties of $C W$ spectra and the related notions).

Let h_{*} be a homology theory on \mathscr{C}, and for a given $X_{0} \in \mathscr{C}$, assume that (1.1.1) there are cofiberings $\alpha_{n}: X_{n} \xrightarrow{f_{n}} W_{n} \xrightarrow{g_{n+1}} X_{n+1}(n=0,1,2, \ldots)$ in \mathscr{C} (i.e., X_{n+1} is the mapping cone $W_{n} \cup_{f_{n}} C X_{n}$ of f_{n} and g_{n+1} is the inclusion map, up to homotopy equivalence).

Then, we have the induced exact sequences

$$
\begin{align*}
\cdots & \longrightarrow h_{t}\left(X_{s}\right) \xrightarrow{f_{*}} h_{t}\left(W_{s}\right) \xrightarrow{g_{*}} h_{t}\left(X_{s+1}\right) \xrightarrow{\partial} h_{t-1}\left(X_{s}\right) \tag{1.1.2}\\
& \longrightarrow \cdots\left(f_{*}=f_{s *}, g_{*}=g_{s+1 *}\right)
\end{align*}
$$

for any t and any $s \geqq 0$; and the standard argument on exact couples defines the spectral sequence given by (1.1.3), where $\partial^{r}=\partial \circ \cdots \circ \partial: h_{t+r}\left(X_{s+r}\right) \rightarrow h_{t}\left(X_{s}\right)$:

$$
\begin{align*}
Z_{r}^{s, t} & =g_{*}^{-1} \operatorname{Im}\left[\partial^{r-1}: h_{t+r-1}\left(X_{s+r}\right) \rightarrow h_{t}\left(X_{s+1}\right)\right] \subset h_{t}\left(W_{s}\right), \quad Z_{\infty}^{s, t}=\bigcap_{r \geqq 1} Z_{r}^{s, t}, \tag{1.1.3}\\
B_{r}^{s, t} & =f_{*} \operatorname{Ker}\left[\partial^{r-1}: h_{t}\left(X_{s}\right) \rightarrow h_{t-r+1}\left(X_{s-r+1}\right)\right](r \leqq s+1), \\
& =B_{s+1}^{s, t}=B_{\infty}^{s, t} \quad(r \geqq s+1) \\
E_{r}^{s, t} & =Z_{r}^{s, t} / B_{r}^{s, t}, \quad d_{r}: E_{r}^{s, t} \rightarrow Z_{r}^{s, t} / Z_{r+1}^{s, t} \cong B_{r+1}^{s+r, t+r-1} / B_{r}^{s+r, t+r-1} \subset E_{r}^{s+r, t+r-1}, \\
E_{\infty}^{s, t} & =Z_{\infty}^{s, t} / B_{\infty}^{s, t}, F^{s, t}=\operatorname{Im}\left[\partial^{s}: h_{t}\left(X_{s}\right) \rightarrow h_{t-s}\left(X_{0}\right)\right], \bar{Z}_{\infty}^{s, t}=\operatorname{Ker} g_{*}=\operatorname{Im} f_{*} \subset Z_{\infty}^{s, t}, \\
A^{s, t} & =\operatorname{Im} g_{*} \cap \bigcap_{r \geqq 1} \operatorname{Im}\left[\partial^{r}: h_{t+r}\left(X_{s+r+1}\right) \rightarrow h_{t}\left(X_{s+1}\right)\right] \subset h_{t}\left(X_{s+1}\right) .
\end{align*}
$$

Proposition 1.2. For a homology theory h_{*} on $\mathscr{C}, X_{0} \in \mathscr{C}$ and cofiberings α_{n} in (1.1.1), the exact sequences (1.1.2) associate the spectral sequence $\left\{E_{r}^{\text {s,t }}, d_{r}\right\}$ in (1.1.3) such that
(1.2.1) $\quad E_{1}^{s, t}=h_{t}\left(W_{s}\right), \quad d_{1}=f_{*} \circ g_{*}: E_{1}^{s, t}=h_{t}\left(W_{s}\right) \rightarrow h_{t}\left(X_{s+1}\right) \rightarrow h_{t}\left(W_{s+1}\right)=$ $E_{1}^{s+1, t}$, and
(1.2.2) by the filtration $h_{t-s}\left(X_{0}\right)=F^{0, t-s} \supset \cdots \supset F^{s, t} \supset F^{s+1, t+1} \supset \cdots$, we have the exact sequence

$$
0 \rightarrow F^{s, t} / F^{s+1, t+1}\left(\cong \bar{Z}_{\infty}^{s, t} / B_{\infty}^{s, t}\right) \rightarrow E_{\infty}^{s, t} \rightarrow A^{s, t}\left(\cong Z_{\infty}^{s, t} / \bar{Z}_{\infty}^{s, t}\right) \rightarrow 0
$$

In this paper, we present such a case by the following
(1.2.3) $\left\{E_{r}^{s, t}\right\}$ abuts to $h_{t-s}\left(X_{0}\right): E_{1}^{s, t}=h_{t}\left(W_{s}\right) \Rightarrow h_{t-s}\left(X_{0}\right)(a b u t)$.

To represent the E_{2}-term of this spectral sequence, we consider the following
Definition 1.3. Let $C=\left\{C_{t}^{s} \mid s, t \in Z\right\}$ be a collection of covariant functors $C_{t}^{s}: \mathscr{C} \rightarrow \mathscr{A}$ (the category of abelian groups) with $C_{t}^{s}=0$ for $s<0$.
Then, we say that C is related to a homology theory h_{*} at X_{0} by a natural transformation $\phi: h_{t} \rightarrow C_{t}^{0}(t \in Z)$ and cofiberings α_{n} in (1.1.1), if
(1.3.1) $\phi: h_{t}\left(W_{n}\right) \cong C_{t}^{0}\left(W_{n}\right), \quad C_{t}^{s}\left(W_{n}\right)=0$ for $s>0$, and there are homomorphisms $\bar{\delta}$ so that the following sequences are exact:

$$
\cdots \longrightarrow C_{t}^{s}\left(X_{n}\right) \xrightarrow{f_{n *}} C_{t}^{s}\left(W_{n}\right) \xrightarrow{g_{n+1 *}} C_{t}^{s}\left(X_{n+1}\right) \xrightarrow{\bar{\delta}} C_{t}^{s+1}\left(X_{n}\right) \longrightarrow \cdots .
$$

(1.3.2) Then, we have $\bar{\delta}: C_{t}^{s}\left(X_{n+1}\right) \cong C_{t}^{s+1}\left(X_{n}\right)(s>0)$ and the exact sequence

$$
0 \longrightarrow C_{t}^{0}\left(X_{n}\right) \xrightarrow{f_{n *}} C_{t}^{0}\left(W_{n}\right) \xrightarrow{g_{n+1} *} C_{t}^{0}\left(X_{n+1}\right) \xrightarrow{\bar{\delta}} C_{t}^{1}\left(X_{n}\right) \longrightarrow 0 .
$$

Furthermore, for $d_{1}^{s, t}=d_{1}=f_{*} \circ g_{*}$ in (1.2.1), we have the commutative diagram

Then, (1.3.2) implies that $f_{s *}$ is monomorphic and we have the isomorphisms $f_{s *}^{-1} \circ \phi: \operatorname{Ker} d_{1}^{s, t} \cong C_{t}^{0}\left(X_{s}\right), \operatorname{Im} d_{1}^{s-1, t} \cong \operatorname{Im} g_{s *}$ and

$$
\begin{equation*}
\bar{\phi}=\bar{\delta}^{s-1} \circ \bar{\delta} \circ\left(f_{s *}^{-1} \circ \phi\right): E_{2}^{s, t} \cong C_{t}^{0}\left(X_{s}\right) / \operatorname{Im} g_{s *} \cong C_{t}^{1}\left(X_{s-1}\right) \cong C_{t}^{s}\left(X_{0}\right) \tag{1.3.4}
\end{equation*}
$$

$\left(\bar{\delta}^{s-1}=\bar{\delta} \cdots \circ \bar{\delta}\right)$. Thus, we see the following

Theorem 1.4. In case of Definition 1.3, we have the associated spectral sequence $\left\{E_{r}^{s, t}\right\}$ in Proposition 1.2, which abuts to $h_{*}\left(X_{0}\right)$ and whose E_{2}-term $E_{2}^{s, t}$ is isomorphic to $C_{t}^{s}\left(X_{0}\right)$ by $\bar{\phi}$ in (1.3.4):

$$
E_{2}^{s, t}=C_{t}^{s}\left(X_{0}\right) \Rightarrow h_{t-s}\left(X_{0}\right) \quad(\text { abut }) .
$$

Corollary 1.5. In Theorem 1.4, the following (1.5.1-3) are equivalent:
(1.5.1) $E_{2}^{s, t}=C_{t}^{s}\left(X_{0}\right)=0$ for $s>0$ and $\bar{\phi}=\phi: E_{2}^{0, t}=h_{t}\left(X_{0}\right) \cong C_{t}^{0}\left(X_{0}\right)$.
(1.5.2) $0 \rightarrow h_{t}\left(X_{n}\right) \xrightarrow{f_{*}} h_{t}\left(W_{n}\right) \xrightarrow{g_{n}} h_{t}\left(X_{n+1}\right) \rightarrow 0$ is exact in (1.1.2) for all $n \geqq 0$.
(1.5.3) $\quad \phi: h_{t}\left(X_{n}\right) \cong C_{t}^{0}\left(X_{n}\right)$ and $C_{t}^{s}\left(X_{n}\right)=0$ for all $s>0$ and $n \geqq 0$.

Proof. (1.5.2) implies $\partial=0$ and so (1.5.1) by (1.1.3). (1.5.1) means (1.5.3) for $n=0$; and (1.5.3) for n implies (1.5.2) for n and (1.5.3) for $n+1$ by (1.3.2) and 5 -Lemma. Thus, (1.5.1-3) are equivalent by induction.

We use the following terminologies for $\left\{E_{r}, d_{r}\right\}$ in Proposition 1.2:
(1.6.1) $d_{r} x=x^{\prime}$ for $x \in E_{u}^{s, t}, x^{\prime} \in E_{u}^{s^{\prime}, t^{\prime}}$ with $u \leqq r$, if $s^{\prime}=s+r, t^{\prime}=t+r-1$, $x \in Z_{r} / B_{u}, x^{\prime} \in Z_{r}^{\prime} / B_{u}^{\prime}$ and the equality holds for their images $x \in E_{r}, x^{\prime} \in E_{r}^{\prime}$ $\left(G_{*}=G_{*}^{s, t}, G_{*}^{\prime}=G_{*}^{s^{\prime}, t^{\prime}}\right)$.
(1.6.2) $\bar{Z} E_{r}^{s, t}=\bar{Z}_{\infty}^{s, t} / B_{r}^{s, t}$ is the subgroup of all permanent cycles in $E_{r}^{s, t}$; and $x \in E_{r}^{s, t}$ converges to $y \in h_{t-s}\left(X_{0}\right)$ if $x \in \bar{Z} E_{r}^{s, t}, y \in F^{s, t}$ and they coincide in $\bar{Z} E_{\infty}^{s, t}=F^{s, t} / F^{s+1, t+1}$.
(1.6.3) $\left\{E_{r}, d_{r}\right\}$ converges: $E_{r}^{s, t} \Rightarrow h_{t-s}\left(X_{0}\right)(c o n v)$, if $\bar{Z}_{\infty}=Z_{\infty}\left(\right.$ or $\left.A^{s, t}=0\right)$ and $\bigcap_{n \geqq 0} F^{n, t+n}=0$; and it collapses (for $r \geqq 2$) if $d_{r}=0$ or $E_{r}=E_{\infty}$ for $r \geqq 2$.

Corollary 1.7. In Theorem 1.4, consider

$$
\begin{equation*}
\left.\bar{Z} C_{t}^{s}\left(X_{0}\right)=\bar{Z} E_{2}^{s, t} \subset E_{2}^{s, t}=C_{t}^{s}\left(X_{0}\right) \text { (by regarding } \bar{\phi}=\mathrm{id}\right) \text {, and } \tag{1.7.1}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\phi}=\bar{\delta}^{s} \circ \phi: h_{t}\left(X_{s}\right) \rightarrow C_{t}^{0}\left(X_{s}\right) \rightarrow C_{t}^{1}\left(X_{s-1}\right) \cong C_{t}^{s}\left(X_{0}\right) \tag{1.7.2}
\end{equation*}
$$

(i) Then, $\bar{Z} C_{t}^{s}\left(X_{0}\right)=\operatorname{Im} \bar{\phi}$; and $x \in C_{t}^{s}\left(X_{0}\right)=E_{2}^{s, t}$ converges to $y \in h_{t-s}\left(X_{0}\right)$ if and only if $x=\phi y_{s}$ and $\partial^{s} y_{s}=y$ for some $y_{s} \in h_{t}\left(X_{s}\right)$. Also $d_{r} x=x^{\prime}$ holds for $x \in C_{t}^{s}\left(X_{0}\right), x^{\prime} \in C_{t^{\prime}}^{s^{\prime}}\left(X_{0}\right)$ if and only if $s^{\prime}=s+r, t^{\prime}=t+r-1$ and $x=\bar{\delta}^{s} x_{s^{\prime}}, f_{s *} x_{s}=\phi w, g_{s+1 *} w=\partial^{r-1} y$ and $\bar{\phi} y=x^{\prime}$ for some $x_{s} \in C_{t}^{0}\left(X_{s}\right), w \in h_{t}\left(w_{s}\right)$ and $y \in h_{t^{\prime}}\left(X_{s^{\prime}}\right)$.
(ii) $\left\{E_{r}\right\}$ converges and collapses if and only if (1.7.3) and one of (1.7.4-6) hold:
(1.7.3) $\operatorname{inv} \lim _{n}\left\{h_{t+n}\left(X_{n}\right), \partial: h_{t+n+1}\left(X_{n+1}\right) \rightarrow h_{t+n}\left(X_{n}\right)\right\}=0$ for any t.
(1.7.4) $\left\{E_{r}^{s, t}\right\}$ converges weakly (i.e., $\bar{Z}_{\infty}=Z_{\infty}$ or $A^{s, t}=0$) and collapses.
(1.7.5) $\quad \phi: h_{t}\left(X_{s}\right) \rightarrow C_{t}^{0}\left(X_{s}\right)$ is epimorphic for any s, t.
(1.7.6) $\operatorname{Ker} \partial^{n}=\operatorname{Ker} \partial$ for $\partial^{n}: h_{t}\left(X_{s}\right) \rightarrow h_{t-n}\left(X_{s-n}\right)$, for any $n(1 \leqq n \leqq s)$ and s, t.

Proof. (i) follows immediately from (1.1.3) and (1.3.1-4) and (1.6.1-2).
(ii) Assume (1.7.6), and take any $x \in C_{t}^{0}\left(X_{s}\right)$. Then by (1.3.2-3), we see $f_{s *} x=\phi w$ for some $w \in h_{t}\left(W_{s}\right)$, and so $\phi f_{*} g_{*} w=0$ and $g_{*} w=\partial y$ for some
$y \in h_{t+1}\left(X_{s+2}\right)$. Hence $\partial^{2} y=0, g_{*} w=\partial y=0$ by (1.7.6), and $w=f_{*} y^{\prime}$ for some $y^{\prime} \in h_{t}\left(X_{s}\right)$. Thus $x=\phi y^{\prime}$ since $f_{s *}$ is monomorphic; and (1.7.5) holds. (1.7.5) implies $\bar{Z}_{\infty}=Z_{\infty}=Z_{r}=Z_{2}(r \geqq 2)$ by (i), and so $d_{r}=0$ and (1.7.4).

Conversely, assume (1.7.4), and take any $y \in \operatorname{Ker} \partial^{n}(n \geqq 2)$ in (1.7.6). Then by (1.1.3) and (1.7.4), we have $f_{*} y \in B_{n+1}=B_{2}, f_{*} y=f_{*} y^{\prime}, y-y^{\prime}=\partial z$ and $\partial y=\partial^{2} z$ for some $y^{\prime} \in \operatorname{Ker} \partial$ and $z \in h_{t+1}\left(X_{s+1}\right)$. Hence $\partial y \in \bigcap_{r} \operatorname{Im} \partial^{r}$ by induction. Therefore, $\partial^{n-1} y \in \operatorname{Ker} \partial \cap \bigcap_{r} \operatorname{Im} \partial^{r}=A^{s-n, t-n+1}=0$ by (1.7.4); and $\partial y=0$ by induction, which shows (1.7.6). Thus (1.7.4-6) are equivalent.

Now, consider $p: \bar{h}_{t}=\operatorname{inv} \lim _{n} h_{t+n}\left(X_{n}\right) \rightarrow \bar{F}_{t}=\bigcap_{n} F^{n, t+n}$ given by $p\left\{y_{n}\right\}=$ y_{0} for $y_{n} \in h_{t+n}\left(X_{n}\right)$ with $\partial y_{n+1}=y_{n}(n \geqq 0)$; and assume (1.7.6). If $p\left\{y_{n}\right\}=$ $y_{0}=0$, then $y_{n+1} \in \operatorname{Ker} \partial^{n+1}=\operatorname{Ker} \partial$ by (1.7.6), and $y_{n}=0$. If $y_{0} \in \bar{F}_{t}$, then we have $y_{n} \in h_{t+n}\left(X_{n}\right)$ with $\partial^{n} y_{n}=y_{0}$. Thus $\partial y_{n+2}-y_{n+1} \in \operatorname{Ker} \partial$ by (1.7.6), and $\left\{\partial y_{n+1}\right\} \in \bar{h}_{t}$ with $p\left\{\partial y_{n+1}\right\}=y_{0}$. Therefore p is isomorphic, and we see (ii).
q.e.d.

The exact sequence in the assumption (1.3.1) is given by the following
Definition 1.8. (1) For convariant functors $C_{t}^{s}: \mathscr{C} \rightarrow \mathscr{A}(s, t \in Z)$ with $C_{t}^{s}=0$ for $s<0$, assume the following (1.8.1):
(1.8.1) For any cofibering $\alpha: X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2}$ in \mathscr{C}, there are given abelian groups $K C_{t}^{s}(\alpha ; i)(s, t \in Z ; i=0,1,2)$ and exact sequences

$$
\cdots \longrightarrow K C_{t}^{s}(\alpha ; i) \xrightarrow{l} C_{t}^{s}\left(X_{i}\right) \xrightarrow{\kappa} K C_{t}^{s}(\alpha ; i+1) \xrightarrow{\delta} K C_{t}^{s+1}(\alpha ; i) \longrightarrow \cdots
$$

$\left(\rho=\rho_{i}\right.$ for $\left.\rho=l, \kappa, \delta\right)$ with $K C_{t}^{s}(\alpha ; 3)=K C_{t-1}^{s}(\alpha ; 0), K C_{t}^{s}(\alpha ; i)=0$ for $s<0$ and (1.8.2) $\quad l_{i+1} \circ \kappa_{i}=f_{i *}: C_{t}^{s}\left(X_{i}\right) \longrightarrow K C_{t}^{s}(\alpha ; i+1) \longrightarrow C_{t}^{s}\left(X_{i+1}\right) \quad$ for $i=0,1$.

Then, we call a collection $C=\left\{C_{t}^{s}, K C_{t}^{s}(; i)\right\}$ an E_{2}-group. In this case, we call $X \in \mathscr{C} C$-injective if $C_{t}^{s}(X)=0$ for $s>0$; and $\alpha: X_{0} \rightarrow X_{1} \rightarrow X_{2}$ a C cofibering if $K C_{t}^{s}(\alpha ; 0)=0$, and a C-injective cofibering if X_{1} is C-injective in addition.
(2) Furthermore, we say that C has enough injective objects if (1.8.3) any $X \in \mathscr{C}$ is in a C-injective cofibering $\omega(X): X \xrightarrow{f} W(X) \xrightarrow{g} \bar{W}(X)$.

By this definition, we see the following (1.8.4-6):
(1.8.4) For any C-cofibering $\alpha: X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2}$, we have the exact sequence

$$
\cdots \longrightarrow C_{t}^{s}\left(X_{0}\right) \xrightarrow{f_{0}} C_{t}^{s}\left(X_{1}\right) \xrightarrow{f_{1 *}} C_{t}^{s}\left(X_{2}\right) \xrightarrow{\bar{\delta}} C_{t}^{s+1}\left(X_{0}\right) \longrightarrow \cdots
$$

by taking $\bar{\delta}=\kappa_{0}^{-1} \circ \delta_{1} \circ \iota_{2}^{-1}: C_{t}^{s}\left(X_{2}\right) \cong K C_{t}^{s}(\alpha ; 2) \rightarrow K C_{t}^{s+1}(\alpha ; 1) \cong C_{t}^{s+1}\left(X_{0}\right) \quad$ in (1.8.1). In fact, the exact sequences in (1.8.1) show that l_{2} and κ_{0} are isomorphic by $K C_{t}^{s}(\alpha ; 0)=0$, and then the desired one is exact by (1.8.2).
(1.8.5) If α_{n} 's in (1.1.1) are C-cofiberings, then exact sequences in (1.3.1) are given by (1.8.4); and if they are C-injective cofiberings, then (1.3.2) holds.
(1.8.6) We note that $C_{t}^{s}(*)=0$ for any s, t, where $*$ is the one point spectrum. In fact, consider l, κ in (1.8.1) for $\alpha: * \rightarrow * \rightarrow *$ and $i=1$. Then l_{1} is epimorphic and κ_{1} is monomorphic by (1.8.2); hence $C_{t}^{s}(*)=0$ by exactness.

Therefore, Theorem 1.4 imlies the following
Theorem 1.9. Let h_{*} be a homology theory, $C=\left\{C_{t}^{s}, K C_{t}^{s}\right\}$ be an E_{2}-group, and $\phi: h_{t} \rightarrow C_{t}^{0}$ be a natural transformation. For $X_{0} \in \mathscr{C}$, let be given (1.9.1) C-injective cofiberings $\alpha_{n}: X_{n} \rightarrow W_{n} \rightarrow X_{n+1}$ with $\phi: h_{t}\left(W_{n}\right) \cong C_{t}^{0}\left(W_{n}\right)$.

Then, $C=\left\{C_{t}^{s}\right\}$ is related to h_{*} at X_{0} by ϕ and $\left\{\alpha_{n}\right\}$, and we have the spectral sequence $\left\{E_{r}^{s, t}\right\}$ in Theorem 1.4 with $E_{2}^{s, t}=C_{t}^{s}\left(X_{0}\right) \Rightarrow h_{t-s}\left(X_{0}\right)(a b u t)$.

When C has enough injective objects by $\omega(X)$ in (1.8.3) with $\phi: h_{t}(W(X)) \cong$ $C_{t}^{0}(W(X))$, this is obtained for any X_{0} by taking (1.9.2) $\alpha_{n}=\omega\left(X_{n}\right): X_{n} \rightarrow W_{n}=W\left(X_{n}\right) \rightarrow X_{n+1}=\bar{W}\left(X_{n}\right)$, inductively.

§ 2. Adams spectral sequences

We recall the Adams spectral sequence for a given ring spectrum E with unit $l=l_{E}: S^{0} \rightarrow E$ and product $\mu=\mu_{E}: E \wedge E \rightarrow E$.

For any $X \in \mathscr{C}$, consider the homotopy and homology groups

$$
\pi_{t}(X)=\left[\sum^{t} S^{0}, X\right] \quad \text { and } \quad E_{t}(X)=\pi_{t}(E \wedge X) .
$$

Then, we obtain the cochain complex

$$
\begin{equation*}
E_{t}^{*}(X)=\left\{E_{t}^{s}(X)=\pi_{t}\left(E^{s+1} \wedge X\right) \quad(s \geqq 0),=0 \quad(s<0)\right\} \tag{2.1.1}
\end{equation*}
$$

with coboundary $\delta^{s}=\sum_{i=0}^{s+1}(-1)^{i} \delta_{i *}^{s}$, where $E^{n}=E \wedge \cdots \wedge E$ (n copies) and

$$
\begin{aligned}
\delta_{i}^{s}= & 1 \wedge l \wedge 1: E^{s+1} \wedge X=E^{s+1-i} \wedge S^{0} \wedge E^{i} \wedge X \\
& \rightarrow E^{s+1-i} \wedge E \wedge E^{i} \wedge X=E^{s+2} \wedge X
\end{aligned}
$$

(2.1.2) We note that if a map $\lambda: E \rightarrow F$ between ring spectra E and F preserves units (i.e., $l_{F} \sim \lambda \circ l_{E}: S^{0} \rightarrow F$), then $\lambda^{s+1} \wedge 1: E^{s+1} \wedge X \rightarrow F^{s+1} \wedge X$ induces the cochain map $\lambda_{*}=\left\{\left(\lambda^{s+1} \wedge 1\right)_{*}\right\}: E_{t}^{*}(X) \rightarrow F_{t}^{*}(X)$.
Furthermore, for any cofibering $\alpha: X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2}$,
(2.1.3) we have the homotopy exact sequences

$$
\cdots \longrightarrow E_{t}^{s}\left(X_{0}\right) \xrightarrow{f_{0 *}} E_{t}^{s}\left(X_{1}\right) \xrightarrow{f_{1 *}} E_{t}^{s}\left(X_{2}\right) \xrightarrow{f_{2 *}} E_{t-1}^{s}\left(X_{0}\right) \longrightarrow \cdots \quad\left(f_{2 *}=\partial\right),
$$

the subcomplexes $K E_{t}^{*}(\alpha ; i)=\left\{\operatorname{Ker} f_{i *}\right\}$ of $E_{t}^{*}\left(X_{i}\right)$ and the exact sequences

$$
0 \rightarrow K E_{t}^{*}(\alpha ; i) \rightarrow E_{t}^{*}\left(X_{i}\right) \rightarrow K E_{t}^{*}(\alpha ; i+1) \rightarrow 0 \quad\left(K E_{t}^{*}(\alpha ; 3)=K E_{t-1}^{*}(\alpha ; 0)\right)
$$

of cochain complexes. Thus, taking their cohomologies,
(2.1.4) we obtain the E_{2}-group $E A=\left\{E A_{t}^{s}, K E A_{t}^{s}(\quad ; i)\right\}$ given by

$$
E A_{t}^{s}(X)=H^{s}\left(E_{t}^{*}(X)\right) \quad(X \in \mathscr{C}), \quad K E A_{t}^{s}(\alpha ; i)=H^{s}\left(K E_{t}^{*}(\alpha ; i)\right) \quad(\alpha \in \mathscr{C} \mathscr{F}) .
$$

Now, the Hurewicz map $(l \wedge 1)_{*}: \pi_{t}(X) \rightarrow E_{t}^{0}(X)$ induced from $l \wedge 1: X=$ $S^{0} \wedge X \rightarrow E \wedge X$ satisfies $\delta^{0} \circ(l \wedge 1)_{*}=0$ for δ^{0} in (2.1.1). Thus we have the natural Hurewicz map

$$
\begin{equation*}
\phi^{E}=\left(l_{E} \wedge 1\right)_{*}: \pi_{t}(X) \rightarrow E A_{t}^{0}(X)=H^{0}\left(E_{t}^{*}(X)\right)=\operatorname{Ker} \delta^{0} \quad \text { for } \quad X \in \mathscr{C} . \tag{2.1.5}
\end{equation*}
$$

Furthermore, we have the induced cofiberings

$$
\begin{align*}
\omega^{E}: & S^{0} \xrightarrow{l} E \xrightarrow{j} \bar{E}=C_{1}, \quad \omega^{E} X: X \xrightarrow{i \wedge 1} E \wedge X \xrightarrow{j \wedge 1} \bar{E} \wedge X \quad \text { and } \tag{2.1.6}\\
& \alpha_{n}^{E}=\omega^{E} \wedge X_{n}: X_{n} \rightarrow E \wedge X_{n} \rightarrow X_{n+1} \quad \text { with } \quad X_{n}=\bar{E}^{n} \wedge X_{0} \quad(n \geqq 0) .
\end{align*}
$$

Lemma 2.2. $\quad(1 \wedge \mu \wedge 1)_{*} \circ(l \wedge 1)_{*}=$ id: $E_{t}^{s}(X) \rightarrow E_{t}^{s}(E \wedge X) \rightarrow E_{t}^{s}(X) \quad$ for $1 \wedge \mu \wedge 1: E^{s} \wedge E^{2} \wedge X \rightarrow E^{s} \wedge E \wedge X ;$ and $K E_{t}^{s}\left(\omega^{E} \wedge X ; 0\right)=0$. Moreover, $\phi^{E}: \pi_{t}(E \wedge X) \cong E A_{t}^{0}(E \wedge X)$ and $E A_{t}^{s}(E \wedge X)=0(s>0)$. Thus $\omega^{E} \wedge X$ is an $E A$-injective cofibering, and $E A$ has enough injective objects.

Proof. The first part holds since $\mu \circ(1 \wedge t) \sim 1: E \rightarrow E$. Consider $\delta_{i *}^{s}$, $\delta^{s}: \pi_{t}\left(E^{s+1} \wedge W\right) \rightarrow \pi_{t}\left(E^{s+2} \wedge W\right)$ in (2.1.1) for $W=E \wedge X$ when $s \geqq 0$, and $\delta_{0}^{-1}=l \wedge 1, \delta^{-1}=\delta_{0 *}^{-1}$ when $s=-1$; and

$$
\sigma^{s}=\sum_{i=0}^{s}(-1)^{i} \sigma_{i *}^{s}: \pi_{t}\left(E^{s+1} \wedge W\right) \rightarrow \pi_{t}\left(E^{s} \wedge W\right) \text { for } s \geqq 0,
$$

where $\sigma_{i}^{s}=1 \wedge \mu \wedge 1: E^{s-i} \wedge E^{2} \wedge E^{i} \wedge X \rightarrow E^{s-i} \wedge E \wedge E^{i} \wedge X$. Then, $\sigma_{i *}^{s+1} \circ$ $\delta_{j *}^{s}$ is $\delta_{j-1 *}^{s-1} \circ \sigma_{i *}^{s}$ if $i<j$, id if $i=j, j+1$, and $\delta_{j *}^{s-1} \circ \sigma_{i-1 *}^{s}$ if $i>j+1$; hence $\sigma^{0} \circ \delta^{-1}=\mathrm{id}: \pi_{t}(W) \rightarrow \pi_{t}(W)$ and

$$
\sigma^{s+1} \circ \delta^{s}+\delta^{s-1} \circ \sigma^{s}=\mathrm{id}: \pi_{t}\left(E^{s+1} \wedge W\right) \rightarrow \pi_{t}\left(E^{s+1} \wedge W\right) \text { when } \quad s \geqq 0
$$

Since $\phi^{E}=\delta^{-1}$ by (2.1.5), these imply the second part.
q.e.d.

By this lemma and Theorem 1.9, we see the following
Theorem 2.3. For the homotopy theory π_{*} on \mathscr{C} and any ring spectrum E, we have the E_{2}-group $E A$ in (2.1.4) with the Hurewicz map ϕ in (2.1.5). Thus, we have the E-Adams spectral sequence $\left\{E_{r}^{s, t}\right\}$ for any $C W$ spectrum X_{0}, given in Theorem 1.9 by $\left\{\alpha_{n}^{F}\right\}$ in (2.1.6), with

$$
\begin{equation*}
E_{2}^{s, t}=E A_{t}^{s}\left(X_{0}\right)=H^{s}\left(E_{t}^{*}\left(X_{0}\right)\right) \Rightarrow \pi_{t-s}\left(X_{0}\right) \quad(\text { abut }) . \tag{2.3.1}
\end{equation*}
$$

Moreover, it satisfies
(2.3.2) $\quad E_{2}^{s, t}=E A_{t}^{s}\left(X_{0}\right)=E x t_{E_{*}(E)}^{s, t}\left(E_{*}\left(S^{0}\right), E_{*}\left(X_{0}\right)\right)$ when
(2.3.3) the $E_{*}\left(S^{0}\right)$-module $E_{*}(E)$ is flat.

Proof. The cofibering $\left\{\alpha_{n}^{E}\right\}$ in (2.1.6) induces the one $E \wedge X_{n} \rightarrow X_{n+1} \rightarrow$ ΣX_{n} (the subspension of X_{n}), and we have the filtration $X_{0} \leftarrow \Sigma^{-1} X_{1} \leftarrow$ $\Sigma^{-2} X_{2} \leftarrow \cdots$ of X_{0}, which is the Adams filtration. Thus we have the Adams spectral sequence $\left\{E_{r}^{s, t}\right\}$ given by Proposition 1.2 for $h_{*}=\pi_{*}$ and $\left\{\alpha_{n}^{E}\right\}$. The latter half holds by the following:
(2.3.4) If (2.3.3) holds, then $E_{*}^{s}(X)$ in (2.1.1) is $E_{*}(E) \otimes \cdots \otimes E_{*}(E) \otimes E_{*}(X)$ (the tensor product over $E_{*}\left(S^{0}\right)$ of s copies of $E_{*}(E)$ and $\left.E_{*}(X)\right)$ (cf. [16, 13.75]) and $E_{*}^{*}\left(X_{0}\right)=\left\{E_{*}^{s}\left(X_{0}\right), \delta^{s}\right\}$ is just the cobar complex for $E_{*}\left(X_{0}\right)$. q.e.d.

In this paper, we consider the following ring spectra as examples:
(2.4.1) For a ring $R, H R$ is the Eilenberg-MacLane spectrum of the ordinary homology theory $H_{*}(; R), S R$ is the Moore spectrum of type R, and for any ring spectrum $E, E R=E \wedge S R$ is the corresponding one with coefficients in R. $K O$ or K is the spectrum of real or complex K-theory, and bu is the one of the connective K-theory. For $G=O, U$ or $S U, M G$ is the Thom spectrum of the G-bordism theory. For a prime $p, B P$ is the Brown-Peterson spectrum at p.
(2.4.2) ([4, III, 15.1]) (2.3.2-4) hold for $E=H R$ or $S R$ when R is a field, $K O, K, M O, M U$ or $B P$.
(2.4.3) In this case, $E A_{*}^{0}(X)=P E_{*}(X)$, the group of all primitive elements in $E_{*}(X)$, by (2.3.2) and definition.

When $E_{*}(E)$ is not flat, we have to calculate $E A_{t}^{s}\left(X_{0}\right)=H^{s}\left(E_{t}^{*}\left(X_{0}\right)\right)$ in (2.3.1) directly by definition. As examples, we have the following

Example 2.5. Consider bu or bu Q_{2} in (2.4.1) for $Q_{2}=\{a / b \in Q \mid b$: odd $\}$. Then:
(i) $E A_{t}^{0}\left(S^{0}\right)=Z\left(\right.$ resp. $\left.Q_{2}\right)$ if $t=0,=0$ if $t \neq 0$, for $E=b u\left(\right.$ resp. bu $\left.Q_{2}\right)$.
(ii) $b u Q_{2} A_{*}^{1}\left(S^{0}\right)$ is the direct sum of the groups $Z_{2}\left\langle h_{n}\right\rangle$ in degree $n=$ $2^{v} \geqq 2$ and $Z_{a(n)}\left\langle\alpha_{n}\right\rangle$ in degree $2 n \geqq 2$, where the generators h_{n} and α_{n} are given in $(2.5 .4,7)$ below, and $a(n)=2^{v+2}$ if n is even $\geqq 4=2^{v+1}$ otherwise, for $n=2^{v} q$ ($q:$ odd).

Proof. We use the following (2.5.1-3) given by Adams [4, III, §§ 16-17]:
(2.5.1) There is a map $j\left(=f^{0} j\right.$ in [4]): $b u \rightarrow H Z_{2}$ preserving units such that

$$
j_{*}:\left(H Z_{2}\right)_{*}(b u) \rightarrow\left(H Z_{2}\right)_{*}\left(H Z_{2}\right)=A_{*}=Z_{2}\left[\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right]
$$

is monomorphic and $\operatorname{Im} j_{*}=Z_{2}\left[\xi_{1}^{2}, \xi_{2}^{2}, \xi_{3}, \ldots\right]$. Also, the $H Z_{2}$-Adams spectral sequence $\left\{E_{r}^{s, t}\right\}$ in Theorem 2.3 for $X_{0}=b u^{2}$ with (2.3.2) satisfies

$$
E_{2}^{s, t}=\operatorname{Ext}_{B_{*}}^{s, t}\left(Z_{2},\left(H Z_{2}\right)_{*}(b u)\right) \Rightarrow \pi_{t-s}\left(b u^{2}\right) \text { for } \quad B_{*}=A_{*} /\left(\xi_{1}^{2}, \xi_{2}^{2}, \xi_{3}, \ldots\right)
$$

by the change-of-rings theorem, which converges weakly and collapses for $r \geqq 2$;
and $(j \wedge 1)_{*}=$ in $\circ \phi: \pi_{*}\left(b u^{2}\right) \rightarrow E_{2}^{0, *} \subset\left(H Z_{2}\right)_{*}(b u)$ for its edge homomorphism ϕ. Moreover, there is a homomorphism $E_{r}^{s, t} \rightarrow E_{r}^{s+1, t+1}$ which for $r=2$ is multiplication by ξ_{1} and for $r=\infty$ is obtained by passing to quotients from multiplication by 2 .
(2.5.2) $H Z_{*}\left(b u^{n}\right)$ is a direct sum of groups Z_{p} (p : prime) and groups Z in even degree; hence so is $H Z_{*}\left(B U^{n}\right)=H Z_{*}\left(b u^{n}\right) \otimes Q_{2}$ of Z_{2} and Q_{2}, where $B U=b u Q_{2}$ in this proof. Also, $\pi_{*}\left(B U^{n}\right)=\pi_{*}\left(b u^{n}\right) \otimes Q_{2}$, the Hurewicz homomorphism $h: \pi_{*}\left(B U^{2}\right) \rightarrow H Z_{*}\left(B U^{2}\right)$ is monomorphic, and it induces the monomorphism $h: \widetilde{F}^{s, t} \otimes Q_{2} \rightarrow \widetilde{G}^{s, t}\left(\widetilde{H}^{s, t}=H^{s, t} / H^{s+1, t+1}\right)$ for the filtrations $\left\{F^{s, t}\right\}$ of $\pi_{*}\left(b u^{2}\right)$ corresponding to $\left\{E_{r}^{s, t}\right\}$ in (2.5.1) and $\left\{G^{s, t}=2^{s} H Z_{t-s}\left(B U^{2}\right)\right\}$. Moreover, the torsion subgroup T_{*}^{n} of $\pi_{*}\left(B U^{n+1}\right)$ is a direct sum of groups Z_{2}, and $(j \wedge 1)_{*}\left(=(j \wedge 1)_{*} \otimes 1\right): \pi_{*}\left(B U^{n+1}\right) \rightarrow\left(H Z_{2}\right)_{*}\left(B U^{n}\right)$ is monomorphic on T_{*}^{n}.
(2.5.3) $\quad \pi_{*}(b u)=Z[t] \quad(\operatorname{deg} t=2) \quad$ and $\quad \pi_{*}\left(b u^{2}\right) \otimes Q=Q[u, v] \quad$ for $\quad u=$ $(1 \wedge l)_{*} t$ and $v=(l \wedge 1)_{*} t$. Moreover, a polynomial $f(u, v) \in Q[u, v]$ lies in $\operatorname{Im}\left[\pi_{*}\left(B U^{2}\right)=\pi_{*}\left(b u^{2}\right) \otimes Q_{2} \rightarrow \pi_{*}\left(b u^{2}\right) \otimes Q=Q[u, v]\right]$ if and only if
(*) $f(k x, l x) \in Q_{2}\left[x, x^{-1}\right]$ for any odd integers k and l, and $f(u, v) \in Q_{2}[u / 2, v / 2]$.
Proof of (i): The coboundary $\delta^{0}: b u_{*}^{0}\left(S^{0}\right)=Z[t] \rightarrow b u_{*}^{1}\left(S^{0}\right)=\pi_{*}\left(b u^{2}\right)$ in (2.1.1) satisfies $\delta^{0} t^{n}=u^{n}-v^{n}(\neq 0$ for $n \geqq 1$) by definition and (2.5.3). Hence we see (i) for $b u$, and for $B U=b u Q_{2}$ in the same way.

In (2.5.1), $\Delta \xi_{1}=\xi_{1} \otimes 1+1 \otimes \xi_{1}$ for the coproduct $\Delta: A_{*} \rightarrow A_{*} \otimes A_{*} \rightarrow$ $B_{*} \otimes A_{*}$; hence for $n=2^{v} \geqq 2, j_{*}^{-1} \xi_{1}^{n} \in\left(H Z_{2}\right)_{*}(b u)$ lies in $E_{2}^{0, n}$ since $\Delta \xi_{1}^{n}=$ $1 \otimes \xi_{1}^{n}$, and we have $x_{n} \in \pi_{n}\left(b u^{2}\right)$ with $(j \wedge 1)_{*} x_{n}=\phi x_{n}=j_{*}^{-1} \xi_{1}^{n}$ since ϕ is epimorphic by (1.7.5). Also, $\xi_{1} \cdot j_{*}^{-1} \xi_{1}^{n}=0$ in $E_{2}^{1, n+1}$ since $\Delta \xi_{1}^{n+1}=\xi_{1} \otimes \xi_{1}^{n}+1 \otimes$ ξ_{1}^{n+1}, and so $2 x_{n}=0$ in $\widetilde{F}^{1, n+1} \subset E_{\infty}$. Therefore, in (2.5.2), $h x_{n} \in \widetilde{G}^{0, n}$ for $x_{n} \in \pi_{n}\left(B U^{2}\right)$ is mapped to 0 by $\times 2: \widetilde{G}^{0, n} \rightarrow \widetilde{G}^{1, n+1}$, whose kernel is a direct sum of groups Z_{2}; and so $x_{n} \in h_{n}+F^{1, n+1} \otimes Q_{2}$ for some $h_{n} \in T_{n}{ }^{1}$. Moreover, $\left(j^{s}\right)_{*}$: $\pi_{*}\left(B U^{s}\right) \rightarrow \pi_{*}\left(\left(H Z_{2}\right)^{s}\right)$ is monomorphic on T_{*}^{s-1}, and is a cochain map by (2.1.2). Now, $H Z_{2} A_{*}^{1}\left(S^{0}\right)=\operatorname{Ext}_{A_{*}}^{1, *}\left(H Z_{2}\left(S^{0}\right), H Z_{2}\left(S^{0}\right)\right)$ is generated by $\left\{\xi_{1}^{n}: n=2^{v} \geqq 1\right\}$ (cf. [16, p. 477]). Thus:
(2.5.4) For any $n=2^{v} \geqq 2$, there exists $h_{n} \in T_{n}{ }^{1} \subset \pi_{n}\left(B U^{2}\right)=B U_{n}^{1}\left(S^{0}\right)$ ($B U=b u Q_{2}$) such that $(j \wedge j)_{*} h_{n}=\xi_{1}^{n}$ in A_{*}, h_{n} is a cocycle and its class h_{n} in $B U A_{n}^{1}\left(S^{0}\right)$ generates Z_{2}. Moreover, if a cocycle $y \in T_{n}^{1}$ is not 0 in $B U A_{n}^{1}\left(S^{0}\right)$, then $n=2^{v} \geqq 2$ and $y=h_{n}$.

On the other hand, let $t_{u}^{\prime}: B P \rightarrow B U=b u Q_{2}$ be the map for $B P$ at 2 induced from the Atiyah-Bott-Shapiro map $t_{u}: M U \rightarrow K$ (cf. [5]). Then:
(2.5.5) $t_{u *}^{\prime} v_{1}=t \in \pi_{2}(b u) \otimes Q_{2}=\pi_{2}(B U)$ for $v_{1}=\left[C P^{1}\right] \in \pi_{2}(B P)$.
(2.5.6) ([11, Cor. 4.23] or [12, Th. 5.5 (b)]) $\alpha_{n}^{\prime}=\left(\left(1 \wedge l_{B P}\right)_{*}-\right.$ $\left.\left(l_{B P} \wedge 1\right)_{*}\right) v_{1}^{n} \in \pi_{2 n}\left(B P^{2}\right)$ is divisible by $a(n)$ given in (ii) of the example, and $\alpha_{n}^{\prime} / a(n) \in \pi_{2}\left(B P^{2}\right)=B P_{2}^{1}\left(S^{0}\right)$ is a cocycle.
(2.5.7) We have the cocycle $\alpha_{n}=\left(t_{u}^{\prime} \wedge t_{u}^{\prime}\right)_{*}\left(\alpha_{n}^{\prime} / a(n)\right) \in \pi_{2 n}\left(B U^{2}\right)=B U_{2 n}^{1}\left(S^{0}\right)$ $\left(B U=b u Q_{2}\right)$ with $a(n) \alpha_{n}=u^{n}-v^{n}$ in $\operatorname{Im}[]$ in (2.5.3), and $\alpha_{n} \in B U A_{2 n}^{1}\left(S^{0}\right)$ generates $Z_{a(n)}$.
(2.5.8) $\quad f_{i}(u, v)=\left(u^{n}-v^{n}\right) / 2^{i} \notin \operatorname{Im}[\quad]$ in (2.5.3) for any $2^{i}>a(n)$.

In fact, the first part of (*) in (2.5.3) for $f=f_{i}$ implies $i \leqq v+2$ if $v \geqq 1$ and $i \leqq 1$ if $v=0$ where $n=2^{v} q, q$: odd (cf. [16, 19.21, 25]), and the second one implies $i \leqq n$. Thus we see (2.5.8).

Proof of (ii): Take any $x \in \pi_{*}\left(B U^{2}\right)=\pi_{*}\left(b u^{2}\right) \otimes Q_{2}$ with $\delta^{1} x=0 . \quad$ Then, for its image \bar{x} in $\pi_{*}\left(b u^{2}\right) \otimes Q$, we have $\delta^{1} \bar{x}=0$ and so $\bar{x}=a\left(u^{n}-v^{n}\right)(a \in Q)$ by [16, 19.20]. Hence, $a=b / a(n)$ for $b \in Q_{2}$ and $x=b \alpha_{n}+y$ for $y \in T_{*}^{1}$ with $\delta^{1} y=0$ by (2.5.7-8); and we see (ii) by (2.5.4) and (2.5.7).

Here, we notice the following notions due to Miller [10]:
(2.6) $f: X \rightarrow Y$ splits if $g \circ f \sim 1: X \rightarrow X$ for some $g: Y \rightarrow X, X$ is E-injective if $t_{E} \wedge 1: X \rightarrow E \wedge X$ splits, and $f: X \rightarrow Y$ is E-monic if $1 \wedge f: E \wedge X \rightarrow E \wedge Y$ splits.

Lemma 2.7. (i) For a ring spectrum E, X is $E A$-injective if X is E-injective; and $\alpha: X_{0} \xrightarrow{f_{0}} X_{1} \rightarrow X_{2}$ is an EA-cofibering if f_{0} is E-monic.
(ii) K is HZA-injective but not HZ-injective; and $\alpha^{H Z}: S^{0} \xrightarrow{\text { t }} H Z \rightarrow C_{t}$ is a $K A$-cofibering, but l is not K-monic.

Proof. (i) is seen by Lemma 2.2 and its proof.
(ii) By $[16,13.92,16.25,17.21]$,
(2.7.1) $\pi_{*}(K)=Z\left[t, t^{-1}\right](\operatorname{deg} t=2), H Z_{*}(K)=Q\left[u, u^{-1}\right](\operatorname{deg} u=2)$ and $K_{*}(K)$ is torsion free.
Thus, $H Z_{*}^{s}(K)=\pi_{*}(H Z) \otimes \cdots \otimes \pi_{*}(H Z) \otimes H Z_{*}(K)$ by $[16,17.9]$, which is $Q\left[u, u^{-1}\right]$ for any s with $\delta_{i *}^{s}=\mathrm{id}$ in (2.1.1). Hence, $H Z A_{*}^{s}(K)=0$ for $s \geqq 1$, and K is $H Z A$-injective. Since $K_{t}^{s}\left(S^{0}\right)$ is torsion free by (2.3.4) and (2.7.1), ${ }_{*}: K_{t}^{s}\left(S^{0}\right) \rightarrow K_{t}^{s}(H Z)=K_{t}^{s}\left(S^{0}\right) \otimes Q\left[u, u^{-1}\right]$ is monomorphic. Hence $\alpha^{H Z}$ is a $K A$-cofibering. Since $(~ \imath \wedge 1)_{*}: \pi_{2}(K)=Z \rightarrow \pi_{2}(H Z \wedge K)=Q$ does not split as groups, we see that K is not $H Z$-injective and l is not K-monic. q.e.d.

§3. $\boldsymbol{E}_{\mathbf{2}}$-functors and comparison of spectral sequences

Let denote by $\mathscr{C} \mathscr{F}$ the category of cofiberings in \mathscr{C}, where
(3.1) a mah $\psi: \alpha_{1} \rightarrow \alpha_{2}$ between cofiberings $\alpha_{j}: X_{j 0} \xrightarrow{f_{j 0}} X_{j 1} \xrightarrow{f_{j 1}} X_{j 2} \quad(j=1,2)$ consists of maps $\psi_{i}: X_{1 i} \rightarrow X_{2 i}(i=0,1,2)$ which make the homotopy commutative diagram

of the induced cofiber sequences of α_{j} for the suspension functor Σ.
Definition 3.2. We define an E_{2}-functor on \mathscr{C} to be an E_{2}-group $C=$ $\left\{C_{t}^{s}, K C_{t}^{s}(; i)\right\}$ in Definition 1.8 with the following (3.2.1) in addition:
(3.2.1) $C_{t}^{s}: \mathscr{C} \rightarrow \mathscr{A}$ is a homotopy functor, $K C_{t}^{s}(; i): \mathscr{C} \mathscr{F} \rightarrow \mathscr{A}$ is a covariant functor and the exact sequences in (1.8.1) are natural, i.e., l, κ and δ commute with the induced homomorphism ψ_{*} and $\psi_{i *}$ for any map $\psi=\left\{\psi_{i}\right\}: \alpha_{1} \rightarrow \alpha_{2}$ in (3.1); hence so are the ones in (1.8.4) for C-cofiberings.

By definition, we see immediately the following
(3.2.2) For a ring spectrum E, the E_{2}-group $E A$ in (2.1.4) is an E_{2}-functor.

Now, for $X_{0} \in \mathscr{C}$, a homology theory h_{*} and E_{2}-functors $B=C$ and D, let be given
(3.3.1) B-injective cofiberings $\alpha_{n}^{B}: X_{n}^{B} \rightarrow W_{n}^{B} \rightarrow X_{n+1}^{B}$ and maps $\bar{\lambda}=\left\{\bar{\lambda}_{n}, \tilde{\lambda}_{n}\right\}$: $\alpha_{n}^{C} \rightarrow \alpha_{n}^{D}$ in $\mathscr{C} \mathscr{F}(n=0,1,2, \ldots)$ in homotopy commutative diagrams

(3.3.2) natural transformations $\phi^{B}: h_{t} \rightarrow B_{t}^{0}$ with $\phi^{B}: h_{t}\left(W_{n}^{B}\right) \cong B_{t}^{0}\left(W_{n}^{B}\right)$, and
(3.3.3) an E_{2}-map $\lambda: C \rightarrow D$, consisting of natural transformations $\lambda: C_{t}^{s} \rightarrow D_{t}^{s}$, $K C_{t}^{s} \rightarrow K D_{t}^{s}$ compatible with l, κ and δ in (1.8.1), such that $\phi^{D}=\lambda \circ \phi^{c}: h_{t} \rightarrow$ $C_{t}^{0} \rightarrow D_{t}^{0}$.

Then, ϕ^{B} and $\left\{\alpha^{B}\right\}$ in (3.3.1-2) give us the spectral sequences

$$
\begin{equation*}
\left\{E(B)_{r}^{s, t}\right\} \text { in Theorem } 1.9 \text { with } E(B)_{2}^{s, t}=B_{t}^{s}\left(X_{0}\right) \Rightarrow h_{t-s}\left(X_{0}\right) \text { (abut). } \tag{3.3.4}
\end{equation*}
$$

Furthermore, the maps $\bar{\lambda}$ in (3.3.1) induce the commutative diagrams

of the exact sequences in (1.1.2). Therefore, by Proposition 1.2, we have the induced map
(3.3.6) $\bar{\lambda}_{*}:\left\{E(C)_{r}^{s, t}\right\} \rightarrow\left\{E(D)_{r}^{s, t}\right\}$ between the spectral sequences in (3.3.4) with

$$
\bar{\lambda}_{*}=\tilde{\lambda}_{s *}: E(C)_{1}^{s, t}=h_{t}\left(W_{s}^{C}\right) \rightarrow E(D)_{1}^{s, t}=h_{t}\left(W_{s}^{D}\right) \Rightarrow \text { id on } h_{t-s}\left(X_{0}\right) \quad \text { (abut) } .
$$

We see that this is represented on the E_{2}-terms by λ in (3.3.3):

$$
\begin{gathered}
\text { (3.3.7) } \quad \bar{\lambda}_{*}=\lambda: E(C)_{2}^{s, t}=C_{t}^{s}\left(X_{0}\right) \rightarrow E(D)_{2}^{s, t}=D_{t}^{s}\left(X_{0}\right), \text { more precisely, } \\
\bar{\phi}^{D} \circ \bar{\lambda}_{*}=\lambda \circ \bar{\phi}^{c} \quad \text { for } \quad \bar{\phi}^{B}=\left(\bar{\delta}^{B}\right)^{s} \circ\left(f_{s *}^{B}\right)^{-1} \circ \phi^{B}: E(B)_{2}^{s, t} \cong B_{t}^{s}\left(X_{0}\right) \quad \text { in (1.3.4). }
\end{gathered}
$$

In fact, we see that $\left(f_{s *}^{D}\right)^{-1} \circ \phi^{D} \circ \tilde{\lambda}_{s *}=\bar{\lambda}_{s *} \circ \lambda \circ\left(f_{s *}^{C}\right)^{-1} \circ \phi^{C}$ and the diagram

is commutative by (3.3.1-3) and (3.2.1); and these imply the desired equality

$$
\bar{\phi}^{D} \circ \bar{\lambda}_{*}=\left(\bar{\delta}^{D}\right)^{s} \circ\left(f_{s *}^{D}\right)^{-1} \circ \phi^{D} \circ \tilde{\lambda}_{s *}=\bar{\lambda}_{0 *} \circ \lambda \circ\left(\bar{\delta}^{c}\right)^{s} \circ\left(f_{s *}^{c}\right)^{-1} \circ \phi^{c}=\lambda \circ \bar{\phi}^{c} .
$$

For this induced map $\bar{\lambda}_{*}$, we have the following
Theorem 3.4. In addition to (3.3.1-3), assume that
(3.4.1) each α_{n}^{C} is also a D-injective cofibering and $\phi^{D}: h_{t}\left(W_{n}^{C}\right) \cong D_{t}^{0}\left(W_{n}^{C}\right)$.

Then, the spectral sequences $\left\{E(B)_{r}^{s, t}\right\}(B=C, D)$ in (3.3.4) are isomorphic for $r \geqq 2$ by the induced map $\bar{\lambda}_{*}$ in (3.3.6), and $\lambda: C_{t}^{s}\left(X_{0}\right) \cong D_{t}^{s}\left(X_{0}\right)$ for any s and t.

Proof. By (3.4.1), Theorem 1.9 for ϕ^{D} and $\left\{\alpha_{n}^{c}\right\}$ shows that

$$
\lambda: C_{t}^{s}\left(X_{0}\right) \cong D_{t}^{s}\left(X_{0}\right), \quad \bar{\lambda}_{*}: E(C)_{r}^{s, t} \cong E(D)_{r}^{s, t} \quad \text { for } \quad r=2 ;
$$

hence the latter is isomorphic also for any $r \geqq 2$.
q.e.d.

By weakening the assumption (3.4.1), we can prove the following

Theorem 3.5. In addition to (3.3.1-3), assume the following (3.5.1-3) for some integers $a \geqq 0$ and b :
(3.5.1) α_{n}^{c} is a D-cofibering if $n \leqq a$.
(3.5.2) $D_{t}^{s}\left(W_{n}^{C}\right)=0$ if $n<t-b-1=s+n<a$ (when $a \geqq 2$).
(3.5.3) $\quad \phi^{D}: h_{t}\left(W_{s}^{C}\right) \rightarrow D_{t}^{0}\left(W_{s}^{C}\right)$ is
(*) monomorphic if $t-b=s \leqq a$ and epimorphic if $t-b-1=s<a$.
(i) Then, $\bar{\lambda}_{*}=\lambda: E(C)_{2}^{s, t}=C_{t}^{s}\left(X_{0}\right) \rightarrow E(D)_{2}^{s, t}=D_{t}^{s}\left(X_{0}\right)$ in (3.3.7) is (*).
(ii) Furthermore, for the subgroups $\bar{Z} E$ in Corollary 1.7 (i), the restriction $\lambda \mid \bar{Z} C_{t}^{s}\left(X_{0}\right): \bar{Z} C_{t}^{s}\left(X_{0}\right) \rightarrow \bar{Z} D_{t}^{s}\left(X_{0}\right)$ for $t=b+s$ is epimorphic if $s \leqq a+1$; hence it is isomorphic if $s \leqq a$ by (i).

Proof. (i) By (3.5.1) and (3.3.3), we have the commutative diagram

of the exact sequences in (1.8.4) for $n \leqq a$, where
(3.5.5) $\quad C_{t}^{*}=D_{t}^{*}=0$ if $*<0, C_{t}^{*}\left(W_{n}^{C}\right)=0$ if $* \geqq 1$, and $\bar{\delta}^{D}: D_{t}^{n}\left(X_{s-n}^{C}\right) \rightarrow$ $D_{t}^{n+1}\left(X_{s-n-1}^{C}\right) \quad(0<n<s)$ and $\lambda=\phi^{D} \circ\left(\phi^{C}\right)^{-1}: C_{t}^{0}\left(W_{s}^{C}\right) \rightarrow D_{t}^{0}\left(W_{s}^{C}\right)$ are (*) in (3.5.3),
because $\phi^{D}=\lambda \circ \phi^{c}$ and ϕ^{c} is isomorphic for W_{s}^{c} by (3.3.2-3). Thus, by 5Lemma and by induction, we see that
(3.5.6) $\quad \lambda: C_{t}^{n}\left(X_{s-n}^{c}\right) \rightarrow D_{t}^{n}\left(X_{s-n}^{c}\right)(0 \leqq n \leqq s)$ is also (*); and (i) holds.
(ii) By (3.3.5-6) and the definition of $\bar{Z} B_{t}^{s}\left(X_{0}\right), \lambda\left(\bar{Z} C_{t}^{s}\left(X_{0}\right)\right) \subset \bar{Z} D_{t}^{s}\left(X_{0}\right)$ holds and (ii) is proved by showing the following in the commutative diagram (3.3.5):
(3.6.1) Let $t=b+s \leqq a+b+1$. Then, for any $y \in h_{t}\left(X_{s}^{D}\right)$, there exist $x_{n} \in h_{b+n}\left(X_{n}^{C}\right) \quad(0 \leqq n \leqq s)$ with $x_{0}=y_{0}$ and $\partial \bar{\lambda}_{n *} x_{n}=y_{n-1}$ for $n>0$, where $y_{n}=\partial^{s-n} y$.
In fact, (3.6.1) shows that $\partial \bar{\lambda}_{s *} x_{s}=\partial y$; hence $y-\bar{\lambda}_{s *} x_{s} \in \operatorname{Ker} \partial=\operatorname{Im} g_{*}^{D}$, and so $f_{*}^{D} y-\tilde{\lambda}_{s *} f_{*}^{C} x_{s} \in \operatorname{Im} d_{1}^{D}\left(d_{1}^{B}=f_{*}^{B} \circ g_{*}^{B}\right)$ for any $y \in h_{t}\left(X_{s}^{D}\right)$ and some $x_{s} \in h_{t}\left(X_{s}^{C}\right)$. Thus, $\tilde{\lambda}_{s *}: \operatorname{Im} f_{*}^{C} / \operatorname{Im} d_{1}^{C} \rightarrow \operatorname{Im} f_{*}^{D} / \operatorname{Im} d_{1}^{D}$ is epimorphic, which means (ii).

Now, assume inductively that there exists x_{n} in (3.6.1) for $n<s$. Then, $\bar{\lambda}_{*} x_{n}-y_{n} \in \operatorname{Ker} \partial=\operatorname{Im} g_{*}^{D}$ and so $\tilde{\lambda}_{n *} f_{*}^{C} x_{n}=f_{*}^{D}\left(\bar{\lambda}_{*} x_{n}-\partial y_{n+1}\right) \in \operatorname{Im} d_{1}^{D}\left(\bar{\lambda}=\bar{\lambda}_{n}\right)$. Thus $\tilde{\lambda}_{n} f_{*}^{C} x_{n}=0$ in $E(D)_{2}^{n, m}(m=b+n)$; hence $f_{*}^{C} x_{n}=0$ in $E(C)_{2}^{n, m}$ by (i), and $f_{*}^{C} x_{n}=d_{1}^{c} w=f_{*}^{c} g_{*}^{c} w, x_{n}-g_{*}^{c} w=\partial x$ for some $w \in h_{m}\left(W_{n-1}^{c}\right), \quad x \in h_{m+1}\left(X_{n+1}^{C}\right)$. Therefore, $\partial^{2} \bar{\lambda}_{*}^{\prime} x=\partial \bar{\lambda}_{*} x_{n}=\partial y_{n}\left(\bar{\lambda}^{\prime}=\bar{\lambda}_{n+1}\right)$; hence
(3.6.2) $\quad g_{*}^{D} z=\partial \bar{\lambda}_{*}^{\prime} x-y_{n}=\partial\left(\bar{\lambda}_{*}^{\prime} x-y_{n+1}\right)$ for some $z \in h_{m}\left(W_{n-1}^{D}\right)$.

This implies $d_{1}^{D} z=f_{*}^{D} g_{*}^{D} z=0$, and so we see by (i) that
(3.6.3) $z-\tilde{\lambda}_{n-1 *} w^{\prime} \in \operatorname{Im} d_{1}^{D}$ for some $w^{\prime} \in h_{m}\left(W_{n-1}^{C}\right)$ with $d_{1}^{C} w^{\prime}=f_{*}^{C} g_{*}^{c} w^{\prime}=$ 0 ; hence $g_{*}^{C} w^{\prime}=\partial x^{\prime}$ and so $\partial \bar{\lambda}_{*}^{\prime} x^{\prime}=\bar{\lambda}_{*} g_{*}^{c} w^{\prime}=g_{*}^{D} z$ for some $x^{\prime} \in h_{m+1}\left(X_{n+1}^{C}\right)$.
Thus $\partial \bar{\lambda}_{*}^{\prime} x_{n+1}=y_{n}$ for $x_{n+1}=x-x^{\prime}$; and (3.6.1) is proved by induction. q.e.d.
As applications to Theorems 3.4-5, we compare the Adams spectral sequences $\left\{E(G)_{r}^{s, t}\right\}$ given in Theorem 2.3 for
(3.7.1) ring spectra $G=E$ and F with a unit-preserving map $\lambda: E \rightarrow F$ $\left(l_{F} \sim \lambda \circ l_{E}: S^{0} \rightarrow F\right.$).
In this case, λ induces $\bar{\lambda}: \bar{E}=C_{t_{E}} \rightarrow \bar{F}=C_{L_{F}}$ (cf. $[16,8.31]$) and the maps
(3.7.2) $\bar{\lambda}=\left\{\bar{\lambda}_{n}, \tilde{\lambda}_{n}\right\}: \alpha_{n}^{E} \rightarrow \alpha_{n}^{F}$ between the cofiberings of (2.1.6) in

given by $\bar{\lambda}_{n}=\bar{\lambda}^{n} \wedge 1: X_{n}^{E}=\bar{E}^{n} \wedge X_{0} \rightarrow X_{n}^{F}=\bar{F}^{n} \wedge X_{0}$ and $\tilde{\lambda}_{n}=\lambda \wedge \bar{\lambda}_{n}(n \geqq 0)$. Furthermore, $\lambda^{s+1} \wedge 1: E^{s+1} \wedge X_{0} \rightarrow F^{s+1} \wedge X_{0}(s \geqq 0)$ induce the cochain maps $\lambda_{*}: E_{t}^{*}(X) \rightarrow F_{t}^{*}(X) \quad(X \in \mathscr{C})$ and $\lambda_{*}: K E_{t}^{*}(\alpha ; i) \rightarrow K F_{t}^{*}(\alpha ; i) \quad(\alpha \in \mathscr{C} \mathscr{F})$, which induce the E_{2}-map

$$
\begin{equation*}
\lambda_{*}: E A=\left\{E A_{t}^{s}, K E A_{t}^{s}(\quad ; i)\right\} \rightarrow F A=\left\{F A_{t}^{s}, K F A_{t}^{s}(\quad ; i)\right\} \tag{3.7.3}
\end{equation*}
$$

between the E_{2}-functors $G A$ given in (2.1.4) (see (3.2.2)). This satisfies
(3.7.4) $\quad \phi^{F}=\lambda_{*} \circ \phi^{E}: \pi_{t}(X) \rightarrow E A_{t}^{0}(X) \rightarrow F A_{t}^{0}(X)$ for ϕ^{G} in (2.1.5).

Thus, by Theorem 2.3 and (3.3.6-7), we have the map
(3.7.5) $\quad \bar{\lambda}_{*}:\left\{E(E)_{r}^{s, t}\right\} \rightarrow\left\{E(F)_{r}^{s, t}\right\}$ between the Adams spectral sequences with

$$
\bar{\lambda}_{*}=\lambda_{*}: E(E)_{2}^{s, t}=E A_{t}^{s}\left(X_{0}\right) \rightarrow E(F)_{2}^{s, t}=F A_{t}^{s}\left(X_{0}\right) \Rightarrow \text { id on } \pi_{t-s}\left(X_{0}\right) \quad \text { (abut). }
$$

Now, $\quad\left(l_{F} \wedge 1\right)_{*}=(\lambda \wedge 1)_{*} \circ\left(l_{E} \wedge 1\right)_{*}: F_{t}^{s}(X) \rightarrow F_{t}^{s}(E \wedge X) \rightarrow F_{t}^{s}(F \wedge X) \quad$ is monomorphic by Lemma 2.2, and so is $\left(l_{E} \wedge 1\right)_{*}$. Hence:
(3.7.6) $K F_{t}^{s}\left(\omega^{E} \wedge X ; 0\right)=0$ and $\alpha_{n}^{E}=\omega^{E} \wedge X_{n}^{E}$ is also an $F A$-cofibering, by definition. Therefore, Theorems 3.4-5 imply the following

Theorem 3.8. Let $\lambda: E \rightarrow F$ be a unit-preserving map between ring spectra, and consider $W_{n}^{E}=E \wedge X_{n}^{E}=E \wedge \bar{E}^{n} \wedge X_{0}(n \geqq 0)$ in (3.7.2) for $X_{0} \in \mathscr{C}$. Then:
(i) $\bar{\lambda}_{*}: E(E)_{r}^{s, t} \rightarrow E(F)_{r}^{s, t}$ in (3.7.5) is isomorphic for $r \geqq 2$, if
(3.8.1) each W_{n}^{E} is $F A$-injective and ϕ^{F} (or λ_{*}) in (3.7.4) for $X=W_{n}^{E}$ is isomorphic.
(ii) Assume that there are integers $a \geqq 0$ and b such that
(3.8.2) $F A_{t}^{s}\left(W_{n}^{E}\right)=0$ if $n<t-b-1=n+s<a$ (when $a \geqq 2$), and
(3.8.3) $\quad \phi^{F}\left(\right.$ or $\left.\lambda_{*}\right)$ in (3.7.4) for $X=W_{s}^{E}$ is
(*) monomorphic if $t-b=s \leqq a$ and epimorphic if $t-b-1=s<a$.
Then, $\bar{\lambda}_{*}: E(E)_{2}^{s, t} \rightarrow E(F)_{2}^{s, t}$ in (3.7.5) is also (*). Furthermore the restriction

$$
\begin{equation*}
\bar{\lambda}_{*}=\lambda_{*}: \bar{Z} E(E)_{2}^{s, t}=\bar{Z} E A_{t}^{s}\left(X_{0}\right) \rightarrow \bar{Z} E(F)_{2}^{s, t}=\bar{Z} F A_{t}^{s}\left(X_{0}\right) \tag{3.8.4}
\end{equation*}
$$

for $t=b+s$ is isomorphic if $s \leqq a$ and epimorphic if $s=a+1$.
(iii) (ii) holds for $a=1$ (resp.0) and any b, if
(3.8.5) $\quad \phi^{F}: \pi_{*}(E) \rightarrow F A_{*}^{0}(E)$ is isomorphic (resp. monomorphic), and
(3.8.6) $\quad E_{*}(E)$ and $E_{*}\left(X_{0}\right)\left(\right.$ resp. $E_{*}\left(X_{0}\right)$) are the flat $E_{*}\left(S^{0}\right)$-modules.

Proof of (iii). We see inductively that
(3.8.7) if $E_{*}(E)$ and $E_{*}\left(X_{0}\right)$ are flat, then so is $E_{*}\left(X_{n}^{E}\right)$ for any n, because then $E_{*}\left(W_{n}^{E}\right)=E_{*}(E) \otimes E_{*}\left(X_{n}^{E}\right)$ by $[16,13.75]$, and
(3.8.8) the split exact sequence $0 \rightarrow E_{*}\left(X_{n}^{E}\right) \rightarrow E_{*}\left(W_{n}^{E}\right) \rightarrow E_{*}\left(X_{n+1}^{E}\right) \rightarrow 0$ holds, by Lemma 2.2. Then, by [16, Note after 13.75], we see that
(3.8.9) if (3.8.6) holds, then for $n \leqq a=1$ (resp. 0), $F_{*}^{t}\left(W_{n}^{E}\right)=\pi_{*}\left(F^{t+1} \wedge E\right) \otimes$ $E_{*}\left(X_{n}^{E}\right)$, and so $F A_{*}^{t}\left(W_{n}^{E}\right)=F A_{*}^{t}(E) \otimes E_{*}\left(X_{n}^{E}\right)$ and $\phi^{F}=\phi^{F} \otimes \mathrm{id}: \pi_{*}\left(W_{n}^{E}\right)=$ $\pi_{*}(E) \otimes E_{*}\left(X_{n}^{E}\right) \rightarrow F A_{t}^{0}\left(W_{n}^{E}\right)=F A_{*}^{0}(E) \otimes E_{*}\left(X_{n}^{E}\right)$.

Thus (3.8.5-6) imply (3.8.3) for $a=1$ (resp. 0).
q.e.d.

Example 3.9. In Theorem 3.8, (i) is valid when $E=F$ for any unitpreserving map $\lambda: E \rightarrow E$, or when λ is the Thom map $\Phi: M O \rightarrow H Z_{2}$.
Also, under the assumption that $E_{*}\left(X_{0}\right)$ is flat, (iii) is valid for $a=1$ when λ is the Atiyah-Bott-Shapiro map $t_{u}: M U \rightarrow K$ or $t_{u}^{B P}: B P \rightarrow K Q_{p}$ at a prime p induced from t_{u}; and for $a=0$ when λ is the Conner-Floyd map $t_{s u}: M S U \rightarrow K O$ (cf. [15, 7.10]).

Proof. When $F=E$, (3.8.1) holds by Lemma 2.2. $M O \simeq \bigvee_{i} \sum^{n_{i}} H Z_{2}$ (homotopy equivalent) by [4, p. 207], and so $W_{n}^{M O} \simeq\left(\bigvee_{i} \Sigma^{n_{i}} H Z_{2}\right) \wedge X_{n}^{M O}$. Hence, we see that $H Z_{2} A_{t}^{s}\left(W_{n}^{M O}\right)=\operatorname{Ext}_{A_{*}}^{s, t}\left(Z_{2}, \quad\left(H Z_{2}\right)_{*}\left(W_{n}^{M O}\right)\right) \quad\left(A_{*}=\right.$ $\left.\left(H Z_{2}\right)_{*}\left(H Z_{2}\right)\right)$ in (2.3.2) is isomorphic to $\pi_{t}\left(W_{n}^{M O}\right)$ by $\phi^{H Z_{2}}$ if $s=0$ and is 0 if $s>0$; and (3.8.1) holds.
(3.8.6) holds in each case by (2.4.2). $\phi^{K}: \pi_{*}(M U) \cong P K_{*}(M U)$ by the Hattori-Stong theorem (cf. [4, II, 14.1]). By [4, II, § 16], BP is the direct summand of $M U Q_{p}$, and so the isomorphism ϕ^{K} induces $\phi^{K^{\prime}}: \pi_{*}(B P) \cong$ $P K_{*}^{\prime}(B P)\left(K^{\prime}=K Q_{p}\right)$. Also, $\phi^{K O}: \pi_{*}(M S U) \rightarrow P K O_{*}(M S U)$ is monomorphic by $[15,7.10]$. Since $P F_{*}(X)=F A_{*}^{0}(X)$ by (2.4.3), these show the latter half.

> q.e.d.

EXAMPle 3.10. Theorem 3.8 (ii) is valid for the Thom map $\Phi^{B P}: B P \rightarrow H Z_{p}$ at a prime $p, X_{0}=S^{0}, a=q-r-1$ and $b=k q+r$ with $0<r<q$, where $q=2(p-1) ;$ and $B P A_{t}^{s}\left(S^{0}\right)(q \nmid t), H Z_{p} A_{n q+t}^{s}\left(S^{0}\right)(s+1<t<q), \bar{Z} H Z_{p} A_{n q+t}^{s}\left(S^{0}\right)$ $(s<t<q)$ are 0 , and $\Phi_{*}^{B P}: \bar{Z} B P A_{n q}^{s}\left(S^{0}\right) \rightarrow \bar{Z} H Z_{p} A_{n q}^{s}\left(S^{0}\right)(s<q)$ is epimorphic.

Proof. We use the following (3.10.1) (cf. [4, II, § 16]):
(3.10.1) If $q \nmid t$, then $\pi_{t}(B P), B P_{t}(B P)$ and $H Z_{p} A_{t+s}^{s}(B P)$ are all 0 , (for the last one, we see that $\operatorname{Ext}_{A_{*}}^{*, *}\left(Z_{p},\left(H Z_{p}\right)_{*}(B P)\right)\left(A_{*}=\left(H Z_{p}\right)_{*}\left(H Z_{p}\right)\right)$ in (2.3.2) is $Z_{p}\left[a_{0}, a_{1}, \ldots\right]\left(a_{i} \in \operatorname{Ext}^{1, t_{i}}, t_{i}=2\left(p^{i}-1\right)+1\right)$ by the structure of $\left(H Z_{p}\right)_{*}(B P)$ in [7] and by the same argument as in [16, pp. 500-503].)
Then, according to (2.4.2) and (3.8.7-9), we see the following
(3.10.2) If $q \nmid t$, then $B P_{t}^{s}\left(S^{0}\right), B P_{t}\left(X_{n}^{B P}\right)$ and $H Z_{p} A_{t+s}^{s}\left(W_{n}^{B P}\right)$ are 0 , where $X_{0}=S^{0}$; which implies (3.8.2) and the desired results. q.e.d.
§4. Mahowald spectral sequences and double \boldsymbol{E}_{2}-functors
Let $D=\left\{D_{u}^{t}, K D_{u}^{t}\right\}$ be an E_{2}-functor, and for a given X_{0}, assume that (4.1.1) there exist D-cofiberings $\omega_{s}: X_{s} \xrightarrow{i_{s}} W_{s} \xrightarrow{j_{s}+1} X_{s+1}$ for $s \geqq 0$. Then, by (1.8.4), we have the exact sequences

$$
\begin{align*}
\cdots & D_{u}^{t}\left(X_{s}\right) \xrightarrow{i_{*}} D_{u}^{t}\left(W_{s}\right) \xrightarrow{j_{*}} D_{u}^{t}\left(X_{s+1}\right) \stackrel{\bar{\delta}}{\longrightarrow} D_{u}^{t+1}\left(X_{s}\right) \tag{4.1.2}\\
& \longrightarrow\left(i_{*}=i_{s *}, j_{*}=j_{s+1 *}\right)
\end{align*}
$$

and the same argument as Proposition 1.2 and $D_{u}^{t}=0(t<0)$ imply the following

Proposition 4.2. For an E_{2}-functor D and X_{0} with (4.1.1), we have the spectral sequence $\left\{\widetilde{E}_{u, r}^{s, t}, d_{r}: \widetilde{E}_{u, r}^{s, t} \rightarrow \widetilde{E}_{u, r}^{s+r, t-r+1}\right\}$ associated to (4.1.2) such that
(4.2.1) $\quad d_{1}=i_{*} \circ j_{*}: \tilde{E}_{u, 1}^{s, t}=D_{u}^{t}\left(W_{s}\right) \rightarrow \widetilde{E}_{u, 1}^{s+1, t}=D_{u}^{t}\left(W_{s+1}\right)$, and
(4.2.2) $\left\{\widetilde{E}_{u, r}^{s, t}\right\}$ converges to $D_{u}^{s+t}\left(X_{0}\right), \widetilde{E}_{u, \infty}^{s, t} \cong F_{u}^{s, t} / F_{u}^{s+1, t-1}$, in the sense of (1.6.2), by the finite filtration $D_{u}^{s+t}\left(X_{0}\right)=F_{u}^{0, s+t} \supset \cdots \supset F_{u}^{s, t}=\operatorname{Im}\left[\bar{\delta}^{s}: D_{u}^{t}\left(X_{s}\right) \rightarrow\right.$ $\left.D_{u}^{t+s}\left(X_{0}\right)\right] \supset F_{u}^{s+1, t-1} \supset \cdots \supset F_{u}^{s+t+1,-1}=0$.

We now represent the E_{2}-term of this spectral sequence in a similar way to Theorem 1.9.

Definition 4.3. Let be given a collection of covariant functors

$$
A=\left\{A_{u}^{s, t}: \mathscr{C} \rightarrow \mathscr{A} ; K A_{u}^{s, t}(\quad ; i), L A_{u}^{s, t}(\quad ; i, j): \mathscr{C} \mathscr{F} \rightarrow \mathscr{A} \mid s, t, u \in Z ; i, j=0,1,2\right\}
$$

with $A_{u}^{s, t}=K A_{u}^{s, t}(\quad ; i)=L A_{u}^{s, t}(\quad ; i, j)=0$ for $s<0$ or $t<0$.
(1) We say that A is a double E_{2-}-functor on \mathscr{C}, if
(4.3.1) for any $\alpha: X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2}$ in $\mathscr{C} \mathscr{F}$, there hold natural exact sequences

$$
\begin{aligned}
& \cdots \xrightarrow{\longrightarrow} L A_{u}^{s, t}(\alpha ; i, j) \xrightarrow{l} A_{u, j}^{s, t}(\alpha ; i) \xrightarrow{\kappa} L A_{u}^{s, t}(\alpha ; i+j, j+1) \\
& \xrightarrow{\longrightarrow} L A_{u}^{s+1, t}(\alpha ; i, j) \longrightarrow
\end{aligned}
$$

$\rho=\rho_{i, j}$ for $\rho=\imath, \quad \kappa, \delta$, where $A_{u, j}^{s, t}(\alpha ; i)=K A_{u}^{s, t}(\alpha ; i) \quad(j=0,2), \quad A_{u, 1}^{s, t}(\alpha ; i)=$ $A_{u}^{s, t}\left(X_{i}\right)$ and $L A_{u}^{s, t}(\alpha ; a, b)=L A_{u-1}^{s, t}(\alpha ; a-3, b)$ if $a \geqq 3,=L A_{u+1}^{s, t+1}(\alpha ; a, b-3)$ if $b \geqq 3$; and these satisfy the equalities

$$
\begin{equation*}
f_{i *}=t_{i+1,1} \circ \kappa_{i+1,0} \circ t_{i+1,2} \circ \kappa_{i, 1}: A_{u}^{s, t}\left(X_{i}\right) \rightarrow A_{u}^{s, t}\left(X_{i+1}\right) \text { for } \quad i=0,1 \tag{4.3.2}
\end{equation*}
$$

(2) We call α : $X_{0} \rightarrow X_{1} \rightarrow X_{2}$ in $\mathscr{C F F}$ an $A(1)$-injective cofibering if it is an $A(1)$-cofibering, i.e., $K A_{u}^{s, t}(\alpha ; 0)=0=L A_{u}^{s, t}(\alpha ; i, j)$ for $j=0$ (hence for $i=0$ by (4.3.1)), and X_{1} is $A(1)$-injective, i.e., $A_{u}^{s, t}\left(X_{1}\right)=0$ for $s \neq 0$.
(3) We say that A is related to an $E_{2}-$ functor D at X_{0} by ψ^{D} and $\left\{\omega_{s}\right\}$, if (4.3.3) each $\omega_{s}: X_{s} \xrightarrow{i_{s}} W_{s} \xrightarrow{j_{s+1}} X_{s+1}$ is a D-cofibering and $A(1)$-injective cofibering and $\psi^{D}: D_{u}^{t} \rightarrow A_{u}^{0, t}$ is a natural transformation with $\psi^{D}: D_{u}^{t}\left(W_{s}\right) \cong A_{u}^{0, t}\left(W_{s}\right)$.

By this definition, the exact sequences in (4.3.1-2) imply the following:
(4.3.4) Any $A(1)$-cofibering $\alpha: X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2}$ induces the exact sequence

$$
\cdots \longrightarrow A_{u}^{s, t}\left(X_{0}\right) \xrightarrow{f_{0 *}} A_{u}^{s, t}\left(X_{1}\right) \xrightarrow{f_{1 *}} A_{u}^{s, t}\left(X_{2}\right) \xrightarrow{\bar{\delta}} A_{u}^{s+1, t}\left(X_{0}\right) \longrightarrow \cdots,
$$

where $\bar{\delta}=\left(\kappa_{1,0} \circ l_{1,2} \circ \kappa_{0,1}\right)^{-1} \circ \delta_{1,1} \circ\left(l_{2,1} \circ \kappa_{2,0} \circ l_{2,2}\right)$ by the isomorphisms κ and l in it.

Hence, for ω_{s} and ψ in (4.3.3), the following (4.3.5-6) hold:
(4.3.5) $\bar{\delta}: A_{u}^{n, t}\left(X_{s+1}\right) \cong A_{u}^{n+1, t}\left(X_{s}\right)$ for $n \geqq 1$, and we have the exact sequence

$$
0 \longrightarrow A_{u}^{0, t}\left(X_{s}\right) \xrightarrow{i_{s *}} A_{u}^{0, t}\left(W_{s}\right) \xrightarrow{j_{s+1 *}} A_{u}^{0, t}\left(X_{s+1}\right) \xrightarrow{\bar{\delta}} A_{u}^{1, t}\left(X_{s}\right) \longrightarrow 0 .
$$

(4.3.6) $\bar{\psi}=\bar{\delta}^{s} \circ\left(i_{s *}^{-1} \circ \psi\right): \widetilde{E}_{u, 2}^{s, t} \cong A_{u}^{0, t}\left(X_{s}\right) / \operatorname{Im} j_{s *} \cong A_{u}^{s, t}\left(X_{0}\right) \quad$ for $\quad\left\{\widetilde{E}_{u, r}^{s, t}\right\} \quad$ in Proposition 4.2. Moreover, $\psi: D_{u}^{0}\left(X_{s}\right) \cong A_{u}^{0,0}\left(X_{s}\right)$. In fact, the first isomorphism is seen in the same way as (1.3.4) by the exact sequences in (4.1.2) and (4.3.5) with ψ in (4.3.3); and the second one by those for $t=0, D_{u}^{-1}=0$ and 5-Lemma. Thus, we have proved the following

Theorem 4.4 (Mahowald spectral sequence). In case of Definition 4.3(3), we have the spectral sequence $\left\{\tilde{E}_{u, r}^{s, t}\right\}$ in Proposition 4.2 which converges to $D_{u}^{s+t}\left(X_{0}\right)$ and whose E_{2}-term $\tilde{E}_{u, 2}^{s, t}$ is isomorphic to $A_{u}^{s, t}\left(X_{0}\right)$ by $\bar{\psi}$ in (4.3.6): $\widetilde{E}_{u, 2}^{s, t}=A_{u}^{s, t}\left(X_{0}\right) \Rightarrow D_{u}^{s+t}\left(X_{0}\right)(c o n v)$.

The same proof as Corollary 1.7 and the last half of (4.3.6) give us the following

Corollary 4.5. (i) In Theorem 4.4. $\bar{Z} A_{u}^{s, t}\left(X_{0}\right)=\operatorname{Im}\left[\bar{\psi}=\bar{\delta}^{s} \circ \psi: D_{u}^{t}\left(X_{s}\right) \rightarrow\right.$ $\left.A_{u}^{s, t}\left(X_{0}\right)\right]$ for $\bar{Z} A_{u}^{s, t}\left(X_{0}\right)=\bar{\psi}\left(\widetilde{Z}_{u, \infty}^{s, t} / \widetilde{B}_{u, 2}^{s, t}\right)=\bar{\psi}\left(\operatorname{Im} i_{*} / i_{*} \operatorname{Ker} \bar{\delta}\right) ;$ and $\bar{Z} A_{u}^{s, 0}\left(X_{0}\right)=$ $A_{u}^{s, 0}\left(X_{0}\right)$.
(ii) When $\left\{\tilde{E}_{u, r}^{s, t}\right\}$ collapses, the similar results to Corollary 1.7 (ii) hold.

By Theorem 4.4, we can construct a spectral sequence which converges to a given E_{2}-functor, or to the E_{2}-term of a spectral sequence in Theorem 1.9, by finding a double E_{2}-functor related to it. We call a spectral sequence of this theorem a Mahowald one according to Miller [10].

For a ring spectrum E and an E_{2}-functor $D=\left\{D_{u}^{t}, K D_{u}^{t}(; i)\right\}$, we obtain a double E_{2}-functor $E D$ in the same way as (2.1.1-4), as follows: For $X \in \mathscr{C}$, let

$$
\begin{equation*}
D E_{u}^{*, t}(X)=\left\{D E_{u}^{s, t}(X)=D_{u}^{t}\left(E^{s+1} \wedge X\right)(s \geqq 0),=0(s<0)\right\} \tag{4.6.1}
\end{equation*}
$$

be the cochain complex with $\delta^{s}=\sum_{i=0}^{s+1}(-1)^{i} \delta_{i *}^{s}$ for $\delta_{i}^{s}: E^{s+1} \wedge X \rightarrow E^{s+2} \wedge X$ in (2.1.1). Also, for $\alpha: X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2}$ in $\mathscr{C F}$, consider $E^{s} \wedge \alpha: E^{s} \wedge X_{0} \xrightarrow{1 \wedge f_{0}}$ $E^{s} \wedge X_{1} \xrightarrow{1 \wedge f_{1}} E^{s} \wedge X_{2}$ and $\delta_{i}^{s}=\delta_{i}^{s} \wedge 1: E^{s+1} \wedge \alpha \rightarrow E^{s+2} \wedge \alpha$ in $\mathscr{C} \mathscr{F}$. Then, according to (3.2.1),
(4.6.2) $K D E_{u}^{*, t}(\alpha ; i)=\left\{K D E_{u}^{s, t}(\alpha ; i)=K D_{u}^{t}\left(E^{s+1} \wedge \alpha ; i\right)(s \geqq 0),=0(s<0)\right\}$
is the cochain complex with $\delta^{s}=\sum_{i=0}^{s+1}(-1)^{i} \delta_{i *}^{s}$, and by the exact sequences

$$
\begin{align*}
& \cdots \xrightarrow{\longrightarrow} K D E_{u}^{s, t}(\alpha ; i) \xrightarrow{\iota} D E_{u}^{s, t}\left(X_{i}\right) \xrightarrow{\kappa} K D E_{u}^{s, t}(\alpha ; i+1) \tag{*}\\
& \xrightarrow[u]{s, t+1}(\alpha ; i) \longrightarrow \cdots
\end{align*}
$$

in (1.8.1) for $E^{s+1} \wedge \alpha, l_{i, 0}=l, l_{i, 1}=\kappa$ and $l_{i+1,2}=\delta$ give us
(4.6.3) the subcomplexes $L D E_{u}^{*, t}(\alpha ; i, j)=\left\{\operatorname{Ker} t_{i, j}\right\}$ with the exact sequences

$$
0 \rightarrow L D E_{u}^{s, t}(\alpha ; i, j) \rightarrow D E_{u, j}^{*, t}(\alpha ; i) \rightarrow L D E_{u}^{*, t}(\alpha ; i+j, j+1) \rightarrow 0
$$

of cochain complexes $\left(D E_{u, 0}^{*, t}=D E_{u, 2}^{*, t}=K D E_{u}^{*, t}, D E_{u, 1}^{*, t}(\alpha ; i)=\right.$ $D E_{u}^{*, t}\left(X_{i}\right)$, and $L D E_{u}^{*, t}(\alpha ; a, b)=L D E_{u-1}^{*, t}(\alpha ; a-3, b)(a \geqq 3),=L D E_{u+1}^{*, t+1}$ $(\alpha ; a, b-3)(b \geqq 3))$.
(4.6.4) Thus we have the double E_{2}-functor $E D$, where $E D_{u}^{s, t}(X), K E D_{u}^{s, t}(\alpha ; i)$ and $L E D_{u}^{s, t}(\alpha ; i, j)$ are the cohomologies H^{s} of the cochain complexes in (4.6.1-3). Moreover, in the same way as ϕ^{E} in (2.1.5), we have

$$
\begin{equation*}
\psi^{D}=\left(t_{E} \wedge 1\right)_{*}: D_{u}^{t}(X) \rightarrow \operatorname{Ker} \delta^{0}=H^{0}\left(D E_{u}^{*, t}(X)\right)=E D_{u}^{0, t}(X) ; \tag{4.6.5}
\end{equation*}
$$

and by the same proof as Lemma 2.2, we see that

$$
\begin{equation*}
\psi^{D}: D_{u}^{t}(E \wedge X) \cong E D_{u}^{0, t}(E \wedge X), \quad \text { and } \quad E D_{u}^{s, t}(E \wedge X)=0 \quad \text { if } \quad s>0 \tag{4.6.6}
\end{equation*}
$$

Now, consider the case that
(4.6.7) each $E^{s} \wedge \alpha_{n}^{E}$ for $\alpha_{n}^{E}: X_{n} \xrightarrow{{ }^{I_{E}} \wedge 1} E \wedge X_{n} \rightarrow X_{n+1}$ in (2.1.6) is a D-cofibering.

Then $K D E_{u}^{s, t}\left(\alpha_{n}^{E} ; 0\right)=0$ by definition. Hence $\operatorname{Ker} t_{0,0}=0$ and $\operatorname{Ker} t_{2,0}=$ $\operatorname{Im} t_{0,2}=0$ in (*). Also, $l_{1,2}=0$, $\operatorname{Ker} t_{1,2}=\operatorname{Im} l_{0,1}$ and $l_{1,0} \circ l_{0,1}=l \circ \kappa=$ $\left(l_{E} \wedge 1\right)_{*}$ by (1.8.2), which show that $l_{1,0}$ is monomorphic since so is $\left(l_{E} \wedge 1\right)_{*}$ and $t_{0,1}$ is epimorphic. Thus $L D E_{u}^{s, t}\left(\alpha_{n}^{E} ; i, 0\right)=\operatorname{Ker} t_{i, 0}=0$; and we see the following:
(4.6.8) If (4.6.7) holds, then α_{n}^{E} is an ED(1)-cofibering, and ED is related to D at X_{0} by ψ^{D} and $\left\{\alpha_{n}^{E}\right\}$. In particular, when $D=F A$ in (2.1.4) for a ring spectrum F, (4.6.7) holds if
(4.6.9) $\quad\left(1 \wedge l_{E} \wedge 1\right)_{*}: F_{*}\left(F^{t} \wedge X_{n}\right) \rightarrow F_{*}\left(F^{t} \wedge E \wedge X_{n}\right)$ is monomorphic, e.g., there is a unit-preserving map $\lambda: E \rightarrow F$.

Therefore, we have proved the following
Theorem 4.7. Let E be a ring spectrum and $D=\left\{D_{u}^{t}, K D_{u}^{t}\right\}$ an E_{2}-functor.
(i) If (4.6.7) holds, then we have the Mahowald spectral sequence $\left\{\widetilde{E}_{u, r}^{s, t}\right\}$ in Theorem 4.4 for $A=E D$ in (4.6.4):

$$
\begin{equation*}
\left.\widetilde{E}_{u, 2}^{s, t}=E D_{u}^{s, t}\left(X_{0}\right) \Rightarrow D_{u}^{s, t}\left(X_{0}\right) \quad \text { conv }\right) . \tag{4.7.1}
\end{equation*}
$$

(ii) (Miller [10]) If (4.6.9) holds for another ring spectrum F, then we have the one $\left\{\tilde{E}_{u, r}^{s, t}\right\}$ in (i) for $D=F A$ in (2.1.4):

$$
\begin{equation*}
\tilde{E}_{u, 2}^{s, t}=E F A_{u}^{s, t}\left(X_{0}\right) \Rightarrow F A_{u}^{s+t}\left(X_{0}\right) \quad(c o n v) . \tag{4.7.2}
\end{equation*}
$$

If $G_{*}(G)$ is flat over $G_{*}\left(S^{0}\right)$ for $G=E, F$, in addition, then

$$
\begin{align*}
E F A_{u}^{s, t}\left(X_{0}\right) & =\operatorname{Ext}_{E_{*}(E)}^{s, u}\left(E_{*}\left(S^{0}\right), F A_{*}^{t}\left(E \wedge X_{0}\right)\right), \tag{4.7.3}\\
F A_{u}^{t}(X) & =\operatorname{Ext}_{F *(F)}^{t, t}\left(F_{*}\left(S^{0}\right), F_{*}(X)\right) \quad\left(X=E \wedge X_{0}, X_{0}\right)
\end{align*}
$$

In fact, (4.7.3) is seen in the same way as the proof of (2.3.2).
Example 4.8. Let p be an odd prime. Then, on the groups in (4.7.3) for $E=B P$ at p and $F=K Q_{p}\left(Q_{p}=\{a / b \in Q \mid(b, p)=1\}\right)$, we have the following
(i) (Adams-Baird) $K Q_{p} A_{u}^{t}\left(S^{0}\right)$ is Q_{p} if $t=u=0, Z_{p^{v}}$ if $t=1, u=2(p-$ 1) $b p^{v-1}$ with $(b, p)=1, Q / Q_{p}$ if $t=2, u=0$, and 0 otherwise.
(ii) $K Q_{p} A_{u}^{t}(B P)=0$ for $t \geqq 2$.
(iii) $B P A_{u}^{s}\left(S^{0}\right) \cong K Q_{p} A_{u}^{s}\left(S^{0}\right) \quad$ (if $\left.s=0,1\right)$

$$
\cong B P K Q_{p} A_{u}^{s-2,1}\left(S^{0}\right) \quad(\text { if } s \geqq 4 \text { or } s=2,3, u \neq 0)
$$

Proof. Denote simply by $K=K Q_{p}$ in this proof. Then, by [16, §17],
(4.8.1) $K_{*}(K)$ is flat over $\pi_{*}(K)=Q_{p}\left[t, t^{-1}\right](\operatorname{deg} t=2)$ and is identified with the subring of all finite Laurent series $f(u, v) \in K_{*}(K) \otimes Q=Q[u, v$, $\left.u^{-1}, v^{-1}\right]\left(u=(1 \wedge l)_{*} t, v=(l \wedge 1)_{*} t\right)$ satisfying
(*) $f(\lambda t, \mu t) \in Q_{p}\left[t, t^{-1}\right]$ for any integers λ, μ prime to p.
(i) Let k be a generator for the multiplicative group of reduced residue classes $\bmod p^{2}\left(\right.$ and so $\bmod p^{n}$ for any $\left.n\right)$. Then, we have the exact sequence

$$
\begin{equation*}
0 \longrightarrow K_{*}\left(S^{0}\right) \xrightarrow{t} K_{*}(K) \xrightarrow{\psi} K_{*}(K) \xrightarrow{c} K_{*}(S Q) \quad\left(=Q\left[t, t^{-1}\right]\right) \longrightarrow 0, \tag{4.8.2}
\end{equation*}
$$

with $l t=u, \psi\left(u^{i} v^{j}\right)=\left(k^{j}-1\right) u^{i} v^{j}$, and $c\left(u^{i} v^{j}\right)=0(j \neq 0),=t^{i}(j=0)$, by taking $\imath=\imath_{*}, \psi=\psi_{*}^{k}-\mathrm{id}\left(\psi^{k} \in K^{0}(K)=\operatorname{Hom}_{\pi_{*}(K)}\left(K_{*}(K), \pi_{*}(K)\right)\right.$ is the Adams operation given by $\left.\psi^{k}\left(u^{i} v^{j}\right)=k^{j} t^{i+j}\right)$ and $c=\mathrm{ch}_{*}(\mathrm{ch}: K \rightarrow S Q$ is the Chern charactor).
In fact, the equalities are seen by definition; and $\psi \circ \imath=0=c \circ \psi$. Let $f=$ $\sum f_{i j} u^{i} v^{j} \in K_{*}(K)$. If $\psi f=0$, then $f_{i j}=0(j \neq 0), f_{i 0} \in Q_{p}($ by $(*)$ in (4.8.1)) and $f=\sum f_{i 0} u^{i} \in \operatorname{Im} l$. If $c f=0$, then $f_{i 0}=0$ and we have $g=\sum_{j \neq 0} f_{i j} u^{i}\left(v^{j}-u^{j}\right) /$ $\left(k^{j}-1\right)$ with $\psi g=f$ and $g(\lambda t, \lambda t)=0$. Thus $g(\lambda t, k \mu t)=g(\lambda t, \mu t)+f(\lambda t, \mu t)$ by $\psi g(u, v)=g(u, k v)-g(u, v)$, and $g\left(\lambda t, k^{n} \lambda t\right) \in Q_{p}\left[t, t^{-1}\right]$ for λ prime to p and any n by $(*)$ for f and induction; hence $g(\lambda t, \mu t) \in Q_{p}\left[t, t^{-1}\right]$ for any λ, μ prime to p, and $g \in K_{*}(K)$. Finally, $q_{n}=\left\{\prod_{i=1}^{n-1}(v-i u)\right\} / n!v^{n-1} \in K_{*}(K)$ (cf. [16, 17.31]) and $c q_{n}=1 / n!$; hence c is epimorphic. Therefore, the sequence (4.8.2) is exact.

Now, consider $I=\operatorname{Im} \psi$ in (4.8.2). Then, we have the exact sequences

$$
\begin{aligned}
& 0 \longrightarrow K_{*}\left(S^{0}\right) \longrightarrow K_{*}(K) \xrightarrow{\psi} I \longrightarrow 0 \text { and } \\
& 0 \longrightarrow I \longrightarrow K_{*}(K) \xrightarrow{c} K_{*}(S Q) \longrightarrow 0
\end{aligned}
$$

and these induce the long exact sequences for $\operatorname{Ext}^{\mathrm{s}, *}(-)=\operatorname{Ext}_{K_{*}(K)}^{s, *}\left(K_{*}\left(S^{0}\right),-\right)$,
where $\operatorname{Ext}^{s, *}\left(K_{*}(X)\right)=K A_{*}^{s}(X)$ and $K A_{*}^{s}(X)=0(s>0),=\pi_{*}(X)(s=0)$ for $X=K$ by Lemma 2.2 and for $X=S Q$ by taking $\sigma_{0}^{s}=1 \wedge$ ch: $K^{s} \wedge K \wedge S Q \rightarrow$ $K^{s} \wedge S Q, W=S Q$ in the proof of Lemma 2.2. Thus, we see that
(4.8.3) $K A_{*}^{s}\left(S^{0}\right)$ is isomorphic to $\mathrm{Ext}^{s-1, *}(I)$ if $s \geqq 2$, which is 0 if $s \geqq 3$; and to $\operatorname{Coker~ch}_{*}$ if $s=2, \operatorname{Ker~ch}_{*} / \operatorname{Im}\left(\psi_{*}^{k}-\mathrm{id}\right)$ if $s=1, \operatorname{Ker}\left(\psi_{*}^{k}-\mathrm{id}\right)$ if $s=0$, for ch: $\pi_{*}(K) \rightarrow \pi_{*}(S Q)$ and $\psi_{*}^{k}-\mathrm{id}: \pi_{*}(K) \rightarrow \pi_{*}(K)=Q_{p}\left[t, t^{-1}\right]$ with $\mathrm{ch}_{*} t^{i}=0$ $(i \neq 0),=1(i=0)$ and $\psi_{*}^{k} t^{i}=k^{i} t^{i}$.
Then, the order of $k \in\left(Z / p^{v} Z\right)^{\times}$is $p^{v-1}(p-1)$, and so (i) is seen by (4.8.3).
(ii) By taking the tensor products over $\pi_{*}(K)$ with the flat module $K_{*}(B P)=\pi_{*}(K)\left[t_{i}^{\prime}\right]$, the exact sequence (4.8.2) gives us the one

hence, we see in the same way as (4.8.3) that
(4.8.5) $K A^{t}(B P)$ is the cohomology of the cochain complex $0 \rightarrow$ $\pi_{*}(K \wedge B P) \xrightarrow{\psi^{\prime}} \pi_{*}(K \wedge B P) \xrightarrow{c^{\prime}} \pi_{*}(S Q \wedge B P) \rightarrow 0 \rightarrow \cdots$ for $\psi^{\prime}=\left(\psi^{k} \wedge 1\right)_{*}-\mathrm{id}$ and $c^{\prime}=(\operatorname{ch} \wedge 1)_{*}$. Here,

$$
K_{*}(B P)=\pi_{*}(K)\left[t_{i}^{\prime}\right] \xrightarrow{c^{\prime}} S Q_{*}(B P)=\pi_{*}(B P) \otimes Q=Q\left[l_{i}\right] \xrightarrow{\phi} K_{*}(B P) \otimes Q
$$

$\left(\pi_{*}(K)=Q_{p}\left[t, t^{-1}\right], t_{0}^{\prime}=1, \phi=\phi^{K} \otimes 1\right)$ satisfy by [4, II, 16.1, pp. 63-64] that

$$
c^{\prime}\left(t^{n} \phi \alpha\right)=\alpha(n=0),=0(n \neq 0), \quad \text { and } \quad \phi l_{i}=\sum_{j=0}^{i} t^{-1}\left(t t_{i-j}^{\prime}\right)^{p^{j}} / p^{j}
$$

Now, for any $\alpha=\prod l_{i}^{\alpha_{i}} \neq 1$ and $n \geqq 1$, consider the elements

$$
x=p^{a-1} \phi \alpha-\left(t^{b} / p\right), \quad x_{n}=\left(-t^{b}\right)^{1-n} x^{n} \quad\left(a=\sum i \alpha_{i}, b=\sum\left(p^{i}-1\right) \alpha_{i}\right) .
$$

Then, by the above equalities for ϕ and c^{\prime}, we see that x is in $K_{*}(B P)$, so is x_{n} for any n, and $c^{\prime} x_{n}=n \alpha / p^{n-a}, c^{\prime}\left(t^{-b} x_{n}\right)=-1 / p^{n}$. Thus c^{\prime} is epimorphic; and (ii) is proved.
(iii) $\left\{\widetilde{E}_{u, r}^{s, t}\right\}$ in Theorem 4.7 (ii) for $E=B P, F=K\left(=K Q_{p}\right)$ and $X_{0}=S^{0}$ satisfies
(4.8.6) $\quad \widetilde{E}_{u, 2}^{s, t}=B P K A_{u}^{s, t}\left(S^{0}\right)=0$ if $t \geqq 2$ and $\widetilde{E}_{u, \infty}^{s, t-s}=0$ if $t \geqq 3$ or $t=2$, $u \neq 0$,
by (4.7.2-3) and (i)-(ii). Thus, the differential $d_{r}: \widetilde{E}_{u, r}^{s, t} \rightarrow \widetilde{E}_{u, r}^{s+r, t-r+1}$ is 0 except for $r=2, t=1$; and $d_{2}: \widetilde{E}_{u, 2}^{s, 1} \cong \widetilde{E}_{u, 2}^{s+2,0}$ for $s \geqq 2$ or $s=0,1, u \neq 0$. Since $B P K A_{u}^{s, 0}\left(S^{0}\right)=B P A_{u}^{s}\left(S^{0}\right)$ by the Hattori-Stong theorem (cf. [4, II, 14.1]), the above isomorphism d_{2} implies (iii). q.e.d.

In the rest of this section, we note on the differential of $\left\{\widetilde{E}_{u, r}^{s, t}\right\}$ in Theorem 4.7 (ii) for ring spectra E and F with (4.6.9). For $X \in \mathscr{C}$, we consider
(4.9.1) $F E_{u}^{s, t}(X)=\pi_{u}\left(F^{t+1} \wedge E^{s+1} \wedge X\right) \quad(s, t \geqq 0), \quad=0$ (otherwise), with coboundary $\delta^{G}=\sum_{i=0}^{*+1}(-1)^{i} \delta_{i *}^{G}: F E_{u}^{s, t}(X) \rightarrow F E_{u}^{s+1, t}(X)$ or $F E_{u}^{s, t+1}(X)$ for $G=E$
or F, respectively, $\left(*=s\right.$ or $t, \delta_{i}^{G}=1 \wedge l_{G} \wedge 1: Y \wedge S^{0} \wedge Z \rightarrow Y \wedge G \wedge Z$, $Z=E^{i} \wedge X \quad$ or $F^{i} \wedge E^{s+1} \wedge X$; ; i.e., $\left\{F E_{u}^{s, *}(X) ; \delta^{F}\right\}=F_{u}^{*}\left(E^{s+1} \wedge X\right) \quad$ with $H^{t}\left(F E_{u}^{s, *}(X)\right)=F A E_{u}^{s, t}(X)$ and $\left\{F A E_{u}^{*, t}(X) ; \delta_{*}^{E}\right\}$ with $H^{s}\left(F A E_{u}^{*, t}(X)\right)=E F A_{u}^{s, t}(X)$ are the ones in (2.1.1-4) and (4.6.1-4).

According to the assumption (4.6.9), the cofibering

$$
\begin{gathered}
\alpha_{n}^{E}: X_{n} \xrightarrow{i} E \wedge X_{n} \xrightarrow{j} X_{n+1}=\bar{E} \wedge X_{n} \\
\left(i=\iota_{E} \wedge 1, j=j \wedge 1 \text { for } \omega^{E}: S^{0} \xrightarrow{\iota_{E}} E \xrightarrow{j} \bar{E}\right)
\end{gathered}
$$

in (2.1.6) induces the short exact sequence of the cochain complexes $\left\{F_{u}^{*} ; \delta^{F}\right\}$:
$0 \longrightarrow F_{u}^{*}\left(E^{m} \wedge X_{n}\right) \xrightarrow{i_{*}} F_{u}^{*}\left(E^{m+1} \wedge X_{n}\right) \xrightarrow{j_{*}} F_{u}^{*}\left(E^{m} \wedge X_{n+1}\right) \longrightarrow 0 \quad(k=1 \wedge k):$
and by the definition of δ^{G} in (4.9.1), we see the equalities
(4.9.3) $\quad \delta^{F} \circ j_{*}=j_{*} \circ \delta^{F}, \delta^{F} \circ j^{s}=j^{s} \circ \delta^{F}$ and $i_{*} \circ j_{*} \circ j^{s}=(-1)^{s+1} j^{s+1} \circ \delta^{E}$, for the compositions $j^{s}=\left(j_{*}\right)^{s}: F E_{u}^{s, *}\left(X_{0}\right) \rightarrow F E_{u}^{0, *}\left(X_{s}\right)$ and $i_{*} \circ j_{*}: F E_{u}^{0, *}\left(X_{s}\right) \rightarrow$ $F_{u}^{*}\left(X_{s+1}\right) \rightarrow F E_{u}^{0, *}\left(X_{s+1}\right)$, where $i_{*} \circ j_{*}=\left(l_{E} \wedge j\right)_{*}: F_{u}^{*}\left(S^{0} \wedge E \wedge X_{s}\right) \rightarrow$ $F_{u}^{*}\left(E \wedge X_{s+1}\right)$.
Moreover, (4.9.2) induces the cohomology exact sequence

$$
\begin{align*}
\cdots \xrightarrow{\longrightarrow} F A_{u}^{t}\left(E^{m} \wedge X_{n}\right) \xrightarrow{i_{*}} F A_{u}^{t}\left(E^{m+1} \wedge X_{n}\right) \xrightarrow{j_{*}} F A_{u}^{t}\left(E^{m} \wedge X_{n+1}\right) \tag{4.9.4}\\
\xrightarrow{\delta_{*}} F A_{u}^{t+1}\left(E^{m} \wedge X_{n}\right) \longrightarrow \cdots \quad\left(k_{*}=\left(k_{*}\right)_{*}, \delta_{*}=\left(i_{*}^{-1} \circ \delta^{F} \circ j_{*}^{-1}\right)_{*}\right)
\end{align*}
$$

and by the definition of δ_{*} and the equalities in (4.9.3), we see the following:
(4.9.5) If $\delta^{F} y=(-1)^{s+1} \delta^{E} x$ for $x \in F E_{u}^{s, t+1}\left(X_{0}\right)$ and $y \in F E_{u}^{s+1, t}\left(X_{0}\right)$, then $\delta^{F} j_{*} j^{s+1} y=0$ and $\delta_{*}\left[j_{*} j^{s+1} y\right]=\left[j_{*} j^{s} x\right]$ in $F A_{u}^{t+1}\left(X_{s+1}\right)$ for the cohomology classes [].
On the other hand, by (4.6.9) and the definition of $F A$ in (2.1.1-4), we see that
(4.9.6) (4.9.4) is the one in (1.8.4) for the $F A$-cofibering $E^{m} \wedge \alpha_{n}^{E}$ (i.e. $\left.\delta_{*}=\bar{\delta}\right)$.
(4.9.7) Thus, $\left\{\widetilde{E}_{u, r}^{s, t}, d_{r}\right\}$ in Theorem 4.7 (ii) is the one in Proposition 4.2 associated to (4.9.4) for $m=0$. So $\widetilde{E}_{u, 1}^{s, t}=F A_{u}^{t}\left(E \wedge X_{s}\right), d_{1}=i_{*} \circ j_{*}$, and we have

$$
J_{*}: E F A_{u}^{s, t}\left(X_{0}\right) \rightarrow \widetilde{E}_{u, 2}^{s, t} \text { induced by } J=\left(j^{s}\right)_{*}: F A E_{u}^{s, *}\left(X_{0}\right) \rightarrow F A E_{u}^{0, *}\left(X_{s}\right)=\widetilde{E}_{u, 1}^{\mathrm{s}, *}
$$

where j^{s} is the composition in (4.9.3).
Therefore, we see the following
Lemma 4.10. (i) Assume that $x_{i} \in F E_{u}^{s+i, t-i}\left(X_{0}\right)(0 \leqq i \leqq n)$ satisfy $\delta^{F} x_{0}=$ 0 and $\delta^{F} x_{i+1}=(-1)^{s+i+1} \delta^{E} x_{i}$ for $i<n$. Then, for the cohomology classes $\left[x_{0}\right] \in F A E_{u}^{s, t}\left(X_{0}\right),\left[\delta^{E} x_{n}\right] \in F A E_{u}^{s+n, t-n}\left(X_{0}\right)$ and the differential d_{r} in (4.9.7), there hold

$$
d_{r} J\left[x_{0}\right]=0(1 \leqq r \leqq n) \quad \text { and } \quad d_{n+1} J\left[x_{0}\right]=(-1)^{s+n+1} J\left[\delta^{E} x_{n}\right] .
$$

(ii) Assume that $x_{i} \in F E_{u}^{s-i-1, t+i}\left(X_{0}\right) \quad(0 \leqq i \leqq s-1)$ and $x_{s} \in F_{u}^{s+t}\left(X_{0}\right)$ satisfy $\delta^{F} \delta^{E} x_{0}=0, \delta^{F} x_{i}=(-1)^{s-i-1} \delta^{E} x_{i+1} \quad$ for $i<s-1, \delta^{F} x_{s-1}=i_{*} x_{s}$ (i.e., $\delta_{*} j_{*} x_{s-1}=x_{s}$. Then, for $\left[\delta^{E} x_{0}\right] \in F A E_{u}^{s, t}\left(X_{0}\right)$ and $\left[x_{s}\right] \in F A_{u}^{s+t}\left(X_{0}\right)$ in (4.9.7), $(-1)^{s} J\left[\delta^{E} x_{0}\right]$ converges to $\left[x_{s}\right]$.
(iii) Assume that we have a unit-preserving map $\lambda: E \rightarrow F$ and $\delta^{F E} x=0$, $\delta^{F} \delta^{E} x=0$ for $x \in F E_{u}^{s-1, t}\left(X_{0}\right)$, where $\delta^{F E}=\delta^{E} \circ \lambda_{*}+(-1)^{s} \delta^{F}: F E_{u}^{s-1, t}\left(X_{0}\right) \rightarrow$ $F E_{u}^{s-1, t+1}\left(X_{0}\right)\left(\lambda_{*}=(\lambda \wedge 1)_{*}: F_{u}^{n}\left(E \wedge E^{m} \wedge X_{0}\right) \rightarrow F_{u}^{n}\left(F \wedge E^{m} \wedge X_{0}\right)\right)$. Then, for $\left[\delta^{E} x\right] \in F A E_{u}^{s, t}\left(X_{0}\right)$ and $\left[\lambda_{*} \lambda^{s-1} x\right] \in F A_{u}^{s+t}\left(X_{0}\right)\left(\lambda^{i}=\left(\lambda_{*}\right): F E_{u}^{s-1, t}\left(X_{0}\right) \rightarrow\right.$ $\left.F E_{u}^{s-i-1, t+i}\left(X_{0}\right)\right),(-1)^{s} J\left[\delta^{E} x\right]$ converges to $\left[\lambda_{*} \lambda^{s-1} x\right]$.
(iv) $J_{*}: E F A_{u}^{s, t}\left(X_{0}\right) \rightarrow \widetilde{E}_{u, 2}^{s, t}$ is isomorphic.

Proof. By (1.6.1-2), (1.1.3) and (4.9.3), (4.9.5) implies (i)-(ii).
(iii) By the definition of $\delta^{F E}, \delta^{F E} \circ \lambda_{*}=\delta^{E} \circ \lambda^{i+1}+(-1)^{s-i} \delta^{F} \circ \lambda^{i}$; and so $\delta^{F} \lambda^{i} x=(-1)^{s-i-1} \delta^{E} \lambda^{i+1} x(0 \leqq i<s-1)$ and $\delta^{F} \lambda^{s-1} x=i_{*} \lambda_{*} \lambda^{s-1} x$. By (ii), these imply (iii).
(iv) We consider the cochain complexes $M(r)_{u}^{*, t}=\left\{M(r)_{u}^{s, t}, \delta(r)_{M}^{s}\right\}$ and $K(r)_{u}^{*, t}=\left\{K(r)_{u}^{s, t}, \delta(r)_{K}^{s}\right\}$ for $r \geqq 0$ given as follows:

$$
\begin{gathered}
M(r)_{u}^{s, t}=\widetilde{E}_{u, 1}^{s, *} \text { in (4.9.7) if } s \leqq r,=F A_{u}^{t}\left(E^{s-r+1} \wedge X_{r}\right) \text { if } s>r, \text { and } \\
\delta(r)_{M}^{s}=d_{1}=\left(l_{E} \wedge j\right)_{*} \text { in }(4.9 .7) \text { if } 0 \leqq s<r,=\delta^{s-r} \text { in (4.6.1) } \\
\quad\left(D=F A, X=X_{r}\right) \text { if } s \geqq r, \\
K(r)_{u}^{s, t}=0 \text { if } s \leqq r,=F A_{u}^{t}\left(E^{s-r} \wedge X_{r}\right) \text { if } s>r, \text { and } \\
\delta(r)_{K}^{s}=0 \text { if } s \leqq r,=\left(l_{E} \wedge 1\right)_{*} \text { if } s=r+1,=\delta^{s-r-2} \text { in (4.6.1) } \\
\left(D=F A, X=E \wedge X_{r}\right) \text { if } s \geqq r+2 .
\end{gathered}
$$

Furthermore, we have the cochain maps $i(r)=\left\{i(r)^{*}\right\}: K(r)_{u}^{*, t} \rightarrow M(r)_{u}^{*, t}$ and $j(r)=\left\{j(r)^{*}\right\}: M(r)_{u}^{*, t} \rightarrow M(r+1)_{u}^{*, t}$ by taking

$$
\begin{array}{llll}
i(r)^{s}=0 & \text { if } s \leqq r, & =(1 \wedge i)_{*} & \text { if } s>r, \text { and } \\
j(r)^{s}=\text { id } & \text { if } s \leqq r, & =(-1)^{s-r}(1 \wedge j)_{*} & \text { if } s>r .
\end{array}
$$

Then, we have the short exact sequence

$$
0 \longrightarrow K(r)_{u}^{*, t} \xrightarrow{i(r)} M(r)_{u}^{*, t} \xrightarrow{j(r)} M(r+1)_{u}^{*, t} \longrightarrow 0 ;
$$

because i_{*} in (4.9.4) is monomorphic for $m \geqq 1$. By (4.6.6) $\left(D=F A, X=X_{r}\right.$), $H^{s}\left(K(r)_{u}^{*, t}\right)=0$ for any s; hence $j(r)_{*}$ is isomorphic on the cohomology groups. Thus, by $M(0)_{u}^{*, t}=F A E_{u}^{*, t}\left(X_{0}\right)$ and $J=(-1)^{\varepsilon} j(s)^{s} \circ \cdots \circ j(0)^{s}: M(0)_{u}^{s, t} \rightarrow$ $M(s+1)_{u}^{s, t}=\widetilde{E}_{u, 1}^{s, t}(\varepsilon=s(s+1) / 2)$, this implies (iv).
q.e.d.

§ 5. May spectral sequences

In this section, we construct another spectral sequence which abuts to an E_{2}-functor and whose E_{1}-term is a double E_{2}-functor.

Let $C=\left\{C_{u}^{s}, K C_{u}^{s}\right\}$ be an E_{2}-functor, and assume that

are diagrams of cofiberings $\xi_{s, t}(\xi=\alpha, \beta, \omega, \eta)$ with the following (5.1.2-4):
(5.1.2) $\{k\}(k=i, j, f, g)$ are maps in $\mathscr{C} \mathscr{F}$ (see (3.1)).
(5.1.3) Each $\omega_{s, 0}$ is a C-injective cofibering.
(5.1.4) Each $\beta=\beta_{s, t}$ is C^{0}-homological, i.e., we have the exact sequence

$$
\begin{gathered}
\cdots \longrightarrow C_{u}^{0}(W) \xrightarrow{f_{*}} C_{u}^{0}(Y) \xrightarrow{g_{*}} C_{u}^{0}\left(W_{2}\right) \xrightarrow{\partial} C_{u-1}^{0}(W) \longrightarrow \cdots \\
\left(Z=Z_{s, t}, Z_{2}=Z_{s, t+1}\right)
\end{gathered}
$$

by the composition $\partial=\imath \circ \kappa$: $C_{u}^{0}\left(W_{2}\right) \rightarrow K C_{u-1}^{0}(\beta ; 0) \rightarrow C_{u-1}^{0}(W)$ in (1.8.1).
(5.1.5) When W, Y and W_{2} are C-injective, (5.1.4) holds if $K C_{u}^{*}(\beta ; i)=0$ $(* \neq 0)$ for some (or any) i, which is seen by (1.8.1-2).
(5.1.6) For $\phi: h_{u} \rightarrow C_{u}^{0}$ in (1.3.1), assume that ∂ in the exact sequence

$$
\cdots \longrightarrow h_{u}(W) \xrightarrow{f_{*}} h_{u}(Y) \xrightarrow{g_{*}} h_{u}\left(W_{2}\right) \xrightarrow{\partial} h_{u-1}(W) \longrightarrow
$$

and ∂ in (5.1.4) satisfy $\phi \circ \partial=\partial \circ \phi$ (then ϕ is called natural for β), and that ϕ is isomorphic for W and Y. Then, (5.1.4) is equivalent to $\phi: h_{u}\left(W_{2}\right) \cong C_{u}^{0}\left(W_{2}\right)$.

Then, the same construction as Proposition 1.2 gives us the following:
(5.2.1) For any $s \geqq 0$, the spectral sequence $\left\{E(s)_{r}^{t, u}, d_{r}: E(s)_{r}^{t, u} \rightarrow\right.$ $\left.E(s)_{r}^{t+r, u+r-1}\right\}$ is associated to the exact sequences in (5.1.4) such that

$$
E(s)_{1}^{t, u}=C_{u}^{0}\left(Y_{s, t}\right) \Rightarrow C_{u-t}^{0}\left(W_{s, 0}\right)=G_{u-t}^{s, 0} \quad \text { (abut), i.e. },
$$

(5.2.2) $\quad G_{u-t}^{s, 0} \supset G_{u}^{s, t} \supset G_{u+1}^{s, t+1}$ and $G_{u}^{s, t} / G_{u+1}^{s, t+1} \cong \bar{Z}(s)_{\infty}^{t, u} / B(s)_{\infty}^{t, u} \subset E(s)_{\infty}^{t, u}$ for $\bar{Z}(s)_{\infty}^{t, u}=$ $\operatorname{Im} f_{*}, B(s)_{\infty}^{t, u}=f_{*}\left(\operatorname{Ker} \partial^{t}\right)$ and $G_{u}^{s, t}=\operatorname{Im} \partial^{t}$ where $\partial^{t}: C_{u}^{0}\left(W_{s, t}\right) \rightarrow C_{u-t}^{0}\left(W_{s, 0}\right)$.
On the other hand, $\omega_{s, 0}$ in (5.1.3) induces the exact sequence

$$
\begin{equation*}
0 \longrightarrow C_{u}^{0}\left(X_{s, 0}\right) \xrightarrow{i_{*}} C_{u}^{0}\left(W_{s, 0}\right) \xrightarrow{j_{*}} C_{u}^{0}\left(X_{s+1,0}\right) \xrightarrow{\bar{\delta}^{s+1}} C_{u}^{s+1}\left(X_{0,0}\right) \longrightarrow 0 \tag{5.2.3}
\end{equation*}
$$

by (1.8.4). Also, by (5.1.2) and (3.2.1), we see the following:
(5.2.4) $\delta=(i \circ j)_{*}: C_{u}^{0}\left(Z_{s, t}\right) \rightarrow C_{u}^{0}\left(Z_{s+1, t}\right)$ for $Z=W, \quad Y$ satisfy $\delta \circ \delta=0$, $\delta \circ k_{*}=k_{*} \circ \delta$ and $\delta \circ \partial=\partial \circ \delta$ for $k_{*}=f_{*}, g_{*}$ and $\partial=\iota \circ \kappa$ in (5.1.4).
Thus, in (5.2.1-2), we have the cochain complexes
(5.2.5) $\left\{E_{u}^{s, t}=E(s)_{2}^{t, u}\right\} \supset\left\{\bar{Z}_{u}^{s, t}=\bar{Z}_{u}(s)_{\infty}^{t, u} / B\right\} \supset\left\{B_{u}^{s, t}=B(s)_{\infty}^{t, u} / B\right\} \quad\left(B=B(s)_{2}^{t, u}=\right.$ $\left.f_{*}(\operatorname{Ker} \partial)\right)$ and $\left\{G_{u}^{s, t}\right\}$ with coboundary $\delta=(i \circ j)_{*}$.
Taking their cohomologies, we see the following by (5.2.2-3):
(5.2.6) $\quad \bar{\delta}^{s} \circ i_{*}^{-1}: H^{s}\left(G_{u-t}^{*, 0}\right) \cong C_{u-t}^{s}\left(X_{0,0}\right)$. Furthermore, the exact sequence

$$
\cdots \rightarrow H^{s}\left(G_{u}^{*, t}\right) \rightarrow H^{s}\left(G_{u}^{*, t} / G_{u+1}^{*, t+1}\right) \rightarrow H^{s+1}\left(G_{u+1}^{*, t+1}\right) \rightarrow H^{s+1}\left(G_{u}^{*, t}\right) \rightarrow \cdots
$$

associates the spectral sequence $\left\{E_{u, r}^{s, t}, d_{r}: E_{u, r}^{s, t} \rightarrow E_{u+r, r}^{s+1, t r}\right\}$ with

$$
E_{u, 1}^{s, t}=H^{s}\left(G_{u}^{*, t} / G_{u+1}^{*, t+1}\right) \cong H^{s}\left(\bar{Z}_{u}^{*, t} / B_{u}^{*, t}\right) \Rightarrow H^{s}\left(G_{u-t}^{*, 0}\right) \cong C_{u-t}^{s}\left(X_{0,0}\right) \quad \text { (abut) },
$$

$$
\text { i.e., } F_{u}^{s, t} / F_{u+1}^{s, t+1} \subset E_{u, \infty}^{s, t} \text { for } F_{u}^{s, t}=\operatorname{Im}\left[H^{s}\left(G_{u}^{*, t}\right) \rightarrow H^{s}\left(G_{u-t}^{*, 0}\right)\right] \text {. }
$$

To represent $H^{s}\left(E_{u}^{*, t}\right)$ of $\left\{E_{u}^{s, t}\right\}$ in (5.2.5), we use the following
Definition 5.3. Let $A=\left\{A_{u}^{s, t}, K A_{u}^{s, t}, L A_{u}^{s, t}\right\}$ be a double E_{2}-functor in Definition 4.3 (1).
(1) We call $X \in \mathscr{C} \quad A(2)$-injective if $A_{u}^{s, t}(X)=0$ for $t \neq 0$, and $\alpha \in \mathscr{C} \mathscr{F}$ an $A(2)$-cofibering if $K A_{u}^{s, t}(\alpha ; 0)=0=L A_{u}^{s, t}(\alpha ; i, 0)$ for $i=0,2$ and $L A_{u}^{s, t}(\alpha ; 1,1)=0$ for $t \neq 0$.
(2) We say that A is indirectly related to an E_{2}-functor C at $X_{0,0}$ by a natural transformation $\psi: C_{u}^{s} \rightarrow A_{u}^{s, 0}$ and cofiberings in (5.1.1) with (5.1.2-4), if (5.3.1) each $\omega_{s, 0}$ is an $A(1)$-cofibering, $W_{s, 0}$ is $A(1)$-injective, $\beta_{s, t}$ is an $A(2)$ cofibering, $Y_{s, t}$ is $A(1)$ - and $A(2)$-injective, and
(5.3.2) $\quad \psi: C_{u}^{0}\left(Y_{s, t}\right) \cong A_{u}^{0,0}\left(Y_{s, t}\right)$ for any $s, t=0,1,2, \ldots$.

In (1) of this definition, the exact sequences in (4.3.1-2) imply the following:
(5.3.3) Let $\alpha: X_{0} \xrightarrow{f_{0}} X_{1} \xrightarrow{f_{1}} X_{2}$ be an $A(2)$-cofibering. Then, $t_{2,1} \circ \kappa_{2,0}$: $K A_{u}^{s, t}(\alpha ; 2) \cong A_{u}^{s, t}\left(X_{2}\right)$ and $t_{1,2} \circ \kappa_{0,1}: A_{u}^{s, t}\left(X_{0}\right) \cong K A_{u}^{s, t}(\alpha ; 1)$ by $L A_{u}^{s, t}(\alpha ; 0,1) \cong$ $0 \cong L A_{u}^{s, t}(\alpha ; 0,2), \quad \kappa_{1,0}: K A_{u}^{s, 0}(\alpha ; 1) \cong L A_{u}^{s, 0}(\alpha ; 1,1)$ by $L A_{u}^{s, 0}(\alpha ; 1,0)=$ $L A_{u}^{s,-1}(\alpha ; 4,3)=0 ; t_{1,0}: L A_{u}^{s, t}(\alpha ; 1,0) \cong K A_{u}^{s, t}(\alpha ; 1), \kappa_{1,1}: A_{u}^{s, t}\left(X_{1}\right) \cong L A_{u}^{s, t}(\alpha ; 2,2)$ ($t>0$); and we have the exact sequences

$$
\begin{aligned}
& \cdots \longrightarrow A_{u}^{s, 0}\left(X_{0}\right) \xrightarrow{f_{0 *}} A_{u}^{s, 0}\left(X_{1}\right) \xrightarrow{\kappa_{1,1}} L A_{u}^{s, 0}(\alpha ; 2,2) \longrightarrow A_{u}^{s+1,0}\left(X_{0}\right) \longrightarrow \cdots, \\
& \cdots \longrightarrow L A_{u}^{s, t}(\alpha ; 2,2) \xrightarrow{\tau} A_{u}^{s, t}\left(X_{2}\right) \xrightarrow{\vec{\kappa}} A_{u}^{s, t+1}\left(X_{0}\right) \\
& L A_{u}^{s+1, t}(\alpha ; 2,2) \longrightarrow \ldots,
\end{aligned}
$$

where $\bar{\imath}=l_{2,1} \circ \kappa_{2,0} \circ l_{2,2}$ (hence $\left.\bar{\imath} \circ \kappa_{1,1}=f_{1 *}\right)$ and $\bar{\kappa}=\left(l_{1,2} \circ \kappa_{0,1}\right)^{-1} \circ l_{1,0} \circ$ $\kappa_{2,2} \circ\left(l_{2,1} \circ \kappa_{2,0}\right)^{-1}$.
(5.3.4) In (5.3.3), if X_{1} is $A(2)$-injective, then

$$
\bar{\kappa}: A_{u}^{s, t}\left(X_{2}\right) \cong A_{u}^{s, t+1}\left(X_{0}\right) \quad \text { for } \quad t>0 .
$$

If X_{0} and X_{1} are $A(1)$-injective, then so is X_{2}. Furthermore, if both of these hold, then we have the exact sequence

$$
0 \longrightarrow A_{u}^{0,0}\left(X_{0}\right) \xrightarrow{f_{0 *}} A_{u}^{0,0}\left(X_{1}\right) \xrightarrow{f_{1 *}} A_{u}^{0,0}\left(X_{2}\right) \xrightarrow{\bar{\kappa}} A_{u}^{0,1}\left(\mathrm{X}_{0}\right) \longrightarrow 0 .
$$

Now, consider the case of Definition 5.3 (2). Then, for $\beta_{s, t}$ with (5.3.1),

$$
\begin{equation*}
\left.0 \longrightarrow A_{u}^{0,0}\left(W_{s, t}\right) \xrightarrow{f_{*}} A_{u}^{0,0}\left(Y_{s, t}\right) \xrightarrow{g_{*}} A_{u}^{0,0}\left(W_{s, t+1}\right)\right) \xrightarrow{\bar{\kappa}^{t+1}} A_{u}^{0, t+1}\left(W_{s, 0}\right) \longrightarrow 0 \tag{5.4.1}
\end{equation*}
$$

is exact by (5.3.3-4), since $W_{s, t}$ is $A(1)$-injective by induction on t. Thus, in the same way as Theorem 1.4, (5.4.1) and a natural transformation $\psi: C_{u}^{s} \rightarrow A_{u}^{s, 0}$ with (5.3.2) imply the isomorphism
(5.4.2) $\bar{\psi}=\bar{\kappa}^{t} \circ\left(f_{*}^{-1} \circ \psi\right): E(s)_{2}^{t, u} \cong A_{u}^{0,0}\left(W_{s, t}\right) / \operatorname{Im} g_{*} \cong A_{u}^{0, t}\left(W_{s, 0}\right)$ for the spectral sequence $\left\{E(s)_{r}^{t, u}\right\}$ in (5.2.1).

On the other hand, (4.3.4) for the $A(1)$-cofibering $\omega_{s, 0}$ in (5.3.1) implies the exact sequence

$$
\begin{equation*}
0 \longrightarrow A_{u}^{0, t}\left(X_{s, 0}\right) \xrightarrow{i_{*}} A_{u}^{0, t}\left(W_{s, 0}\right) \xrightarrow{j_{*}} A_{u}^{0, t}\left(X_{s+1,0}\right) \xrightarrow{\bar{\delta}^{s+1}} A_{u}^{s+1, t}\left(X_{0,0}\right) \longrightarrow 0, \tag{5.4.3}
\end{equation*}
$$ and i_{*} and j_{*} commute with $\bar{\kappa}$ in (5.4.1) (see (5.3.3)) by (5.1.2). Thus:

(5.4.4) The cochain complex $\left\{A_{u}^{0, t}\left(W_{s, 0}\right), \delta=(i \circ j)_{*}\right\}$ is isomorphic to $\left\{E_{u}^{s, t}=E(s)_{2}^{t, u}, \delta=(i \circ j)_{*}\right\}$ in (5.2.5) by $\bar{\psi}$ in (5.4.2), and $\bar{\delta}^{s} \circ i_{*}^{-1}: H^{s}\left(A_{u}^{0, t}\left(W_{*, 0}\right)\right) \cong$ $A_{u}^{s, t}\left(X_{0,0}\right)$.

Therefore, we have proved the following

Theorem 5.5 (May spectral sequence). If a double E_{2}-functor $A=$ $\left\{A_{u}^{s, t}, K A_{u}^{s, t}, L A_{u}^{s, t}\right\}$ is indirectly related to an E_{2}-functor $C=\left\{C_{u}^{s}, K C_{u}^{s}\right\}$ at $X_{0,0}$, then we have the spectral sequence $\left\{E_{u, r}^{s, t}\right\}$ in (5.2.6) such that it abuts to $C_{u-t}^{s}\left(X_{0,0}\right)$ and

$$
E_{u, 1}^{s, t}=H^{s}\left(\bar{Z}_{u}^{*, t} / B_{u}^{*, t}\right), \quad H^{s}\left(E_{u}^{*, t}\right)=A_{u}^{s, t}\left(X_{0,0}\right)
$$

for the cochain complexes $E_{u}^{*, t} \supset \bar{Z}_{u}^{*, t} \supset B_{u}^{*, t}$ in (5.2.5).

Corollary 5.6 (i) If each $\left\{E(s)_{r}^{t, u}\right\}$ in (5.2.1) converges and collapses, then $E_{u}^{*, t}=\bar{Z}_{u}^{*, t} \supset B_{u}^{*, t}=0$ and $E_{u, 1}^{s, t}=A_{u}^{s, t}\left(X_{0,0}\right)$ in Theorem 5.5.
(ii) The assumption in (i) is equivalent to (5.6.1) and one of (5.6.2-3):
(5.6.1) $\operatorname{inv} \lim _{n}\left\{C_{t+n}^{0}\left(W_{s, n}\right), \partial\right\}=0$ (for ∂ in (5.1.4)).
(5.6.2) $\psi: C_{u}^{0} \rightarrow A_{u}^{0,0}$ is epimorphic for $W_{s, t}$.
(5.6.3) $\operatorname{Ker}\left[\partial^{n}: C_{u}^{0}\left(W_{s, t}\right) \rightarrow C_{u-n}^{0}\left(W_{s, t-n}\right)\right]=\operatorname{Ker} \partial$ for $1 \leqq n \leqq t$.

In fact, (ii) is the same as Corollary 1.7 (ii).

For given ring spectra E and F, and $X_{0} \in \mathscr{C}$, we take (5.7.1) the commutative diagram (5.1.1) defined by $X_{s, 0}=\bar{E}^{s} \wedge X_{0}$ and

$$
\begin{aligned}
& X_{s, t}=\bar{F}^{t} \wedge X_{s, 0}, \quad V_{s, t}=F \wedge X_{s, t}, \quad W_{s, t}=\bar{F}^{t} \wedge E \wedge X_{s, 0}, \quad Y_{s, t}=F \wedge W_{s, t}, \\
& \alpha_{s, t}=\omega^{F} \wedge X_{s, t}, \quad \beta_{s, t}=\omega^{F} \wedge W_{s, t}, \quad \omega_{s, t}=\bar{F}^{t} \wedge \omega^{E} \wedge X_{s, 0}, \quad \eta_{s, t}=F \wedge \omega_{s, t},
\end{aligned}
$$

where $\omega^{G} \wedge X: X \xrightarrow{l_{G} \wedge 1} G \wedge X \rightarrow \bar{G} \wedge X$ is the cofibering in (2.1.6). Then, by Lemma 2.2 and (5.1.5-6), we see the following:
(5.7.2) The above diagram satisfies (5.1.2-4) for $C=E A$ in (2.1.4), where the exact sequence in (5.1.4) is isomorphic to the homotopy one

$$
\cdots \longrightarrow \pi_{u}\left(W_{s, t}\right) \longrightarrow \pi_{u}\left(Y_{s, t}\right) \longrightarrow \pi_{u}\left(W_{s, t+1}\right) \xrightarrow{\partial} \pi_{u-1}\left(W_{s, t}\right) \longrightarrow \cdots
$$

by $\phi^{E}: \pi_{u}(E \wedge X) \cong E A_{u}^{0}(E \wedge X)$. Thus the spectral sequence $\left\{E(s)_{r}^{t, u}\right\}$ in (5.2.1) is (isomorphic to) the F-Adams one: $E(s)_{2}^{t, u}=F A_{u}^{t}\left(W_{s, 0}\right) \Rightarrow \pi_{u-t}\left(W_{s, 0}\right)$.

On the other hand, by (4.6.1-5) for $D=F A$, we have
(5.7.3) the double E_{2}-functor $E F A$, with the natural transformations $\psi^{F A}$: $F A_{u}^{t}(X) \rightarrow E F A_{u}^{0, t}(X)$ and $\psi^{E}: E A_{u}^{s}(X) \rightarrow E F A_{u}^{s, 0}(X)$ induced from $\phi^{F}: \pi_{*}(Y) \rightarrow$ $F A_{*}^{0}(Y)\left(Y=E^{s+1} \wedge X\right)$, satisfying $\psi^{E} \circ \phi^{E}=\psi^{F A} \circ \phi^{F}: \pi_{*}(X) \rightarrow E F A_{*}^{0,0}(X)$.
Then, by Lemma 2.2 for F, (4.6.6-9) for $D=F A$ and definition, we see that
(5.7.4) $Y_{s, t}$ is $E F A(i)$-injective for $i=1,2$, so is $W_{s, 0}$ for $i=1, \psi^{E}$: $E A_{u}^{0}\left(Y_{s, t}\right) \cong E F A_{u}^{0,0}\left(Y_{s, t}\right)$ and $\beta_{s, t}$ is an EFA(2)-cofibering. If (4.6.9) holds for $X_{n}=X_{n, 0}$ then $\omega_{s, 0}$ is an EFA(1)-cofibering so that EFA is indirectly related to $E A$ at $X_{0,0}$ by ψ^{E} in (5.7.3) and the cofiberings in (5.7.1).

Therefore, Theorem 5.5 and Corollary 5.6 imply the following
Theorem 5.8. Let $X_{0} \in \mathscr{C}$ and E and F are ring spectra satisfying (4.6.9) for $X_{n}=X_{n, 0}$. Then, we have the May spectral sequence $\left\{E_{u, r}^{s, t}\right\}$ in Theorem 5.5 abutting to $E A_{u-t}^{s}\left(X_{0}\right)$ in (2.1.4). Moreover, if the F-Adams spectral sequence $\left\{E(s)_{r}^{t, u}\right\}$ in (5.7.2) converges and collapses for any $s \geqq 0$, then we have $E_{u, 1}^{s, t}=$ $E F A_{u}^{s, t}\left(X_{0}\right)($ in (4.9.1) $) \Rightarrow E A_{u-t}^{s}\left(X_{0}\right)(a b u t)$.

§6. Some preliminary lemmas

For the main result in the next section, we prepare some lemmas.
Lemma 6.1. If the compositions of maps $X^{\prime} \xrightarrow{i} W^{\prime} \xrightarrow{f} Y^{\prime}$ and $X^{\prime} \xrightarrow{f^{\prime}}$ $V^{\prime} \xrightarrow{i^{\prime}} Y^{\prime}$ in \mathscr{C} are homotopic to each other, then these are homotopy equivalent to inclusions
(6.1.1) $X \subset W \subset Y$ and $X \subset V \subset Y$ with $X=W \cap V$.

Proof. The double mapping cylinder $\bar{X}=W^{\prime} \cup_{i} X^{\prime} \wedge[0,1]^{+} \cup_{f^{\prime}} V^{\prime}$ of i and f^{\prime} is the union of the mapping cylinders $W=W^{\prime} \cup_{i} X^{\prime} \wedge[0,1 / 2]^{+}$and
$V=V^{\prime} \cup_{f^{\prime}} X^{\prime} \wedge[1 / 2,1]^{+}$and $X=X^{\prime} \wedge\{1 / 2\}^{+}=W \cap V$. Furthermore, i, f^{\prime} and a homotopy $h^{\prime}: X^{\prime} \wedge[0,1]^{+} \rightarrow Y^{\prime}$ of $f \circ i$ to $i^{\prime} \circ f^{\prime}$ define the map $h: \bar{X} \rightarrow Y^{\prime}$ and $Y=Y^{\prime} \cup_{h} \bar{X} \wedge[0,1]^{+} \supset \bar{X}$, as desired.
q.e.d.

According to this lemma, we may assume the following:
(6.1.2) In (5.1.1), denoting by $Z_{s, t}=Z, Z_{s+1, t}=Z_{1}$ and $Z_{s, t+1}=Z_{2}$, we have

$$
\begin{array}{cl}
X=W \cap V \subset \bar{X}=W \cup V \subset Y, & X_{1}=W / X=\bar{X} / V \subset Y / V=V_{1}, \\
X_{2}=V / X=\bar{X} / W \subset Y / W=W_{2}, & X_{s+1, t+1}=Y / \bar{X}=V_{1} / X_{1}=W_{2} / X_{2},
\end{array}
$$

and the horizontal and vertical sequences α, β, ω, and η are the cofiberings $\xi: A \stackrel{a}{\subset} B \xrightarrow{b} B / A$ with the inclusions $a=f, i$ and the collapsing maps $b=g, j$.
(6.1.3) Hence, $\{i\},\{j\},\{f\}$ and $\{g\}$ are maps in $\mathscr{C} \mathscr{F}$, and (5.1.2) holds.

Lemma 6.2 For a homology theory h_{*}, consider the induced exact sequences

$$
\begin{equation*}
\cdots \longrightarrow h_{u}(A) \xrightarrow{a_{*}} h_{u}(B) \xrightarrow{b_{*}} h_{u}(B / A) \xrightarrow{\partial_{\xi}} h_{u-1}(A) \longrightarrow \tag{6.2.1}
\end{equation*}
$$

of the above cofiberings ξ, and the diagram formed by them. Then:

$$
\begin{equation*}
\partial_{\omega} \circ \partial_{\alpha^{\prime}}=-\partial_{\alpha} \circ \partial_{\omega^{\prime}}: h_{u+1}\left(X_{s+1, t+1}\right) \rightarrow h_{u-1}\left(X_{s, t}\right) \tag{6.2.2}
\end{equation*}
$$

for $\xi=\xi_{s, t}, \alpha^{\prime}=\alpha_{s+1, t}$ and $\omega^{\prime}=\omega_{s, t+1}$; and the other squares are commutative.
(6.2.3) For $y \in h_{u}\left(Y_{s, t}\right)$ with $j_{*} g_{*} y=0$, there are $x_{k} \in h_{u}\left(X_{k}\right) \quad\left(X_{k}=\right.$ $\left.X_{s+2-k, t-1+k}, k=1,2\right)$ with $\partial_{\omega} x_{1}=-\partial_{\alpha} x_{2}, f_{*} x_{1}=j_{*} y$ and $i_{*} x_{2}=g_{*} y$. Conversely, for x_{k} with the first equality, there is y with the last two ones. In particular, if each $i_{*}: h_{u}\left(V_{s, t}\right) \rightarrow h_{u}\left(Y_{s, t}\right)$ is monomorphic, then for any $x_{1} \in h_{u}\left(X_{1}\right)$, there is $x_{2} \in h_{u}\left(X_{2}\right)$ with $\partial_{\omega} x_{1}=\partial_{\alpha} x_{2}$.
(6.2.4) For $z \in h_{u+1}\left(X_{s+1, t+1}\right)$ with $\partial_{\omega} \partial_{\alpha^{\prime}} z=0$, there are $w \in h_{u}\left(W_{s, t}\right)$ and $v \in h_{u}\left(V_{s, t}\right)$ with $j_{*} w=\partial_{\alpha^{\prime}} z, g_{*} v=\partial_{\omega^{\prime}} z$ and $f_{*} w=-i_{*} v$. Here, if w or v is given, then there is v or w.

Proof. In addition to ξ with the maps in (6.1.2-3), we have also (6.2.5) the cofiberings $\gamma: X \xrightarrow{i^{\prime}} \bar{X} \xrightarrow{j^{\prime}} \bar{X} / X=X_{1} \vee X_{2}, \rho: \bar{X} \stackrel{f^{\prime}}{\subset} Y \xrightarrow{g^{\prime}} Y / \bar{X}$ and $X_{k} \xrightarrow{l_{k}} X_{1} \vee X_{2} \xrightarrow{J_{l}} X_{l}(l=3-k)$ with the maps $\left\{1, f_{1}: W \subset \bar{X}, i_{1}\right\}: \omega \rightarrow \gamma$, $\left\{1, f_{2}: V \subset \bar{X}, i_{2}\right\}: \alpha \rightarrow \gamma,\left\{j_{1}^{\prime}, j, 1\right\}: \rho \rightarrow \alpha^{\prime},\left\{j_{2}^{\prime}, g, 1\right\}: \rho \rightarrow \omega^{\prime}\left(j_{k}^{\prime}=j_{k} \circ j^{\prime}\right)$ for ξ, α^{\prime} and ω^{\prime} in (6.2.2), so that
(6.2.6) $\quad \partial_{\omega}=\partial_{\gamma} \circ i_{1 *}, \partial_{\alpha}=\partial_{\gamma} \circ i_{2 *}, \partial_{\alpha^{\prime}}=j_{1 *}^{\prime} \circ \partial_{\rho}, \partial_{\omega^{\prime}}=j_{2 *}^{\prime} \circ \partial_{\rho}$, and
(6.2.7) $\quad\left(j_{1 *}, j_{2 *}\right): h_{*}\left(X_{1} \vee X_{2}\right) \cong h_{*}\left(X_{1}\right) \oplus h_{*}\left(X_{2}\right)$ with $\left(j_{1 *}, j_{2 *}\right)^{-1}=$ $i_{1 *}+i_{2 *}$.
(6.2.2): $\quad \partial_{\omega} \circ \partial_{\alpha^{\prime}}+\partial_{\alpha} \circ \partial_{\omega^{\prime}}=\partial_{\gamma} \circ\left(i_{1 *} \circ j_{1 *}^{\prime}+i_{2 *} \circ j_{2 *}^{\prime}\right) \circ \partial_{\rho}=\partial_{\gamma} \circ j_{*}^{\prime} \circ \partial_{\rho}=$ 0 by (6.2.6-7); and the other squares are commutative by (6.1.3).
(6.2.3): If $j_{*} g_{*} y=0$, then $g_{*}^{\prime} y=0$ and $y=f_{*}^{\prime} \bar{x}$ for some $\bar{x} \in h_{u}(\bar{X})$; hence $x_{k}=j_{k}^{\prime} \bar{x}$ are the desired ones, since $\partial_{\omega} x_{1}+\partial_{\alpha} x_{2}=\partial_{\gamma} j_{*}^{\prime} \bar{x}=0$. Conversely, if $\partial_{\omega} x_{1}=-\partial_{\alpha} x_{2}$, then $\partial_{\gamma} \tilde{x}=0$ for $\tilde{x}=i_{1 *} x_{1}+i_{2 *} x_{2}$, and $\tilde{x}=j_{*}^{\prime} \bar{x}$ for some
$\bar{x} \in h_{u}(\bar{X})$; hence $y=f_{*}^{\prime} \bar{x}$ is the desired one. The last holds, since $f_{*} \partial_{\omega} x_{1}=0$ by $i_{*} f_{*} \partial_{\omega} x_{1}=f_{*} i_{*} \partial_{\omega} x_{1}=0$ and assumption.
(6.2.4): If $\partial_{\omega} \partial_{\alpha^{\prime}} z=0$, then $\partial_{\alpha} \partial_{\omega^{\prime}} z=0$ by (6.2.2), and there are w and v with the first two equalities. Hence $j_{*}^{\prime} \bar{x}=0$ for $\bar{x}=f_{1 *} w+f_{2 *} v-\partial_{\rho} z$, and $\bar{x}=i_{*}^{\prime} x$ for some $x \in h_{u}(X)$. Thus $f_{*} w+i_{*} v=f_{*}^{\prime}\left(\bar{x}+\partial_{\rho} z\right)=i_{*} f_{*} x=f_{*} i x$; and (6.2.4) holds for w and $v-f_{*} x$, or $w-i_{*} x$ and v.
q.e.d.

According to (3.2.1), (6.1.3) and (6.2.5-7), the same proof gives us the following

Lemma 6.3. For an E_{2}-functor $D=\left\{D_{u}^{t}, K D_{u}^{t}\right\}$, we assume that (6.3) ξ in (6.1.2) and γ, ρ in (6.2.5) are all D-cofiberings, and D splits with wedge sum, i.e., for i_{k} and j_{k} in (6.2.5), there holds the isomorphism

$$
\left(j_{1 *}, j_{2 *}\right): D_{u}^{t}\left(X_{1} \vee X_{2}\right) \cong D_{u}^{t}\left(X_{1}\right) \oplus D_{u}^{t}\left(X_{2}\right) \text { with }\left(j_{1 *}, j_{2 *}\right)^{-1}=i_{1 *}+i_{2 *}
$$

(6.3.1) Then, ξ induces the exact sequence in (1.8.4):

$$
\cdots \longrightarrow D_{u}^{r}(A) \xrightarrow{a_{*}} D_{u}^{r}(B) \xrightarrow{b_{*}} D_{u}^{r}(B / A) \xrightarrow{\delta_{\xi}} D_{u}^{r+1}(A) \longrightarrow \cdots \quad\left(\delta_{\xi}=\bar{\delta}\right) .
$$

(6.3.2) These sequences form the diagram, which is commutative except for $\delta_{\omega} \circ \delta_{\alpha^{\prime}}=-\delta_{\alpha} \circ \delta_{\omega^{\prime}}: D_{u}^{r-1}\left(X_{s+1, t+1}\right) \rightarrow D_{u}^{r+1}\left(X_{s, t}\right) \quad$ (by the notations in (6.2.2)) .
(6.3.3) For $y^{D} \in D_{u}^{r}\left(Y_{s, t}\right)$ with $j_{*} g_{*} y^{D}=0$, there are $x_{k}^{D} \in D_{u}^{r}\left(X_{k}\right)\left(\right.$ for X_{k} in (6.2.3)) satisfying the equalities $\delta_{\omega} x_{1}^{D}=-\delta_{\alpha} x_{2}^{D}, f_{*} x_{1}^{D}=j_{*} y^{D}$ and $i_{*} x_{2}^{D}=g_{*} y^{D}$. Conversely, for x_{k}^{D} with the first equality, there is y^{D} with the last two ones.
(6.3.4) For $z^{D} \in D_{u}^{r-1}\left(X_{s+1, t+1}\right)$ with $\delta_{\omega} \delta_{\alpha^{\prime}} z^{D}=0$, there are $w^{D} \in D_{u}^{r}\left(W_{s, t}\right)$ and $v^{D} \in D_{u}^{r}\left(V_{s, t}\right)$ with $j_{*} w^{D}=\delta_{\alpha^{\prime}} z^{D}, g_{*} v^{D}=\delta_{\omega^{\prime}} z^{D}$ and $f_{*} w^{D}=-i_{*} v^{D}$. Here, if w^{D} or v^{D} is given, then there is v^{D} or w^{D}.

Lemma 6.4. Furthermore, let $\phi^{D}: h_{u} \rightarrow D_{u}^{0}$ be a natural transformation. Then:
(6.4.1) i_{*} and f_{*} for D_{u}^{0} are monomorphic, and $\phi^{D} \circ \partial_{\xi}=0$ for ∂_{ξ} in (6.2.1).
(6.4.2) For $x_{k} \in h_{u}\left(X_{k}\right)$ with $\partial_{\omega} x_{1}=-\partial_{\alpha} x_{2}(c f .(6.2 .3)), \delta_{\omega} \phi^{D} x_{1}=-\delta_{\alpha} \phi^{D} x_{2}$ holds.
(6.4.3) In (6.3.3) for $r=0$, the last two equalities imply the first one.
(6.4.4) For z, w and v in (6.2.4), there is $x^{D} \in D_{u}^{0}\left(X_{s, t}\right)$ with $i_{*} x^{D}=\phi^{D} w$ and $f_{*} x^{D}=-\phi^{D} v$.

Proof. (6.4.1): We see the first half by (6.3.1) and $D_{u}^{-1}=0$, and so the second half since $a_{*} \circ \phi \circ \partial_{\xi}=\phi \circ a_{*} \circ \partial_{\xi}=0(a=i, f)$, where $\phi=\phi^{D}$.
(6.4.2): $j_{*} g_{*} \phi y=0$ for y in (6.2.3), and there are x_{k}^{D} in (6.3.3) for $y^{D}=\phi y$ and $r=0$. Then $f_{*} x_{1}^{D}=\phi j_{*} y=f_{*} \phi x_{1}$ and $x_{1}^{D}=\phi x_{1}$ by (6.4.1); and $x_{2}^{D}=\phi x_{2}$ similarly. Thus (6.4.2) holds.
(6.4.3) holds, since the last two equalities determine x_{k}^{D} uniquely by (6.4.1).
(6.4.4): $f_{*} j_{*} \phi w=\phi f_{*} \partial_{\alpha^{\prime}} z=0$, and $j_{*} \phi w=0$ by (6.4.1); hence $\phi w=i_{*} x^{D}$ for some x^{D}. Then $i_{*} f_{*} x^{D}=f_{*} \phi w=-i_{*} \phi v$, and $f_{*} x^{D}=-\phi v$ by (6.4.1).
q.e.d.

§ 7. Comparison of spectral sequences by a double $\boldsymbol{E}_{\mathbf{2}}$-functor

Under Definitions 1.8, 4.3 and 5.3, we consider the following

Definition 7.1. We say that a double E_{2}-functor $A=\left\{A_{u}^{s, t}, K A_{u}^{s, t}, L A_{u}^{\text {s,t }}\right\}$ is related to a homology theory h_{*} at $X_{0}=X_{0,0}$ by (7.1.1) $\quad E_{2}$-functors $B=\left\{B_{u}^{s}, K B_{u}^{s}\right\} \quad(B=C, D)$, natural transformations ϕ^{B} : $h_{u} \rightarrow B_{u}^{0}, \psi^{C}: C_{u}^{s} \rightarrow A_{u}^{s, 0}, \psi^{D}: D_{u}^{t} \rightarrow A_{u}^{0, t}$ with $\psi^{C} \circ \phi^{C}=\psi^{D} \circ \phi^{D}$, and cofiberings

$$
\begin{gather*}
\alpha_{s, t}: X_{s, t} \xrightarrow{f} V_{s, t} \xrightarrow{g} X_{s, t+1}, \quad \omega_{s, t}: X_{s, t} \xrightarrow{i} W_{s, t} \xrightarrow{j} X_{s+1, t}, \tag{7.1.2}\\
\beta_{s, t}: W_{s, t} \xrightarrow{f} Y_{s, t} \xrightarrow{g} W_{s, t+1}, \quad \eta_{s, t}: V_{s, t} \xrightarrow{i} Y_{s, t} \xrightarrow{j} V_{s+1, t},
\end{gather*}
$$

in (5.1.1) with (6.1.2), if these satisfy the following (7.1.3-5):
(7.1.3) For each $\eta_{s, t}, 0 \rightarrow h_{u}\left(V_{s, t}\right) \xrightarrow{i_{*}} h_{u}\left(Y_{s, t}\right) \xrightarrow{j_{*}} h_{u}\left(V_{s+1, t}\right) \rightarrow 0$ is exact.
(7.1.4) $\quad \xi_{s, t}(\xi=\alpha, \beta, \omega, \eta)$ and γ, ρ in (6.2.5) are all D-cofiberings, and D splits with wedge sum (cf. (6.3)).
(7.1.5) Each $\beta_{s, t}$ is also a C^{0}-homological $A(2)$-cofibering, $\left\{E(s)_{r}^{t, u}\right\}$ in (5.2.1) converges and collapses, ϕ^{c} is natural for $\beta_{s, t}$ (cf. (5.1.4-6)), and $\omega_{s, 0}$ is a C and $A(1)$-injective cofibering; $Y_{s, t}$ is D - and $A(i)$-injective ($i=1,2$); ϕ^{C}, ϕ^{D} and $\psi^{c}: C_{u}^{0} \rightarrow A_{u}^{0,0}$ are isomorphic for $Y_{s, t}$, and so are ϕ^{C} and ψ^{D} for $W_{s, 0}$.

Under this definition, we see the following:
(7.1.6) Lemmas $6.2-4$ hold by (7.1.4). ϕ^{D} is isomorphic also for $V_{s, t}$ which is D-injective, by Corollary 1.5 for $\eta_{s, t}$.
(7.1.7) For $W_{s, t}, \phi^{c}$ and ψ^{D} are isomorphic since so are for $Y_{s, t}$ and $W_{s, 0}$, and ϕ^{D} is epimorphic; and $\operatorname{Ker} \partial_{\beta}^{n}=\operatorname{Ker} \partial_{\beta}$ for $t \geqq n \geqq 1$ and $\partial_{\beta}^{n}: h_{u}\left(W_{s, t}\right) \rightarrow$ $h_{u-n}\left(W_{s, t-n}\right)$ in (6.2.1), by (5.1.6) and (5.6.2-3).
(7.1.8) Moreover, A is indirectly related to C at X_{0} by ψ^{c} and (7.1.2); and A (resp. C, D) is related to D (resp. h_{*}, h_{*}) by ψ^{D} and $\left\{\omega_{s, 0}\right\}$ (resp. ϕ^{C}, ϕ^{D} and $\left\{\omega_{s, 0}\right\},\left\{\alpha_{0, t}\right\}$). Thus, Theorem 1.9, 4.4 and Corollary 5.6 give us the following spectral sequences:
the May one $\quad E^{\text {May }}=\left\{E_{u, r}^{s, t}, d_{r}^{\text {May }}: E_{u, r}^{s, t} \rightarrow E_{u+r, r}^{s+1, t+r}\right\}$,
the Mahowald one $E^{\mathrm{Mah}}=\left\{\widetilde{E}_{u, r}^{s, t}, d_{r}^{\mathrm{Mah}}: \widetilde{E}_{u, r}^{s, t} \rightarrow \widetilde{E}_{u, r}^{s+r, t-r+1}\right\} \quad$ and
$E(B)=\left\{E(B)_{r}^{s, t}, d_{r}^{B}: E(B)_{r}^{s, t} \rightarrow E(B)_{r}^{s+r, t+r-1}\right\}$, with

$$
\begin{aligned}
& A_{u}^{s, t}\left(X_{0}\right)=E_{u, 1 \mathrm{abut}}^{s, t} C_{u-t}^{s}\left(X_{0}\right)=E(C)_{2}^{s, u-t} \underset{\mathrm{abut}}{\Rightarrow} h_{u-s-t}\left(X_{0}\right) \\
& \quad \| \\
& A_{u}^{s, t}\left(X_{0}\right)=\widetilde{E}_{u, 2}^{s, t} \underset{\text { conv }}{\Rightarrow} D_{u}^{s+t}\left(X_{0}\right)=E(D)_{2}^{s+t, u} \underset{\mathrm{abut}}{\Rightarrow} h_{u-s-t}\left(X_{0}\right) .
\end{aligned}
$$

(7.1.9) If $E^{\text {Mah }}$ collapses, then ψ^{D} is epimorphic also for $X_{s, 0}$ and $\operatorname{Ker} \delta_{\omega}^{n}=\operatorname{Ker} \delta_{\omega}$ for $s \geqq n \geqq 1$ and $\delta_{\omega}^{n}: D_{u}^{t}\left(X_{s, 0}\right) \rightarrow D_{u}^{t+n}\left(X_{s-n, 0}\right)$ in (6.3.1), by Corollary 4.5 (ii).

The purpose of this section is to argue some relations betwen these spectral sequences by the following main result.

Theorem 7.2. In case of Definition 7.1, consider the condition
$\mathrm{C}(a, b, n): h_{b-a+i}\left(W_{i, 0}\right)=0$ for $a \leqq i<a+n($ this is nothing when $n=0)$.
Then, the spectral sequences in (7.1.8) satisfy the following (i)-(iv) for $x \in$ $A_{u}^{s, t}\left(X_{0}\right)=\widetilde{E}_{u, 2}^{s, t}=E_{u, 1}^{s, t}:$
(i) $d_{1}^{\text {May }} d_{2}^{\text {Mah }} x=d_{2}^{\text {Mah }} d_{1}^{\text {May }} x$ in $A_{u+1}^{s+3, t}\left(X_{0}\right)$. More generally, if $\mathrm{C}(a, b, n)$ for $a=s+2, s+3$ and $b=u-t+1$ hold for an integer $n \geqq 0$, then $d_{r}^{\text {Mah }} x=$ $0=d_{r}^{\text {Mah }} d_{1}^{\text {May }} x$ for $r \leqq \min \{n+1, t\}$; and $d_{1}^{\text {May }} d_{n+2}^{\text {Mah }} x=d_{n+2}^{\text {Mah }} d_{1}^{\text {May }} x$ when $n<t$, and x converges in $E^{\text {Mah }}$ when $n \geqq t$.
(ii) If x converges to $x^{D} \in D_{u}^{s+t}\left(X_{0}\right)$ in $E^{\text {Mah }, ~ t h e n ~ s o ~ d o e s ~} d_{1}^{\text {May }} x \in$ $A_{u+1}^{s+1, t+1}\left(X_{0}\right)$ to $(-1)^{t} d_{2}^{D} x^{D} \in D_{u+1}^{s+t+2}\left(X_{0}\right)$. If $E^{\text {Mah }}$ collapses and $d_{2}^{D} x^{D}=0$ in addition, then so does $d_{2}^{\text {May }} x \in A_{u+2}^{s+1, t+2}\left(X_{0}\right)$ to $(-1)^{t} d_{3}^{D} x^{D} \in D_{u+2}^{s+t+3}\left(X_{0}\right)$.
(iii) If x converges to $x^{c} \in C_{u-t}^{s}\left(X_{0}\right)$ in $E^{\text {May }}$, then so does $d_{2}^{\text {Mah }} x \in$ $A_{u}^{s+2, t-1}\left(X_{0}\right)$ to $d_{2}^{c} x^{c} \in C_{u-t+1}^{s+2}\left(X_{0}\right)$. If $\mathrm{C}(s+2, u-t+1, n)$ holds in addition, then $d_{r}^{\text {Mah }} x=0=d_{r}^{c} x^{c}$ for $r \leqq \min \{n+1, t\}$; and $d_{n+2}^{\mathrm{Mah}} x \in A_{u}^{s+n+2, t-n-1}\left(X_{0}\right)$ converges to $d_{n+2}^{c} x^{c} \in C_{u-t+n+1}^{s+n+2}\left(X_{0}\right)$ in $E^{\text {May }}$ when $n<t$, and x converges in $E^{\text {Mah }}$ when $n \geqq t$.
(iv) If x converges to x^{c} in $E^{\text {May }}$ and to x^{D} in $E^{\text {Mah }}$, then there is $y \in$ $A_{u+1}^{s+2, t}\left(X_{0}\right)$ converging to $d_{2}^{C} x^{c}$ in $E^{\text {May }}$ and to $(-1)^{t} d_{2}^{D} x^{D}$ in $E^{\text {Mah. If }}$ $\mathrm{C}(s+2, u-t+1, n)$ holds in addition, then $d_{r}^{C} x^{C}=0$ for $r \leqq n+1, d_{r}^{D} x^{D}=0$ for $r \leqq n-t+1$, and there is $y^{\prime} \in A_{u+1+b}^{s+n+2, a}\left(X_{0}\right)$ converging to $d_{n+2}^{c} x^{c}$ in $E^{\text {May }}$ and to $(-1)^{t} d_{b+2}^{D} x^{D}$ in $E^{\text {Mah }}$, where $a=\max \{t-n, 0\}$ and $b=\max \{n-t, 0\}$.

Here, 'converge' is used in the sense of (1.6.2). Thus, in the same way as Corollary 1.7 (i), we see the following by the definitions of $E^{\text {Mah }}$ and $E^{\text {May }}$ in §§4-5:
(7.3.1) $x \in A_{u}^{s, t}\left(X_{0}\right)$ converges to $x^{D} \in D_{u}^{s+t}\left(X_{0}\right)$ in $E^{\text {Mah }}$ if and only if $x=\bar{\psi}_{\omega} \bar{x}^{D}$ and $\delta_{\omega}^{s} \bar{x}^{D}=x^{D}$ for some $\bar{x}^{D} \in D_{u}^{t}\left(X_{s, 0}\right)$, where $\bar{\psi}_{\omega}=\left(\delta_{\omega}^{A}\right)^{s} \circ \psi^{D}$: $D_{u}^{t}\left(X_{s, 0}\right) \rightarrow A_{u}^{0, t}\left(X_{s, 0}\right) \rightarrow A_{u}^{s, t}\left(X_{0}\right), \delta_{\omega}^{A}=\bar{\delta}$, is in Corollary 4.5, and δ_{ω} in (7.1.9).
(7.3.2) For x in (7.3.1) and $x_{r} \in A_{u}^{s^{\prime}, t^{\prime}}\left(X_{0}\right), d_{r}^{\text {Mah }} x=x_{r}$ in $E^{\text {Mah }}$ (cf. (1.6.1)) if and only if $s^{\prime}=s+r, t^{\prime}=t-r+1$ and $x=\left(\delta_{\omega}^{A}\right)^{s} \bar{x}, i_{*} \bar{x}=\psi^{D} \bar{w}^{D}, j_{*} \bar{w}^{D}=$
$\delta_{\omega}^{r-1} \bar{x}_{r}^{D}$ and $\bar{\psi}_{\omega} \bar{x}_{r}^{D}=x_{r}$ for some $\bar{x} \in A_{u}^{0, t}\left(X_{s, 0}\right), \bar{w}^{D} \in D_{u}^{t}\left(W_{s, 0}\right)$ and $\bar{x}_{r}^{D} \in D_{u}^{t^{\prime}}\left(X_{s^{\prime}, 0}\right)$.
(7.3.3) x in (7.3.1) converges to $x^{c} \in C_{u-t}^{s}\left(X_{0}\right)$ in $E^{\text {May }}$ if and only if $x=\left(\delta_{\omega}^{A}\right)^{s} \bar{x}, i_{*} \bar{x}=\psi^{D} \bar{\phi}_{\beta} w, \phi^{c} \partial_{\beta}^{t} w=i_{*} \bar{x}^{c}$ and $\left(\delta_{\omega}^{C}\right)^{s} \bar{x}^{C}=x^{C}$ for some \bar{x} in (7.3.2), $w \in h_{u}\left(W_{s, t}\right)$ and $\bar{x}^{c} \in C_{u-t}^{0}\left(X_{s, 0}\right)$, where $\bar{\phi}_{\beta}=\delta_{\beta}^{t} \circ \phi^{D}: h_{u}\left(W_{s, t}\right) \rightarrow D_{u}^{0}\left(W_{s, t}\right) \rightarrow$ $D_{u}^{t}\left(W_{s, 0}\right), \delta_{\beta}=\bar{\delta}$, is in Corollary 1.7 (i) for $\beta=\beta_{s, t}, \partial_{\beta}$ in (7.1.7), and $\delta_{\omega}^{c}=\bar{\delta}$: $C_{u}^{t}\left(X_{s, 0}\right) \rightarrow C_{u}^{t+1}\left(X_{s-1,0}\right)$ in (1.8.4).
(7.3.4) For x in (7.3.1) and $y_{r} \in A_{u^{\prime}, t^{\prime}}^{t^{\prime}}\left(X_{0}\right), d_{r}^{\text {May }} x=y_{r}$ in $E^{\text {May }}$ if and only if $s^{\prime}=s+1, t^{\prime}=t+r, u^{\prime}=u+r$ and $x=\left(\delta_{\omega}^{A}\right)^{s} \bar{x}, i_{*} \bar{x}=\psi^{D} \bar{\phi}_{\beta} w, i_{*} j_{*} \partial_{\beta}^{t} w=\partial_{\beta}^{t^{\prime}} w_{r}$, $\psi^{D} \bar{\phi}_{\beta} w_{r}=i_{*} \bar{y}_{r}$ and $\left(\delta_{\omega}^{A}\right)^{s^{\prime}} \bar{y}_{r}=y_{r}$ for some \bar{x}, w in (7.3.3), $w_{r} \in h_{u^{\prime}}\left(W_{s^{\prime}, t^{\prime}}\right)$ and $\bar{y}_{r} \in A_{u^{\prime}}^{0, t^{\prime}}\left(X_{s^{\prime}, 0}\right)$.

Also, (6.2.3) and (7.1.3) imply inductively the following:
(7.4.1) For any $z \in h_{u}\left(X_{s, t}\right)$, there are $z_{i} \in h_{u}\left(X_{i, j}\right)(j=s+t-i)$ for $s \geqq i \geqq 0$ with $z_{s}=z$ and $\partial_{\alpha} z_{i}=\partial_{\omega} z_{i+1}$; hence
(7.4.2) $\quad \delta_{\omega}^{s-i} \bar{\phi}_{\alpha} z=(-1)^{\varepsilon(j, t)} \bar{\phi}_{\alpha} z_{i}\left(\varepsilon(j, t)=\sum_{k=t}^{j-1} k\right)$
by (6.3-4.2) for $\bar{\phi}_{\alpha}=\delta_{\alpha}^{*} \circ \phi^{D}: h_{u}\left(X_{i, *}\right) \rightarrow D_{u}^{0}\left(X_{i, *}\right) \rightarrow D_{u}^{*}\left(X_{i, 0}\right)$.
Moreover, (6.2.3-4), (7.1.3) and (6.4.4) imply the following:
(7.4.3) For $\tilde{x}^{D} \in D_{u}^{0}\left(X_{s, t}\right), w \in h_{u}\left(W_{s, t}\right)$ and $z \in h_{u+1}\left(X_{s+1, t+1}\right)$ with $i_{*} \tilde{x}^{D}=$ $\phi^{D} w$ and $j_{*} w=\partial_{\alpha} z$, there are $z_{i} \in h_{u+1}\left(X_{i, j+2}\right), x_{i}^{D} \in D_{u}^{0}\left(X_{i, j}\right), v_{i} \in h_{u}\left(V_{i, j}\right), w_{i} \in$ $h_{u}\left(W_{i-1, j+1}\right)$ and $y_{i} \in h_{u}\left(Y_{i-1, j}\right)(j=s+t-i)$ for $s \geqq i \geqq 0$ with $\partial_{\alpha} z_{i}=\partial_{\omega} z_{i+1}=$ $g_{*} v_{i} \quad\left(z_{s+1}=z\right), \quad i_{*} v_{i}=-f_{*} w_{i+1} \quad\left(w_{s+1}=w\right), \quad i_{*} x_{i}^{D}=\phi^{D} w_{i+1}, \quad f_{*} x_{i}^{D}=-\phi^{D} v_{i}$, $v_{i}=j_{*} y_{i}, w_{i}=g_{*} y_{i}$ and so $j_{*} w_{i}=\partial_{\alpha} z_{i}$; hence $i_{*} \tilde{x}^{D}=i_{*} x_{s}^{D}$ and so $\tilde{x}^{D}=x_{s}^{D}$ by (6.4.1); and $\delta_{\omega} x_{i}^{D}=\delta_{\alpha} x_{i-1}^{D}$ by (6.4.3). Thus,
(7.4.4) $\quad \delta_{\omega}^{s-i} \delta_{\alpha}^{t} \tilde{x}^{D}=(-1)^{\varepsilon(j, t)} \delta_{\alpha}^{j} x_{i}^{D}(\varepsilon(j, t)$ is in (7.4.2)) by (6.3.2).

On the other hand, $\mathrm{C}(a, b, n)$ implies $\partial_{\beta}^{m}=0: \quad h_{k}\left(W_{i, j}\right) \rightarrow h_{k-m}\left(W_{i, j-m}\right)$ $(k=b+i+j-a)$ for $a \leqq i<a+n, j \geqq m \geqq 1$, by (7.1.7); hence for any $z \in h_{k}\left(X_{i, j}\right)$, there is $z^{\prime} \in h_{k}\left(X_{i+1, j-1}\right)$ with $\partial_{\omega} z^{\prime}=\partial_{\alpha} z$ when $j \geqq 1$, and $z^{\prime} \in$ $h_{k+1}\left(X_{i+1,0}\right)$ with $\partial_{\omega} z^{\prime}=z$ when $j=0$. Thus:
(7.4.5) Assume $\mathrm{C}(a, b, n)$. Then for any $z \in h_{u}\left(X_{a, c}\right)(u=b+c)$, there are $z_{i} \in h_{u}\left(X_{i, j}\right)(j=a+c-i)$ for $a \leqq i \leqq a+\min \{n, c\}$ with $z_{a}=z$ and $\partial_{\omega} z_{i}=$ $\partial_{\alpha} z_{i-1}$, hence $\delta_{\omega}^{i-a} \bar{\phi}_{\alpha} z_{i}=(-1)^{\varepsilon(c, j)} \bar{\phi}_{\alpha} z$ in the same way as (7.4.2); and moreover when $n>c$, we have $z_{i} \in h_{b+i-a}\left(X_{i, 0}\right)$ for $c<i-a \leqq n$ with $\partial_{\omega} z_{i}=z_{i-1}$.
Also, by $(6.2 .2,4)$ and (6.4.4), we see the following:
(7.4.6) Assume $\mathrm{C}(a, b, n)$ and $\mathrm{C}(a+1, b, n)$. Then for \tilde{x}^{D}, w and z in (7.4.3) with $s=a, t=c$ and $u=b+c$, there are $z_{i} \in h_{u+1}\left(X_{i+1, j+1}\right), y_{i} \in h_{u}\left(Y_{i-1, j}\right)$, $v_{i}=j_{*} y_{i} \in h_{u}\left(V_{i, j}\right), w_{i} \in h_{u}\left(W_{i, j}\right)$ and $x_{i}^{D} \in D_{u}^{0}\left(X_{i, j}\right)(j=a+c-i)$ for $a<i \leqq a+$ $\min \{n, c\}$ with $\partial_{\omega} z_{i}=\partial_{\alpha} z_{i-1}=g_{*} v_{i}\left(z_{a}=z\right), g_{*} y_{i}=w_{i-1}\left(w_{a}=w\right), j_{*} w_{i}=\partial_{\alpha} z_{i}$, $f_{*} w_{i}=-i_{*} v_{i}, i_{*} x_{i}^{D}=\phi^{D} w_{i}$, and $f_{*} x_{i}^{D}=-\phi^{D} v_{i}$; hence $\delta_{\omega}^{i-a} \delta_{\alpha}^{j} x_{i}^{D}=(-1)^{\varepsilon(c, j)} \delta_{\alpha}^{c} \tilde{x}^{D}$ by the same way as (7.4.4); and moreover $\delta_{\alpha}^{c} \tilde{x}^{D}=0$ when $n>c$, since $w_{a+c} \in h_{u}\left(W_{a+c, 0}\right)=0$ and so $x_{a+c}^{D}=0$.

Proof of Theorem 7.2. (i) For x,
(1) put $y_{1}=d_{1}^{\text {May }} x, a^{\prime}=a+1$, and take \bar{x}, w, w_{1} and \bar{y}_{1} in (7.3.4) for $r=1$.
Then, $\partial_{\beta}^{t} w^{\prime}=0$ for $w^{\prime}=i_{*} j_{*} w-\partial_{\beta} w_{1}$, and $\partial_{\beta} w^{\prime}=0$ by (7.1.7). Thus, $w^{\prime}=g_{*} y$ for some $y \in h_{u}\left(Y_{s^{\prime}, t-1}\right)$, and $j_{*} g_{*} \phi^{D} y=-j_{*} \phi^{D} \partial_{\beta} w_{1}=0$ by (6.4.1) (in (7.1.6)). Hence, there are $x_{k}^{D} \in D_{u}^{0}\left(X_{s+3-k, t-2+k}\right)$ in (6.3.3) with $\delta_{\omega} x_{1}^{D}=-\delta_{\alpha} x_{2}^{D}, f_{*} x_{1}^{D}=$ $j_{*} \phi^{D} y$ and $i_{*} x_{2}^{D}=g_{*} \phi^{D} y$. Therefore, $i_{*} x_{2}^{D}=i_{*} j_{*} \phi^{D} w$ and $x_{2}^{D}=j_{*} \phi^{D} w$ by (6.4.1). Thus, by (6.3.2), (1) and (7.3.2),
(2) $j_{*} \bar{\phi}_{\beta} w=\delta_{\alpha}^{t} x_{2}^{D}=\delta_{\omega} \bar{x}_{1}^{D}$ for $\bar{x}_{1}^{D}=(-1)^{t} \delta_{\alpha}^{t-1} x_{1}^{D}$, and so $\bar{\psi}_{\omega} \bar{x}_{1}^{D}=d_{2}^{\text {Mah }} x$.

Also, $\partial_{\beta}^{2} i_{*} j_{*} w_{1}=-i_{*} j_{*} \partial_{\beta} w^{\prime}=0$ and $\partial_{\beta} i_{*} j_{*} w_{1}=0$ by (7.1.7); hence $\partial_{\alpha} j_{*} w_{1}=$ $\partial_{\omega} z$ for some $z \in h_{u^{\prime}}\left(X_{s+3, t}\right)$, and $\delta_{\alpha} \phi^{D} j_{*} w_{1}=\delta_{\omega} \phi^{D} z$ by (6.4.2). Thus, in the same way,
(3) $j_{*} \bar{\phi}_{\beta} w_{1}=\bar{\phi}_{\alpha} j_{*} w_{1}=(-1)^{t} \delta_{\omega} \bar{\phi}_{\alpha} z$, and so $(-1)^{t} \bar{\psi}_{\omega} \bar{\phi}_{\alpha} z=d_{2}^{\text {Mah }} y_{1}\left(\bar{\phi}_{\alpha}=\delta_{\alpha}^{t} \circ \phi^{D}\right)$.

Moreover, $\partial_{\omega} z=j_{*} \partial_{\beta} w_{1}=-g_{*} j_{*} y$. Hence, (6.2.4) and (6.4.4) for $v=-j_{*} y$ give us $w_{s+2} \in h_{u}\left(W_{s+2, t-1}\right)$ and $x^{D} \in D_{u}^{0}\left(X_{s+2, t-1}\right)$ with $j_{*} w_{s+2}=\partial_{\alpha} z, f_{*} w_{s+2}=$ $-i_{*} v=i_{*} j_{*} y, i_{*} x^{D}=\phi^{D} w_{s+2}$ and $f_{*} x^{D}=\phi^{D} j_{*} y=f_{*} x_{1}^{D}$. Thus $x^{D}=x_{1}^{D}$ by (6.4.1), and
(4) $i_{*} \psi^{D} \bar{x}_{1}^{D}=(-1)^{t} \psi^{D} \bar{\phi}_{\beta} w_{s+2}$ and so $d_{1}^{\text {May }}\left(\bar{\psi}_{\omega} \bar{x}_{1}^{D}\right)=(-1)^{t} \bar{\psi}_{\omega} \bar{\phi}_{\alpha} z$ for x_{1}^{D} in (2),
by (7.3.4). Now, (1)-(4) show the desired first equality in (i). (Note that w^{\prime}, z, w_{s+2} and x^{D} are all 0 when $t=0$.)

Assume $\mathrm{C}(a, b, n)$ and $\mathrm{C}(a+1, b, n)$ for $a=s+2$ and $b=u-t+1$. Then, by (7.4.6) for x^{D}, z and $w_{a}(a=s+2, c=t-1)$ of above, we have elements $x_{i}^{D}, z_{i}, w_{i}(a \leqq i \leqq a+\min \{n, c\})$ in (7.4.6) with $x_{a}^{D}=x^{D}, z_{a}=z$, $i_{*} x_{i}^{D}=\phi^{D} w_{i}$ and $j_{*} w_{i}=\partial_{\alpha} z_{i}$. Thus, by (7.3.2-4) and (1)-(4),
(5) $\bar{\psi}_{\omega} \bar{x}_{i}^{D}=d_{i-s}^{\text {Mah }} x$ and $d_{1}^{\text {May }} \bar{\psi}_{\omega} \bar{x}_{i}^{D}=(-1)^{\varepsilon(c, j)+t} \bar{\psi}_{\omega} \bar{\phi}_{\alpha} z_{i}=d_{i-s}^{\text {Mah }} y_{1}$ for $\bar{x}_{i}^{D}=$ $(-1)^{\varepsilon(c, j)+t} \delta_{\alpha}^{j} x_{i}^{D}$ (these are 0 when $i<a+\min \{n, c\}$); and when $n \geqq t, d_{r}^{\text {Mah }} x=0$ for any $r \geqq 2$ by taking $\bar{x}_{r}^{D}=0$ in (7.3.2), and so x converges in $E^{\text {Mah }}$. These imply the last half of (i).
(ii) Assume that x converges to x^{D} in $E^{\text {Mah }}$. Then, by (7.3.1), (7.1.4, 6-7) and (1.3.2),
(1) we have $\bar{x}^{D} \in D_{u}^{t}\left(X_{s, 0}\right), \quad \tilde{x}^{D} \in D_{u}^{0}\left(X_{s, t}\right), w \in h_{u}\left(W_{s, t}\right)$ and $z \in h_{u^{\prime}}\left(X_{s^{\prime}, t^{\prime}}\right)$ $\left(a^{\prime}=a+1\right) \quad$ with $\quad x=\bar{\psi}_{\omega} \bar{x}^{D}, \quad x^{D}=\delta_{\omega}^{s} \bar{x}^{D}, \quad \bar{x}^{D}=\delta_{\alpha}^{t} \tilde{x}^{D}, \quad i_{*} \tilde{x}^{D}=\phi^{D} w \quad$ and $j_{*} w=\partial_{\alpha} z$;
because the fourth equality implies $\phi^{D} f_{*} j_{*} w=f_{*} j_{*} i_{*} \tilde{x}^{D}=0$ and so $f_{*} j_{*} w=0$. Hence,
(2) $d_{1}^{\text {May }} x=\bar{\psi}_{\omega} \bar{\phi}_{\alpha} z$ by (7.3.4), and this converges to $\delta_{\omega}^{s^{\prime}} \bar{\phi}_{\alpha} z$ in $E^{\text {Mah }}$ by (7.3.1).

Now, by $i_{*} \tilde{x}^{D}=\phi^{D} w$ and $j_{*} w=\partial_{\alpha} z$, we have elements $z_{i}, x_{i}^{D}, v_{i}, y_{i}$ and w_{i} $(s \geqq i \geqq 0)$ in (7.4.3). Then,
(3) $d_{2}^{D}\left(\delta_{\alpha}^{t+s} x_{0}^{D}\right)=-\bar{\phi}_{\alpha} z_{0}$ by the last part of Corollary 1.7 (i) for $E(D)$, $x^{D}=\delta_{\omega}^{s} \bar{x}^{D}=\delta_{\omega}^{s} \delta_{\alpha}^{t} \tilde{x}^{D}=(-1)^{\varepsilon(s+t, t)} \delta_{\alpha}^{s+t} x_{0}^{D} \quad$ by (1) and (7.4.4), and $\delta_{\omega}^{s^{\prime}} \bar{\phi}_{\alpha} z=$ $(-1)^{\varepsilon\left(s^{\prime}+t^{\prime}, t^{\prime}\right)} \bar{\phi}_{\alpha} z_{0}$ by (7.4.2).
By (7.3.1), (2)-(3) imply the first half of (ii).
Assume in addition that $E^{\text {Mah }}$ collapses and $d_{2}^{D} x^{D}=0$. Then, $\delta_{\omega}^{s} \bar{\phi}_{\alpha} z=0$ by (3), and so $\delta_{\omega} \bar{\phi}_{\alpha} z=0$ by Corollary 4.5 (ii). Hence, (7.1.4), (7.1.6-7) and (1.3.2) imply that $\bar{\phi}_{\alpha} z=j_{*} \phi_{\beta} w^{\prime}, \phi^{D} z-j_{*} \phi^{D} w^{\prime}=g_{*} \phi^{D} v^{\prime}$ and $z-j_{*} w^{\prime}-g_{*} v^{\prime}=\partial_{\alpha} z^{\prime}$ for some $w^{\prime} \in h_{u^{\prime}}\left(W_{s, t^{\prime}}\right), v^{\prime} \in h_{u^{\prime}}\left(V_{s^{\prime}, t}\right)$ and $z^{\prime} \in h_{u^{\prime}+1}\left(X_{s^{\prime}, t^{\prime}+1}\right)$; and $\partial_{\alpha}^{2} z^{\prime}=j_{*} w^{\prime \prime}$ and $\phi^{D} w^{\prime \prime}=i_{*} \tilde{x}^{D}$ for $w^{\prime \prime}=w-\partial_{\beta} w^{\prime}$. Therefore,
(4) $d_{2}^{\text {May }} x=\bar{\psi}_{\omega} \bar{\phi}_{\alpha} z^{\prime}$ by (7.3.4).

Then, we have $z_{i}^{\prime} \in h_{u^{\prime}+1}\left(X_{i, j}\right)\left(j=s^{\prime}+t^{\prime}-i+1\right)$ for $s^{\prime} \geqq i \geqq 0$ in (7.4.1) with $z=z^{\prime}$. Also, we have $v_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}$ and $x_{i}^{\prime D}(s \geqq i \geqq 0)$ in (7.4.3) for $\tilde{x}^{D}, w^{\prime \prime}$ and $\partial_{\alpha^{\prime}} z^{\prime}$ with $\partial_{\alpha}^{2} z_{i}^{\prime}=-\partial_{\omega} \partial_{\alpha} z_{i+1}^{\prime}=(-1)^{s^{\prime}-i} g_{*} v_{i}^{\prime}$ and the equalities in (7.4.3). Thus, in the same way as (3),
(5) $d_{3}^{D}\left(\delta_{\alpha}^{t+s} x_{0}^{D}\right)=(-1)^{s} \bar{\phi}_{\alpha} z_{0}^{\prime}, \quad x^{D}=(-1)^{\varepsilon} \delta_{\alpha}^{s+t} x_{0}^{D} \quad(\varepsilon=\varepsilon(s+t, t)$, and $\delta_{\omega}^{s^{\prime}} \bar{\phi}_{\alpha} z^{\prime}=(-1)^{\varepsilon^{\prime}} \bar{\phi}_{\alpha} z_{0}^{\prime}\left(\varepsilon^{\prime}=\varepsilon\left(s^{\prime}+t^{\prime}+1, t^{\prime}+1\right)\right)$.
(4)-(5) imply the last half of (ii) by $\varepsilon^{\prime}-\varepsilon-s=t+2 s+2$.
(iii) Assume that x converges to x^{c} in $E^{\text {May }}$. Then,
(1) we have \bar{x}, w and \bar{x}^{c} in (7.3.3), and so $z \in h_{u}\left(X_{s+2, t-1}\right)$ with $\partial_{\omega} z=\partial_{\alpha} j_{*} w ;$
because $\phi^{c} \partial_{\beta}^{t} i_{*} j_{*} w=0$ by the third equality in (7.3.3), and $i_{*} \partial_{\alpha} j_{*} w=\partial_{\beta} i_{*} j_{*} w=0$ by (7.1.7). Therefore, $j_{*} \partial_{\beta}^{t} w=(-1)^{t-1} \partial_{\omega} \partial_{\alpha}^{t-1} z$ by (6.2.2), and $\delta_{\omega} \phi^{D} z=\delta_{\alpha} \phi^{D} j_{*} w$ and $\delta_{\omega} \bar{\phi}_{\alpha} z=(-1)^{t-1} \bar{\phi}_{\alpha} j_{*} w$ by (6.4.2), (6.3.2). Thus, by Corollary 1.7 (i) and (7.3.2),
(2) $d_{2}^{C} x^{c}=(-1)^{t-1} \bar{\phi}_{\omega}^{c} \partial_{\alpha}^{t-1} z\left(\bar{\phi}_{\omega}^{c}=\left(\delta_{\omega}^{c}\right)^{*} \circ \phi^{c}\right)$ and $d_{2}^{\mathrm{Mah}} x=(-1)^{t-1} \bar{\psi}_{\omega} \bar{\phi}_{\alpha} z$.

Hence $d_{2}^{\text {Mah }} x$ converges to $d_{2}^{c} x^{c}$ by (7.3.3).
Assume in addition $\mathrm{C}(a, b, n)$ for $a=s+2$ and $b=u-t+1$. Then,
(3) we have $z_{i}(a \leqq i \leqq a+\min \{n, c\})$; and when $n>c, z_{a+c+1}$ in (7.4.5), for z and $c=t-1$.
Then, $\partial_{\omega}^{i-a+1} \partial_{\alpha}^{j} z_{i}=(-1)^{\varepsilon+c} j_{*} \partial_{\beta}^{c+1} w$ and $\delta_{\omega}^{i-a+1} \bar{\phi}_{\alpha} z_{i}=(-1)^{\varepsilon+c} \bar{\phi}_{\alpha} j_{*} w$ where $\varepsilon=$ $\varepsilon(c, j)$; and when $n \geqq t, \phi^{D} z_{a+c}=0$ by (6.4.1), and $\bar{\phi}_{\alpha} j_{*} w=0$. Therefore, by Corollary (1.7) (i) and (7.3.2),
(4) $d_{r}^{c} x^{c}=(-1)^{\varepsilon+c} \bar{\phi}_{\omega}^{c} \partial_{\alpha}^{j} z_{i} \quad$ and $\quad d_{r}^{\text {Mah }} x=(-1)^{\varepsilon+t-1} \bar{\psi}_{\omega} \bar{\phi}_{\alpha} z_{i} \quad(r=i-a+2$, $\varepsilon=\varepsilon(c, j)$) for $a \leqq i \leqq a+\min \{n, c\}$; and when $n>c, d_{r}^{\text {Mah }} x=0$ for any $r \geqq 2$ and so x converges in $E^{\text {Mah }}$.
These imply the last half of (iii).
(iv) Assume that x converges to x^{D} in $E^{\text {Mah }}$ and to x^{c} in $E^{\text {May }}$. Then, we have $\bar{x}^{D}, \tilde{x}^{D}, w$ and z in (1) (in the proof) of (ii), and \bar{x}, w^{\prime} (this is w in (7.3.3)),
\bar{x}^{C} in (7.3.3). Now, $\psi^{D} \bar{x}^{D}-\bar{x}=j_{*} \psi^{D} \bar{\phi}_{\beta} w_{1}$ for some $w_{1} \in h_{u}\left(W_{s-1, t}\right) \quad\left(w_{1}=0\right.$ if $s=0$) by $\bar{\psi}_{\omega} \bar{x}^{D}=x=\left(\delta_{\omega}^{A}\right)^{s} \bar{x}$, (7.1.5) and (7.1.7), and so $\psi^{D} \bar{\phi}_{\beta} i_{*} j_{*} w_{1}=$ $\psi^{D} i_{*} \bar{x}^{D}-i_{*} \bar{x}=\psi^{D} \delta_{\beta}^{t} i_{*} \tilde{x}^{D}-\psi^{D} \bar{\phi}_{\beta} w^{\prime}=\psi^{D} \bar{\phi}_{\beta}\left(w-w^{\prime}\right)$ by (1) of (ii) and (7.3.3). Hence, $\phi^{D}\left(w-w^{\prime}-i_{*} j_{*} w_{1}\right)=\phi^{D} g_{*} y^{\prime}$ and $w-w^{\prime}-i_{*} j_{*} w_{1}-g_{*} y^{\prime}=\partial_{\beta} w_{2}$ for some $y^{\prime} \in h_{u}\left(Y_{s, t-1}\right)\left(y^{\prime}=0\right.$ if $\left.t=0\right)$ and $w_{2} \in h_{u^{\prime}}\left(W_{s, t^{\prime}}\right)\left(a^{\prime}=a+1\right)$ by (1.3.2) and (7.1.5-6). Therefore, by taking $w-\partial_{\beta} w_{2}, z-j_{*} w_{2}, \psi^{D} \bar{x}^{D}$ and $\bar{x}^{C}+j_{*} \phi^{C} \partial_{\beta}^{t} w_{1}$ to be new $w, z, \bar{x}, \bar{x}^{c}$, respectively,
(1) we have $\bar{x}^{D}, \tilde{x}^{D}, w, z, \bar{x}$ and \bar{x}^{c} with the equalities in (7.3.3) and (1) of (ii).

Then, by the same way as (1) of (iii), we have $z^{\prime} \in h_{u^{\prime}}\left(X_{s^{\prime}+1, t}\right)$ with $\partial_{\omega} z^{\prime}=$ $\partial_{\alpha} z=j_{*} w$; and so $(-1)^{t} \partial_{\omega} \partial_{\alpha}^{t} z^{\prime}=\partial_{\alpha}^{t^{\prime}} z=j_{*} \partial_{\beta}^{t} w$. Therefore, by Corollary 1.7 (i) and (7.3.3),
(2) $y=(-1)^{t} \bar{\psi}_{\omega} \bar{\phi}_{\alpha} z^{\prime}$ converges to $d_{2}^{c} x^{c}=(-1)^{t} \bar{\phi}_{\omega}^{c} \partial_{\alpha}^{t} z^{\prime}$ in $E^{\text {May }}$.

Also, by the same way as (3) of the proof of (ii), we have $z_{i}\left(z_{s^{\prime}}=z\right), x_{i}^{D}$ $\left(x_{s}^{D}=\tilde{x}^{D}\right), v_{i}, y_{i}$ and $w_{i}\left(w_{s^{\prime}}=w\right)$ in (7.4.3) for $s \geqq i \geqq 0$, and
(3) $d_{2}^{D}\left(\delta_{\alpha}^{t+s} x_{0}^{D}\right)=-\bar{\phi}_{\alpha} z_{0}, x^{D}=\delta_{\omega}^{s} \bar{x}^{D}=(-1)^{\varepsilon^{\prime}} \delta_{\alpha}^{s+t} x_{0}^{D} \quad\left(\varepsilon^{\prime}=\varepsilon(s+t, t)\right.$, and $(-1)^{t} \delta_{\omega}^{s \prime+1} \bar{\phi}_{\alpha} z^{\prime}=\delta_{\omega}^{s^{\prime}} \bar{\phi}_{\alpha} z=(-1)^{\varepsilon\left(s^{\prime}+t^{\prime}, t^{\prime}\right)} \bar{\phi}_{\alpha} z_{0}$.
Therefore,
(4) $y=(-1)^{t} \bar{\psi}_{\omega} \bar{\phi}_{\alpha} z^{\prime}$ in (2) converges to $(-1)^{t} d_{2}^{D} x^{D}$ in $E^{\text {Mah }}$.
(2) and (4) imply the first half of (iv).

Assume $\mathrm{C}(s+2, u-t+1, n)$ in addition. Then, we have $z_{i}\left(z_{a}=z^{\prime}\right)$ in (7.4.5) for $a=s+2, b=u-t+1$ and $c=t$. Hence, for $a \leqq i \leqq a+\min \{n, t\}$, $\partial_{\omega}^{i-s-1} \partial_{\alpha}^{j} z_{i}=(-1)^{\varepsilon(t+1, j)} j_{*} \partial_{\beta}^{t} w$ by (6.2.2) and $\partial_{\omega} \partial_{\alpha}^{t} z^{\prime}=(-1)^{t} j_{*} \partial_{\beta}^{t} w$; and for $a+t<i \leqq a+n, \quad \partial_{\omega}^{i-s-1} z_{i}=\partial_{\omega}^{t+1} z_{s+t+2}=(-1)^{\varepsilon t+1,0)} j_{*} \partial_{\beta}^{t} w$. Therefore, by Corollary 1.7 (i) and (7.3.3),
(5) $d_{i-s}^{c} x^{c}=0$ for $s+2 \leqq i<s+n+2$, and $y^{\prime}=(-1)^{\varepsilon} \bar{\psi}_{\omega} \bar{\phi}_{\alpha} z_{s+n+2}$ converges to $d_{n+2}^{c} x^{c}$ in $E^{\text {May }}(\varepsilon=\varepsilon(t+1, t-n)$ if $n \leqq t,=\varepsilon(t+1,0)$ if $n>t)$.
Also, when $n \leqq t,(-1)^{\varepsilon(t, t-n)} \delta_{\omega}^{n} \bar{\phi}_{\alpha} z_{a+n}=\bar{\phi}_{\alpha} z^{\prime}$ by (6.3.2), and so $(-1)^{\varepsilon} \delta_{\omega}^{a+n} \bar{\phi}_{\alpha} z_{a+n}=$ $(-1)^{\varepsilon\left(s^{\prime}+t^{\prime}, t^{\prime}\right)} \bar{\phi}_{\alpha} z_{0}(\varepsilon=\varepsilon(t+1, t-n))$ for z_{0} in (3) by $z_{a}=z^{\prime}$. Therefore, by (3),
(6) when $n \leqq t, y^{\prime}$ in (5) converges to (-1$)^{t} d_{2}^{D} x^{D}$ in $E^{\text {Mah }}$.

If $n>t$, then we have $z_{i}^{\prime}\left(z_{a+n}^{\prime}=z_{a+n}\right)$ for $a+n \geqq i \geqq 0$ in (7.4.1) for $z=z_{a+n}$; and $z_{a+t}=\partial_{\omega}^{n-t} z_{a+n}=(-1)^{\varepsilon^{\prime \prime}} \partial_{\alpha}^{n-t} z_{a+t}^{\prime}\left(\varepsilon^{\prime \prime}=\varepsilon(n-t, 0)\right)$ by (6.2.2), and $\partial_{\alpha} z_{i}=$ $(-1)^{e^{\prime \prime}+e} \partial_{\alpha}^{n-t+1} z_{i}^{\prime}(e=(a+t-i)(n-t))$ for $a+t>i \geqq 0$ by induction. In fact, $z_{i}-(-1)^{\varepsilon^{\prime \prime}+e} \partial_{\alpha}^{n-t} z_{i}^{\prime}=g_{*} v^{\prime}$ for some $v^{\prime} \in h_{u+1}\left(V_{i, j-1}\right),\left(g_{*} v^{\prime}=0\right.$ for $i=a+t$, $j=0)$ by the assumption of induction, and so $\partial_{\alpha} z_{i-1}=\partial_{\omega} z_{i}=(-1)^{\varepsilon^{\prime \prime}+e} \partial_{\omega} \partial_{\alpha}^{n-t} z_{i}^{\prime}=$ $(-1)^{e^{\prime \prime}+e+n-t} \partial_{\alpha}^{n-t+1} z_{i-1}^{\prime}$ by (6.2.2) and (7.1.3). Especially, $(-1)^{e^{\prime \prime}+e} \partial_{\alpha}^{n-t+1} z_{0}^{\prime}=$ $\partial_{\alpha} z_{0}=g_{*} v_{0}(e=(s+t+2)(n-t))$ for z_{0} and v_{0} in (3). Therefore,
(7) $d_{r}^{D}\left(\delta_{\alpha}^{t+s} x_{0}^{D}\right)=0$ for $r<n-t+2, d_{n-t+2}^{D}\left(\delta_{\alpha}^{t+s} x_{0}^{D}\right)=(-1)^{c^{\prime \prime+}+e^{\prime}} \bar{\phi}_{\alpha} z_{0}^{\prime}$, and $\delta_{\omega}^{a+n} \phi^{D} z_{a+n}=(-1)^{\varepsilon^{\prime \prime \prime}} \bar{\phi}_{\alpha} z_{0}^{\prime}\left(\varepsilon^{\prime \prime \prime}=\varepsilon(a+n, 0)\right)$. Thus, by (3) and $\varepsilon^{\prime \prime \prime}-\varepsilon^{\prime \prime}-\varepsilon^{\prime}+\varepsilon-$ $a-1=t^{2}+2 t+2 s$,
(8) when $n>t, d_{r}^{D} x^{D}=0$ for $r<n-t+2$, and y^{\prime} in (6) converges to $(-1)^{t} d_{n-t+2}^{D} x^{D}$.
(6)-(8) imply the latter half of (iv).
q.e.d.

§8. The case $\boldsymbol{B}=\boldsymbol{G} \boldsymbol{A}$ for ring spectra $\boldsymbol{G}=\boldsymbol{E}, \boldsymbol{F}$

For ring spectra $G=E, F$ and a $C W$ spectrum X_{0}, consider
(8.1.1) the E_{2}-functors $G A$ with $\phi^{G}: \pi_{*} \rightarrow G A_{*}^{0}$ in (2.1.1-6), the double E_{2}-functor $E F A$ with $\psi^{F}=\psi^{F A}: F A_{u}^{t} \rightarrow E F A_{u}^{0, t}, \psi^{E}: E A_{u}^{s} \rightarrow E F A_{u}^{s, 0}$ in (4.6.1-8) for $D=F A$ and in (5.7.3), and the diagram (5.1.1) of the cofiberings given by (5.7.1), by assuming the following (8.1.2):
(8.1.2) (4.6.9) holds for $X_{n}=X_{n, 0}$ (e.g., there is a unit-preserving map $\lambda: E \rightarrow F$), and the F-Adam spectral sequence $\left\{E(s)_{r}^{t, u}\right\}, E(s)_{2}^{t}=F A_{u}^{t}\left(W_{s, 0}\right) \Rightarrow \pi_{u-t}\left(W_{s, 0}\right)$, in (5.7.2) converges and collapses for any $s \geqq 0$.
(8.1.3) Then, for $A=E F A, C=E A, D=F A, h_{*}=\pi_{*}$ and the ones in (8.1.1), (7.1.3-5) hold by (4.6.1-9), (5.7.1-4) and Lemma 2.2; and
(8.1.4) we have the spectral sequences in (7.1.8), which are the G-Adams ones $E(G)=\left\{E(G)_{r}^{s, t}, d_{r}^{G}\right\}$, the Mahowald and May ones $E^{\text {Mah }}=\left\{\widetilde{E}_{u, r}^{s, t}\right\}$ and $E^{\text {May }}=$ $\left\{E_{u, r}^{s, t}\right\}$ given in Theorem 2.3, 4.7 and 5.8, respectively:

$$
\begin{gathered}
E F A_{u}^{s, t}\left(X_{0}\right)=E_{u, 1}^{s, t} \stackrel{\text { May }}{\Rightarrow} E A_{u-t}^{s}\left(X_{0}\right)=E(E)_{2}^{s, u-t} \stackrel{E-\text { Adams }}{\Rightarrow} \pi_{u-s-t}\left(X_{0}\right) \\
\| \\
E F A_{u}^{s, t}\left(X_{0}\right)=\widetilde{E}_{u, 2}^{s, t} \xrightarrow{\text { Mah }} F A_{u}^{s+t}\left(X_{0}\right)=E(F)_{2}^{s+t, u} \stackrel{\text { Adams }}{\Rightarrow} \pi_{u-s-t}\left(X_{0}\right) .
\end{gathered}
$$

(8.1.5) Moreover, Theorem 7.2 holds for the spectral sequences in (8.1.4).

In the rest of this section, we consider the case that
(8.2.1) $X_{0}=S^{0}, E=B P$ at a prime p and $F=H Z_{p}$ with the Thom map $\Phi^{B P}$ $B P \rightarrow H Z_{p}$,
(cf. Example 3.10). We notice that
(8.2.2) the Thom map $\Phi^{B P}$ induces a monomorphism $\Phi_{*}^{B P}:\left(H Z_{p}\right)_{*}(B P)=$ $P_{*}=Z_{p}\left[t_{i}\right] \rightarrow\left(H Z_{p}\right)_{*}\left(H Z_{p}\right)=A_{*}$, and $\Phi_{*}^{B P} t_{i}=\eta_{i}$ if p is an odd prime, $=\eta_{i}^{2}$ if $p=2$, where η_{i} is the conjugate of Milnor's ξ_{i}, and we regard P_{*} as a subalgebra of A_{*} by $\Phi_{*}^{B P}$.
Then $\left\{E(S)_{r}^{t, u}\right\}$ in (5.7.2) satisfies

$$
\begin{equation*}
\left\{E(s)_{r}^{t, u}, d(s)_{r}\right\}=\left\{E(0)_{r}^{t, u} \otimes B P_{*}\left(X_{s, 0}\right), d(0)_{r} \otimes 1\right\} \tag{8.2.3}
\end{equation*}
$$

because $B P_{*}\left(X_{s, 0}\right)$ is flat over $B P_{*}\left(S^{0}\right)$ for $s \geqq 0$ by (3.8.7); and

$$
\begin{equation*}
E(0)_{2}^{t, u}=\operatorname{Ext}_{A_{*}}^{t, u}\left(Z_{p}, P_{*}\right)=Z_{p}\left[a_{i}\right] \tag{8.2.4}
\end{equation*}
$$

$\left(a_{i} \in \operatorname{Ext}^{1, *}, *=2\left(p^{i}-1\right)+1\right)$, which is 0 if $u-t \neq 0 \bmod 2 p-2$, by (3.10.1).

Thus, $d(0)_{r}=0, d(s)_{r}=0$ and $\left\{E(s)_{r}^{t, u}\right\}$ collapses. Also, this converges by [16, 19.12]. Thus:
(8.2.5) In case (8.2.1), the assumption (8.1.2) and so (8.1.4-5) hold.
(8.2.6) Moreover, $\mathrm{C}(a, b, n)$ in Theorem 7.2 holds if $b-1 \equiv 0 \bmod 2 p-2$ and $n=2 p-3$, by (3.10.2); and $E^{\text {Mah }}$ collapses if p is odd, by [10, 8.15].

Therefore, Theorem 7.2 implies the following
Example 8.3. In case (8.2.1), the spectral sequences in (8.1.4) satisfy the following (i)-(iv) for $x \in E F A_{u}^{s, t}\left(S^{0}\right)\left(E=B P, F=H Z_{p}\right)$:
(i) $d_{1}^{\text {May }} d_{2 p-1}^{\text {Mah }} x=d_{2 p-1}^{\text {Mah }} d_{1}^{\text {May }} x$ if $t \geqq 2 p-2$, and x converges in $E^{\text {Mah }}$ if $t<2 p-2$.
(ii) If x converges to $x^{F} \in F A_{u}^{s+t}\left(S^{0}\right)$ in $E^{\text {Mah }}$, then so does $d_{1}^{\text {May }} x$ to $(-1)^{t} d_{2}^{F} x^{F}$. If p is odd and $d_{2}^{F} x^{F}=0$ in addition, then so does $d_{2}^{\text {May }} x$ to $(-1)^{t} d_{3}^{F} x^{F}$.
(iii) If x converges to $x^{E} \in E A_{u-t}^{s}\left(S^{0}\right)$ in $E^{\text {May }}$, then so does $d_{2 p-1}^{\text {Mah } x}$ to $d_{2 p-1}^{E} x^{E}$ when $t \geqq 2 p-2$, and x converges in $E^{\text {Mah }}$ when $t<2 p-2$.
(iv) If x converges to x^{E} in $E^{\text {May }}$ and to x^{F} in $E^{\text {Mah }}$, then there is $y \in$ $E F A_{u+m}^{s+2 p-1, v}\left(S^{0}\right)(v=\max \{t-2 p+3,0\}, m=\max \{1,2 p-t-2\})$ which converges to $d_{2 p-1}^{E} x^{E}$ in $E^{\text {May }}$ and to $(-1)^{t} d_{m+1}^{F} x^{F}$ in $E^{\text {Mah }}$.

Now, by [4, II, 16.1],
(8.3.1) $\pi_{*}(E)=Q_{p}\left[v_{i}\right]$ and $E_{*}(E)=\pi_{*}(E)\left[t_{i}\right](E=B P)$ with $\Delta t_{1}=$ $1 \otimes t_{1}+t_{1} \otimes 1, \eta v_{1}=v_{1}+p t_{1}$ for the copoduct $\Delta: E_{*}(E) \rightarrow E_{*}(E) \otimes E_{*}(E)$ and the (right) unit $\eta: \pi_{*}(E) \rightarrow E_{*}(E)\left(\eta_{L} x=x\right.$ for the lef unit $\left.\eta_{L}\right)$.
Then, for the cochain complex $E_{u}^{*}\left(S^{0}\right)$ in (2.1.1), $E_{*}^{s}\left(S^{0}\right)=E_{*}(E) \otimes \cdots \otimes E_{*}(E)(s$ times), and $\delta^{s}=\sum_{i=0}^{s+1}(-1)^{i} \delta_{i *}^{s}, \delta_{i *}^{s}=1 \otimes \Delta \otimes 1: E_{*}^{s-i}\left(S^{0}\right) \otimes E_{*}(E) \otimes E_{*}^{i-1}\left(S^{0}\right) \rightarrow$ $E_{*}^{s-i}\left(S^{0}\right) \otimes E_{*}(E) \otimes E_{*}(E) \otimes E_{*}^{i-1}\left(S^{0}\right)$ for $0<i \leqq s, \delta_{0 *}^{s} x=x \otimes 1$ and $\delta_{s+1 *}^{s}(x)=$ $1 \otimes x$.
(8.3.2) Thus, we have the elements

$$
\alpha_{t}^{E} \in E A_{*}^{1}\left(S^{0}\right) \text { and } \beta_{q / t}^{E} \in E A_{*}^{2}\left(S^{0}\right) \text { for } q=p^{n}(E=B P)(\text { cf. [11] }),
$$

represented respectively by $\alpha_{t}^{E}=\left(\eta v_{1}^{t}-v_{1}^{t}\right) / p$ in $E_{*}^{1}\left(S^{0}\right)\left(\alpha_{1}=t_{1}\right)$ and $\beta_{q / t}^{E}=$ $\left\{\eta v_{1}^{q-t} \otimes t_{1}^{p q}-\eta v_{1}^{p q-t} \otimes t_{1}^{q}-v_{1}^{q-t} \cdot \Delta t_{1}^{p q}+v_{1}^{p q-t} \cdot \Delta t_{1}^{q}+v_{1}^{q-t} t_{1}^{p q} \otimes 1-\right.$ $\left.v_{1}^{p q-t} t_{1}^{q} \otimes 1\right\} / p$ in $E_{*}^{2}\left(S^{0}\right)$.
(8.3.3) Also, we have the elements

$$
a_{0}^{F}, h_{n}^{F} \in F A_{*}^{1}\left(S^{0}\right) \quad \text { and } \quad b_{n} \in F A_{*}^{2}\left(S^{0}\right) \quad\left(F=H Z_{p}\right),
$$

represented respectively by $a_{0}^{F}=e_{0}, h_{n}^{F}=\eta_{1}^{q} \quad\left(q=p^{n}\right)$ in $F_{*}^{1}\left(S^{0}\right)=A_{*}$ and $b_{n}^{F}=\sum_{i=1}^{p-1} c_{i} \eta_{1}^{(p-i) q} \otimes \eta_{1}^{i q}\left(q=p^{n}, p c_{i}=\binom{p}{i}\right)$ in $F_{*}^{2}\left(S^{0}\right)=A_{*} \otimes A_{*}$, where e_{i} and η_{i} are the conjugates of Milnor's τ_{i} and ξ_{i}, respectively.
Moreover, for $E=B P, F=H Z_{p}$ and $X=S^{0}$, consider
$F E_{*}^{s, t}\left(S^{0}\right)=\left(A_{*}\right)^{t} \otimes\left(P_{*}\right)^{s+1}$ with $\delta^{G}=\sum_{i=0}^{*+1}(-1)^{i} \delta_{i *}^{G} \quad(*=s$ or $t)$ in (4.9.1), where $\left(N_{*}\right)^{t}=N_{*} \otimes \cdots \otimes N_{*}\left(t\right.$ times) (cf. (2.3.2)). Then for $x \in\left(A_{*}\right)^{t} \otimes\left(P_{*}\right)^{s+1}$, $\delta_{i *}^{G} x=x \otimes 1$ if $G=E$ and $i=0,=1 \otimes x$ if $G=F$ and $i=t+1$, and $\delta_{i *}^{G}=$ $1 \otimes \Delta \otimes 1$ otherwise, where the coproduct $\Delta: A_{*} \rightarrow A_{*} \otimes A_{*}, P_{*} \rightarrow A_{*} \otimes P_{*}$ or $P_{*} \rightarrow P_{*} \otimes P_{*}$ satisfies $\Delta \eta_{1}=\eta_{1} \otimes 1+1 \otimes \eta_{1}, \Delta \eta_{2}=\eta_{2} \otimes 1+\eta_{1} \otimes \eta_{1}^{p}+1 \otimes \eta_{2}$, $\Delta t_{1}=t_{1} \otimes 1+1 \otimes t_{1} . \quad$ Also, by (4.9.1) (cf. (2.3.2)),

$$
\begin{gathered}
C_{u}^{s, t}=F A E_{u}^{s, t}\left(S^{0}\right)=H^{t}\left(F E_{u}^{s, *}\left(S^{0}\right) ; \delta^{F}\right)=F A_{*}^{t}(E) \otimes\left(P_{*}\right)^{s}, \\
F A_{*}^{t}(E)=Z_{p}\left[a_{i}\right] \text { in }(8.2 .4) \text { and } \quad F E A_{u}^{s, t}\left(S^{0}\right)=H^{s}\left(C_{u}^{*, t} ; \delta_{*}^{E}\right) .
\end{gathered}
$$

Here, by (8.2.3-5) and dimensional reason, we take a_{i} so that
(8.3.4) $\quad a_{i}$ converges to $v_{i} \in \pi_{*}(E)\left(v_{0}=p\right)$ in (8.3.1) in $\left\{E(0)_{r}^{t, u}\right\}$.
(8.3.5) Hence, for $E=B P$ and $F=H Z_{p}$, we have the elements

$$
h_{n}, b_{n}, a_{0}, \alpha_{t}, \alpha_{1}^{s}, \beta_{q / t}, \alpha_{1}^{s} \beta_{q / q-1}\left(q=p^{n}\right) \text { in } F E A_{*}^{u, v}\left(S^{0}\right)
$$

represented respectively by the elements

$$
\begin{aligned}
& h_{n}=1 \otimes t_{1}^{q}, \quad b_{n}=1 \otimes \sum_{i=1}^{p-1} c_{i} t_{1}^{(p-i) q} \otimes t_{1}^{i q} \quad\left(q=p^{n}, p c_{i}=\binom{p}{i}\right), \quad a_{0} \\
& \alpha_{t}=\sum_{i=0}^{t-1}\binom{t}{i} a_{0}^{t-i-1} a_{1}^{i} \otimes t_{1}^{t-i}, \quad \alpha_{1}^{s}=1 \otimes t_{1} \otimes \cdots \otimes t_{1} \quad(s \text { times }) \\
& \beta_{q / t}=\alpha_{q-t} \otimes t_{1}^{p q}, \quad \alpha_{1}^{s} \beta_{q / q-1}=\alpha_{1}^{s+1} \otimes t_{1}^{p q}\left(q=p^{n}\right) \text { in } C_{*}^{u, v}
\end{aligned}
$$

where, $\quad(u, v)=(1,0),(2,0),(0,1),(1, t-1),(s, 0), \quad(2, q-t-1),(s+2,0)$, respectively.
(8.3.6) In particular, when $p=2$, the following elements $a(n)(n=0,1,2)$ in $F_{*}^{2}(E)=A_{*} \otimes A_{*} \otimes P_{*}$, represent $a_{0}^{2-n} a_{1}^{n} \in F A_{*}^{2}(E)\left(E=B P\right.$ at $\left.2, F=H Z_{2}\right)$:

$$
\begin{aligned}
& a(0)=\eta_{1} \otimes \eta_{1} \otimes 1, \quad a(1)=\eta_{1} \otimes \eta_{2} \otimes 1+\eta_{1} \otimes \eta_{1} \otimes t_{1}, \\
& a(2)=\left(\eta_{2} \otimes \eta_{2}+\eta_{1} \otimes \eta_{1}^{2} \eta_{2}+\eta_{1} \eta_{2} \otimes \eta_{1}^{2}\right) \otimes 1+\eta_{1} \otimes \eta_{1} \otimes t_{1}^{2}+\eta_{1}^{2} \otimes \eta_{1}^{2} \otimes t_{1}
\end{aligned}
$$

$$
\left(t_{1}=\eta_{1}^{2}\right)
$$

Moreover, for $\Delta: P_{*} \rightarrow P_{*} \otimes P_{*},(1 \otimes \Delta) a(n)-a(n) \otimes 1$ is equal to 0 if $n=0$, $a(0) \otimes t_{1}$ if $n=1$, and $a(0) \otimes t_{1}^{2}+\eta_{1}^{2} \otimes \eta_{1}^{2} \otimes 1 \otimes t_{1}$ if $n=2$.

Now, by (8.2.3) and (8.3.4),
(8.3.7) $\left\{G_{u}^{s, t}\right\}$ in (5.2.2) satisfies $G_{*+t}^{0, t}=\left(I^{t}\right)_{*} \subset \pi_{*}(E),\left(I^{t} / I^{t+1}\right)_{*}=F A_{*+t}^{t}(E)$, $G_{*+t}^{s, t}=I^{t} \cdot E_{*}\left(\bar{E}^{s}\right) \subset E_{*}\left(\bar{E}^{s}\right)\left(\bar{E}^{s}=X_{s, 0}\right)$ and $G_{*}^{s, t} / G_{*+1}^{s, t+1}=F A_{*}^{t}\left(E \wedge \bar{E}^{s}\right)=\widetilde{E}_{*, 1}^{s, t}$ for the ideal $I=\left(v_{0}=p, v_{1}, \ldots\right)$ of $\pi_{*}(E)\left(E=B P\right.$ at $\left.p, F=H Z_{p}\right)$. Moreover, for $\widetilde{G}_{*+t}^{s, t}=I^{t} \cdot E_{*}\left(E^{s}\right) \subset E_{*}^{s}\left(S^{0}\right)$ with $\widetilde{G}_{*}^{s, t} / \widetilde{G}_{*+1}^{s, t+1}=F A E_{*}^{s, t}\left(S^{0}\right)=C_{*}^{s, t}, j^{s}: E^{s} \rightarrow \bar{E}^{s}$ of j : $E \rightarrow \bar{E}$ induces the following maps:

$$
\begin{aligned}
& J^{E}=\left(j^{s}\right)_{*}: E_{*}^{s}\left(S^{0}\right) \rightarrow E_{*}\left(\bar{E}^{s}\right) \text {, the restriction } J^{G}=J^{E} \mid \widetilde{G}_{*}^{s, t}: \widetilde{G}_{*}^{s, t} \rightarrow G_{*}^{s, t}, \\
& J: C_{*}^{s, t} \rightarrow \widetilde{E}_{*, 1}^{s, t} \text { in (4.9.7) and } J^{\prime}=\operatorname{pr} \circ J^{G}=J \circ \operatorname{pr}: \widetilde{G}_{*}^{s, t} \rightarrow \widetilde{E}_{*, 1}^{s, t}
\end{aligned}
$$

for the projections pr: $G_{*}^{s, t} \rightarrow \widetilde{E}_{*, 1}^{s, t}$ and $\widetilde{G}_{*}^{s, t} \rightarrow C_{*}^{s, t}$.
Furthermore, for δ^{*} in (2.1.1) and $(i \circ j)_{*}: E_{*}\left(\bar{E}^{s}\right) \rightarrow \pi_{*}\left(\bar{E}^{s+1}\right) \rightarrow E_{*}\left(\bar{E}^{s+1}\right)$ in (5.2.5) $\left(E_{*}(X) \cong E A_{*}^{0}(E \wedge X)\right)$,
(8.3.8) $(i \circ j)_{*} \circ J^{E}=(-1)^{s+1} J^{E} \circ \delta^{*}$; hence we have the map

$$
J_{*}^{E}=\left(J^{E}\right)_{*}: E A_{u}^{s}\left(S^{0}\right)=H^{s}\left(E_{u}^{*}\left(S^{0}\right) ; \delta^{*}\right) \rightarrow H^{s}\left(E_{u}\left(\bar{E}^{s}\right) ;(i \circ j)_{*}\right)=E A_{u}^{s}\left(S^{0}\right) .
$$

Then, by (8.3.8), (5.2.6) and (1.6.1-2), we see the following:
(8.3.9) Assume that $x \in \widetilde{G}_{u+t}^{s, t} \subset E_{u}^{s}\left(S^{0}\right)$ satisfies $\delta^{s} x \in \widetilde{G}_{u+t+r}^{s+1, t+r} \subset E_{u}^{s+1}\left(S^{0}\right)$. Then, $J^{\prime} x \in \widetilde{E}_{u+t, 1}^{s, t}$ and $J^{\prime} \delta^{s} x \in \widetilde{E}_{\mu+t+r, 1}^{s+1, t+r}$ represent the elements in $\widetilde{E}_{*, 2}^{*, *}=E_{*, 1}^{*, *}$ such that $d_{r}^{\text {May }}\left[J^{\prime} x\right]=(-1)^{s+1}\left[J^{\prime} \delta^{s} x\right]\left(\left[J^{\prime} x\right]=J_{*}[\mathrm{pr} x]\right.$ for $J_{*}: \widetilde{E}_{*, 2}^{s, t} \cong \widetilde{E}_{*, 2}^{s, t}$ in Lemma 4.10 (iv)). If $\delta^{s} x=0$, then $\left[J^{\prime} x\right]=J_{*}[\mathrm{pr} x]$ converges to $J_{*}^{E}[x]$ in $E^{\text {May }}$.

Example 8.4. In Example 8.3 ($E=B P$ at $p, F=H Z_{p}$ and $X_{0}=S^{0}$), the elements given in (8.3.2-5) satisfy the following:
(i) In $E^{\text {Mah }}, J_{*} h_{n}\left(\right.$ resp. $\left.J_{*} b_{n}, J_{*}\left(a_{0} b_{n}\right)\right)$ converges to $h_{n}^{F}\left(\right.$ resp. $\left.b_{n}^{F}, a_{0}^{F} b_{n}^{F}\right)$. In $E^{\text {May }}, J_{*} \alpha_{t}\left(\right.$ resp. $J_{*} \beta_{q / t}, J_{*}\left(\alpha_{1}^{S} \beta_{q / q-1}\right)$ for $q=p^{n}$) converges to $J_{*}^{E} \alpha_{t}^{E}$ (resp. $J_{*}^{E} \beta_{q / t}^{E}$, $\left.J_{*}^{E}\left(\left(\alpha_{1}^{E}\right)^{s} \beta_{q / q-1}^{E}\right)\right)$.
(ii) For $n \geqq 1, d_{1}^{\text {May }} J_{*} h_{n+1}=-J_{*}\left(a_{0} b_{n}\right)$; hence $d_{2}^{F} h_{n+1}^{F}=-a_{0}^{F} b_{n}^{F}$.
(iii) Assume $p=2$. Then $d_{3}^{\text {Mah }} J_{*} \alpha_{3}=J_{*}\left(\alpha_{1}^{4}\right)$ and $d_{3}^{\text {Mah }} J_{*} \beta_{q / q-3}=J_{*}\left(\alpha_{1}^{3} \beta_{q / q-1}\right)$ for $q=2^{n}$; hence $d_{3}^{E} J_{*}^{E} \alpha_{3}=\left(J_{*}^{E} \alpha_{1}^{E}\right)^{4}$ (cf. [13]) and $d_{3}^{E} J_{*}^{E} \beta_{q / q-3}^{E}=J_{*}^{E}\left(\left(\alpha_{1}^{E}\right)^{3} \beta_{q / q-1}^{E}\right)$ for $q=2^{n}$.

Proof. (i) The first half is seen by the equality of $\Phi_{*}^{B P}$ in (8.2.2) and Lemma 4.10 (iii). By (8.3.9) and $\operatorname{pr} \alpha_{t}^{E}=\alpha_{t}\left(\alpha_{t}^{E} \in \widetilde{G}_{*}^{1, t-1}\right), J \alpha_{t}$ converges to $J_{*}^{E} \alpha_{t}^{E}$. Also, $\beta_{q / t}^{E}=\left(\eta v_{1}^{q-t}-v_{1}^{q-t}\right) / p \otimes t_{1}^{p q}+I^{q-t} \cdot E_{*}(E) \otimes E_{*}(E) \in G_{*}^{2, q-t-1}$ and pr $\beta_{q / t}^{E}=$ $\beta_{q / t}$; hence we see (i) by (8.3.9).
(ii) $t_{1}^{p q} \in E_{*}^{1}\left(S^{0}\right)=G_{*}^{1,0}$ and $\delta^{1} t_{1}^{p q} \equiv-p \sum_{i=1}^{p-1} c_{i} t_{1}^{(p-i) q} \otimes t_{1}^{i q}\left(\bmod p^{2}\right) \in G_{*}^{2,1}$, and so $\operatorname{pr} t_{1}^{p q}=h_{n+1}$ and $\operatorname{pr}\left(\delta^{1} t_{1}^{p q}\right)=-a_{0} b_{n}$. Hence $d_{1}^{\text {May }} J_{*} h_{n+1}=-J_{*} a_{0} b_{n}$ by (8.3.9). Thus, (i) and Example 8.3 (iii) imply (ii).
(iii) By (8.3.5-6), $\bar{\alpha}_{3}=\sum_{n=0}^{2} a(n) \otimes t_{1}^{n+1} \in A_{*}^{2} \otimes P_{*}^{2}$ represents α_{3}. Then, for $x=\eta_{1}^{2} \otimes t_{1} \otimes t_{1} \otimes t_{1} \in A_{*} \otimes P_{*}^{3}$ and $y=t_{1} \otimes t_{1} \otimes t_{1} \otimes t_{1} \in P_{*}^{4}$, we see that

$$
\delta^{E} \bar{\alpha}_{3}=\eta_{1}^{2} \otimes \eta_{1}^{2} \otimes 1 \otimes t_{1} \otimes t_{1}=\delta^{F} x, \quad \delta^{E} x=\delta^{F} y \text { and } \delta^{E} y=\alpha_{1}^{4}
$$

Thus, $d_{3}^{\text {Mah }} J_{*} \alpha_{3}=J_{*}\left(\alpha_{1}\right)^{4}$ by Lemma 4.10 (i). Also, $\bar{\alpha}_{3} \otimes t_{1}^{2 q}\left(q=2^{n}\right)$ represents $\beta_{q / q-3}$; and the above equalities hold for $\bar{\alpha}_{3} \otimes t_{1}^{2 q}, x \otimes t_{1}^{2 q}, y \otimes t_{1}^{2 q}$ and $\alpha_{1}^{3} \otimes t_{1} \otimes$ $t_{1}^{2 q}$ instead of $\bar{\alpha}_{3}, x, y$ and α_{1}^{4}, which show the second equality by Lemma 4.10 (i). Thus, Example 8.3 (iii) implies (iii).
q.e.d.

References

[1] J. F. Adams, On the structure and applications of the Steenrod algebra, Comm. Math. Helv., 32 (1958), 180-244.
[2] J. F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
[3] J. F. Adams, On the groups $J(X)$, IV, Topology, 5 (1966), 21-71.
[4] J. F. Adams, Stable Homotopy and Generalized Homology, The University of Chicago Press, 1974.
[5] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology, 3 (1964), Suppl. 1, 3-38.
[6] W. Browder, A. Liulevicius and F. P. Peterson, Cobordism theories, Ann. of Math., 84 (1966), 91-101.
[7] E. H. Brown and F. P. Peterson, A spectrum whose Z_{p}-cohomology is the algebra of reduced p-th powers, Topology, 5 (1966), 149-154.
[8] P. E. Conner and E. E. Floyd, Torsion in $S U$-bordism, Memoir Amer. Math. Soc., 60 (1966).
[9] M. Hazewinkel, A universal formal group low and complex cobordism, Bull. A.M.S., 81 (1975), 930-933.
[10] H. R. Miller, On relation between Adams spectral sequences, with an application to the stable homototopy type of a Moore space, J. Pure Appl. Algebra, 20 (1981), 287-312.
[11] H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math., 106 (1977), 469-516.
[12] H. R. Miller, D. C. Ravenel and W. S. Wilson, A novice's guide to the Adams-Novikov spectral sequence, Geometric Application of Homotopy Theory II, Lecture Notes in Math., 658, Springer, Berlin, 1977, 404-475.
[13] S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theories, Math. U.S.S.R-Izvestiia, 1 (1967), 827-913.
[14] D. G. Quillen, On the formal group lows of unoriented and complex cobordism, Bull. A.M.S., 75 (1969), 1293-1298.
[15] N. Ray, Some results in generalized homology, K-theory and bordism, Proc. Camb. Phil. Soc., 71 (1972), 283-300.
[16] R. M. Switzer, Algebraic Topology-Homotopy and Homology, Springer-Berlin, 1975.

