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1. Introduction

This paper is concerned with the Dirichlet problem for second order
quasilinear elliptic equations of the type

(1.1) —div A(x, Vu) + B(x, u, Yu) =0 in Q,
(1.2) u=gyg on 0Q,

where £ is either a bounded domain or an exterior domain in R", 4 is a given
N-vector function of the variables x and Vu = (du/dx,, ..., 0u/Oxy), B is a given
scalar function of the variables x, u and Fu, and g is a function given on the
boundary dQ of 2. We allow the domain Q to be the entire space RY, in
which case the boundary condition (1.2) is void. Equation (1.1) is allowed to
be degenerate so that the nonlinear pseudo-Laplacian equation

(1.3) —div (|FulP~*Vu) + B(x,u, Vu) =0 in Q, p>1,

is included as a special case of it. Our objective here is to develop the method
of supersolutions and subsolutions for constructing weak solutions of the prob-
lem (1.1)—(1.2) and for analyzing the structure of the set of weak solutions thus
constructed.

A systematic study of nonlinear elliptic boundary problems by means of
the supersolution-subsolution method was initiated by Nagumo [21], who
considered the semilinear equation

0%u
4 CSN g () _
(1.4) P ””(")ax,. o, + B(x,u, Fu)=0

in a bounded domain £ and established an existence theorem asserting that
the problem (1.4)-(1.2) has a classical solution if suitable classical quasi-
supersolutions and quasi-subsolutions are known to exist. (By a quasi-super-
solution (quasi-subsolution) we mean a function which is expressed locally as
the minimum (maximum) of a finite number of supersolutions (subsolutions) of
the problem.) Nagumo’s existence theory has been generalized and extended in
various directions. Among other things Ako [1] (see also Hirai and Aké6 [14])
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proved the existence of classical minimal and maximal solutions to the Dirichlet
problem for general uniformly elliptic quasilinear equations of the form

0%u

3, 0%, + B(x,u, Vu) =0 in Q2

(1.5) =YV io1 ay(x, u, Vu)

and showed moreover that, in case all the g; are independent of u and B is
nondecreasing in u, a Peano type theorem holds for the problem (1.5)—(1.2), that
is, the interval between the minimal and maximal solutions is filled with the set
of solutions contained between these two extremal solutions. Ak6 and Kusano
[2] applied the supersolution-subsolution method to find classical entire solu-
tions of equation (1.5), i.e. those solutions of (1.5) which are guaranteed to exist
throughout R,

It was only recently that the supersolution-subsolution approach was at-
tempted to the solvability of nonlinear elliptic problems in the framework of
weak or generalized solutions; see e.g. Boccardo, Murat and Puel [3], Cac [5],
Hess [12, 13], and Deuel and Hess [6]. The papers [3, 6, 12] deal with the
Dirichlet problem for equations of the form

(1.6) —div A(x, u, Vu) + B(x,u, Yu) =0

in a bounded domain 2 and give sufficient conditions for the existence of a
weak solution between a weak supersolution and a weak subsolution. In case
A is independent of u and B is independent of Fu, Diaz [7] has established, by
means of the monotone method, the existence of weak maximal and minimal
solutions between weak super- and subsolutions (see also [13]). The Dirichlet
problem for (1.6) in unbounded domains is studied in the papers [5, 13], in each
of which it is shown that the existence of a weak solution in W?(Q) of the
problem is implied by the existence of suitable weak super- and subsolutions in
Wir(Q).

A survey of the previous results sketched above raises the following
questions.

(1) Is it possible to develop an analogue of the Nagumo-Aké6 existence
theory for weak solutions of the problem (1.6)-(1.2)? More precisely, is it
possible to establish an existence theorem for (1.6)—(1.2) in terms of weak
quasi-supersolutions and quasi-subsolutions?

(2) Is it possible to prove for the problem (1.6)—(1.2) weak versions of
Ako’s theorem on the existence of maximal and minimal solutions and a
Peano-Ako type theorem on the structure of the set of solutions?

The purpose of this paper is to make an attempt to answer the above
questions. Partial answers to these questions will be given for the problem
(1.1)-(1.2). In the case of bounded domains Q, we introduce three kinds of
weak quasi-supersolutions and quasi-subsolutions, called super- and subsolu-
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tions of class W, L or C, depending on the structure of equation (1.1), and show
that the existence of a quasi-subsolution ¢, and a quasi-supersolution ¢, of any
kind satisfying ¢, < ¢, ae. in @ and ¢, <g <@, ae. on 0Q implies the
existence of a weak solution u of (1.1)—(1.2) such that ¢, <u < ¢, ae. in Q;
furthermore we show that when ¢,, @, are of class W or L, the maximal and
minimal weak solutions of (1.1)—(1.2) are guaranteed to exist between ¢, and
¢,, and that the interval between these extremal solutions is filled with the set
of solutions of (1.1)—(1.2). In the case of unbounded domains 2, we intend to
solve the problem (1.1)—(1.2) in the framework of W;1:P(Q); it is shown that all
the results for bounded domains can be carried over to the case where Q
is either an exterior domain in RM or coincides with the entire space RY.
Examples illustrating our main results will be presented; in particular, sufficient
conditions will be given under which the equation (1.3) possesses bounded
positive weak solutions defined in the entire space R™.

Finally we refer to Tolksdorf [23], DiBenedetto [8] and Reshetnjak [22]
for the regularity of bounded weak solutions of equation (1.6) or (1.1).

2. Preliminaries

Throughout this paper all functions are real-valued. We define x-y and
|Xl by X"y =Z{'v=1xiyi fOI' X =(xl""’xN)9 y =(y1,""yN)ERN’ and 'Xl =
(x-x)"2. Let N be the set of positive natural numbers. We put R, = (0, o0)
and R, =[0, ). We let t* =max(t,0) for te R. Let p and g be fixed
constants satisfying 1 < p < oo and g = p/(p — 1). Let 2 be a bounded domain
or an exterior domain in RY (N > 1); the possibility 2 = R" is not excluded.
Let 022 be the boundary of Q. We assume that dQ belongs to the class C! if
0Q is not empty. Let W!P(Q) be the Sobolev space and Wj:'P(Q2) be the
closure of C2(22) in W'?(Q). 1In the trace sense we write u = (<, >) v a.e. on
0Q for functions u and v in W!?(Q). The norms in LP(Q) and W'P(Q) are
defined by

1p
”u”LP(.Q) = <.fg lul? dx) > “u“W‘-P(Q) = Zwlg “Dﬂ““LP(Q) .

We shall use |lul, = ull,,o = lullpr@ and |lul| = ||ullw:.»e when there is no
ambiguity. Let W,%:P(2) be the set of all functions belonging to W!-P(Q,) for
all bounded subdomains Q, of 2 with Q, c Q.

We assume in the boundary condition (1.2) that ge W'P(Q) is a given
function. In the equation (1.1) we assume that the functions 4: Q x RN - R¥,
Ax, &) = (A,(x, &), ..., Ay(x, &), and B: 2 x R x RY - R satisfy the Cara-
théodory condition, that is, each A;(x, £) is measurable in x € 2 for every fixed
¢ e RY and continuous in ¢ € RV for almost every fixed x € 2, and B(x, t, &) is
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measurable in x € 2 for every fixed (¢, £) e R x RY and continuous in (t, &) €
R x RY for almost every fixed x € Q. Furthermore we assume that the func-
tion A satisfies the following conditions:

H,) |4iCx, O < [fo() + leoIEP™,  i=1,...,N,

for ae. xe®, "€ R", where f, is a measurable function in Q and c,e
Li(R");

(H,) (A(x, &) — A(x, &) (¢ —-¢)>0
for ae xeQ," & & e RY with & # &/;
(H3) A(x, &) & = alx)|E]P — | NPT — [ ()],

for ae. xe @,V £ e R, where a: RY — R, is a continuous function and f; and
f, are measurable functions in Q.

For simplicity, it is assumed in (H,) and (H;) that ¢, and « are defined on
RY. Typical conditions to be imposed on the functions f,, f;, f, are as follows:

(H,) fo€ LY(Q), fie LP(Q), f,eLY(Q);
(HS) fO € Lllloc(RN) ’ fl € Lll,oc(RN) > f2 € L%oc(RN) N
(H6) fO’ fl’ fZEL;gc(RN)'

Here we state four lemmas which will be used in the later sections.

LEMMA 2.1. Let Q be a bounded open set in RN. Suppose that (H,), (H,),
(H;) and (H,) hold. Let {u,},.n be a sequence in W'P(Q) and u € W*'?(Q) such
that

u, > u weakly in WhP(Q),

u, > u strongly in LP(Q2).

If

J (A(x, V'u,) — A(x, Vu))-(Vu, — Vu)dx -0 asn— o,
Q

then u, converges strongly to u in W1-P(Q).

LEMMA 2.2. Let Q be a measurable set in RY and let me N and 1 < p; < o
(i=0,...,m) be constants. Assume that a function f: 2 x R™ — R satisfies the
Carathéodory condition and f(x, u;(X), ..., Un(x)) € LP(Q) if u;e LP(Q) (i =
1,...,m). Then F: LP(Q) x - x LPm(Q) > LP(Q), F(uy, ..., u,)(x) = f(x, u;(x),
<oty Up(X)), is continuous in the strong topology.
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LEMMA 2.3. Let Q be a bounded open set in R¥ (N > 2). Suppose that A;
and B satisfy the conditions

lA(x, I+ [E) + |B(x, £, )| < u(le)(d + £])7,
A(x, ) &= v[EPP — u0),

for ae. xeR," (t,£)e R x RY, where u: R, — R, is a nondecreasing function
and v is a positive constant. If u is a bounded solution of (1.1) with |ul,,o <
M then ue C'(Q2) and

flul i) = C

for any subdomain Q, < = 2, where 0 <y < 1, y =y(N, p, M, v, y(M)) and C =
C(y, dist (22,, 0R2)) are positive constants.

Lemma 2.1 is proved in [4, p. 13, Lemma 3]. The proof of Lemma 2.2 is
given in [17, p. 22, Theorem 2.1]. Lemma 2.3 is due to Ladyzhenskaya and
Ural’'tseva [19, p. 251, Theorem 1.1].

We shall employ the theory of monotone operators. Let V be a real
reflexive Banach space and V* be its dual space. A map F: V- V* is called
pseudo-monotone if F satisfies the following conditions:

(i) F is a bounded map;

(i) if u, ueV, u;—>u weakly in V and lim sup,,, {F(u;),u; — u) <0 then

lim inf,, , {(F(u;), u; — vy > {F(u),u — v) for all ve V.

Let ve W' P(Q) be given. Let Ai(x, &) = A,(x, & + Vo(x)), i=1, ..., N, for
ae. xeR, " (eRY. Put Ax, &) = (A,(x, &), ..., Ay(x, &)). Then 4, (i=1,...,
N) satisfy the Carathéodory condition (see [24, p. 152, Theorem 18.3]). It
follows from (H,), (H,) and (H;) that for ae. xe 2, £ € RY

| i(x, ) < 1 fo)] + leo®)IE + Pu(x)P™
<1foX)] + 2%lco)1EP,  i=1,..,N,
where fo(x) = | fo(x)] + 27|co(x)||Pu(x)|P~! € L4(2), and that
A(x, &) & = A(x, & + Vo(x)) (€ + Vo(x)) — A(x, &) Fv(x)
> 27%a(x) €7 — [ [y €77t = 1 f5(x)]

where f1(x) = 2°(1f,(0)] + Nlco()||Po(x)) € LP(R2) and fo(x) = a(x)[Fu(x)|” +
27| f100[Po(x)[P~t + | f(x)] + N|fo(x)||Pv(x)| € L*(2). Consequently, we can
assume that A satisfies (H,), (H,) and (H,).

Let B: 2 x R x R" — R satisfy the Carathéodory condition and the follow-
ing condition:
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B(x, ug, g, ..., uy) € LP°(Q2) forall u,el”(Q), i=0,1,...,N,
where 1 < p, < o0 is a constant. For ¢;, ;€ W''P(Q) with ¢, <0 <y, ae. in
Q,i=1, 2, we define T(x, t) by
@i(x) if £ < @i(x)
T(x,n)= 4t if g,(x) <t < Yilx)
Yilx) if Yu(x) <t
for ae. xe 2, te R. We see that for v e Wh?(Q)
Ve, in{v< g}
(2.1) VTiv)= < Fv in {o; <v <y}
Vy; in {y; < v}
where (T;(v))(x) = T(x, v(x)). We also define the maps F,, F,, G: W"?(Q) -
LPo(L2) by
Fuw)(x) = B(x, Tw)(x), "'Tw(x), i=12,
G)(x) = |Fy(u)(x) — F>(u)(x)| sgn u(x),
where (T;(u))(x) = Ti(x, u(x)). The following lemma holds.

LEMMA 2.4. The maps F,, F,, G: WYP(Q) - LP°(Q) are continuous in the
strong topology.

Proor. Since Ti(u)= ¢; + (u — @)t —(u— ;)" for ueLP(Q), i=1, 2, it
follows from Lemmas 3.1 and 3.2 in [19, pp. 50-51] that T;: LP(Q) - L?(£2) and
T: WhP(Q)—» W!P(Q) are continuous in the strong topology. Lemma 2.2
implies that F;: W1'P(Q) — LP°(Q) (i = 1, 2) are continuous in the strong topol-
ogy. We shall show the continuity of G. Let u,, ue W"?(Q) and u,—u
strongly in W'?(Q). Put

QY ={xeQ:u,(x) >0 and u(x) >0},
QP = {x € Q:u,(x) >0 and u(x) < 0},
QP = {xeQ:u,(x) <0 and u(x) >0},
QP = {xeQ:u,(x) <0and u(x) <0}.
It follows from Lemma 3.1 in [19, p. 50] that £M(Q» L Q[>) >0 as n— oo,

where £V is the Lebesgue measure in RY. Since Q = ( J{, QY for all ne N we
have

1G () — GWlpe.0 < 1G(n) — GWI5, auivow + 271 Fi(,) — ()l 0ors00

0
+ 2P0 “Fl (u) - Fz(“)l :g;gtnz)ugtnsy )
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I1Fy () — F5 ()l o 0200000 < 1Fy(u,) — Fi(w) + Fo(w) — F2(u,)ll ;0000000
+ 1F(w) — )l 500000 -

Put
ED = {xeQ:u,(x) >0 and u(x) > 0},
EP ={xeQ:u,(x) >0 and u(x) =0},
EX ={xeQ:u,(x)=0and u(x) > 0} .

From (2.1) we have F,(u) = F,(u) in E? and F,(u,) = F,(u,) in E{®. Hence

1G(un) — Gl pg; 200 < 1 Fy(u,) — Fy(u) + Fo(u) — Fo(uy)ll pos oo )
< |IFy(u,) — Fy(u) + Fy(u) — Fo(u,)ll g2 -
Similarly, we obtain
1G(un) — Gl pgs 0 < [[Fy(u,) — Fy(u) + Fy(u) — Fy(u)ll ppi -

Consequently, [|G(u,) — G()|,,,o = 0 as n— oo, which implies that G: WhP(Q)
— LP°(Q) is continuous in the strong topology. This completes the proof of
Lemma 2.4.

3. Equations in bounded domains

Throughout this section we assume that Q is bounded and that the
conditions (H,)-(H,) are satisfied for (1.1). Let ay = inf {a(x):x e 2} and d =
llcollw: s Where a(x) and cy(x) are functions appearing in (H,) and (H;). Note
that a, > O since o is a positive continuous function on R™.

DEerINITION 1. A function u is said to be a solution (subsolution, super-
solution) of equation (1.1) in Q if u € W'?(Q), B(x, u, Vu) € L} () and

(3.1) j{A(x,Vu)-Vq)+B(x,u,l7u)<p}dx=0 (<0, >0),
Q

for all ¢ € CF(2) with ¢ > 0 in Q.

DEerFINITION 2. A function u is said to be a W-subsolution (L-subsolution,
C-subsolution) of equation (1.1) in Q if u =max {y;:i=1,...,m} ae. in Q for
some me N, where each u; is a subsolution of (1.1) in Q and u;e W'P(Q)
(u; € WhP(2) n L*(Q), u; € C*1(2)). Here C>(Q) is the space of Lipschitz
continuous functions in £.

A function u is said to be a W-supersolution (L-supersolution, C-supersolu-
tion) of equation (1.1) in Q if u=min {y;:i=1,...,m} ae. in Q for some
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me N, where each u; is a supersolution of (1.1) in 2 and u; e W''?(Q) (y; €
W1P(Q) N L®(Q), u; € C*1(Q)).

The notion of W, L, C-subsolutions (-supersolutions) is not a complete
weak version of Nagumo’s quasi-subsolutions (-supersolutions). However, these
are sufficient for the existence of weak minimal and maximal solutions and for
the formulation of Peano-Akd type theorems. We shall use W, L, C-subsolu-
tions (-supersolutions) depending on the conditions of B(x, u, Fu), which influ-
ence technically the restriction on test functions ¢ in (3.1).

It follows from the definition that if u, and u, are W-subsolutions (L-
subsolutions, C-subsolutions) of (1.1), then max (u,, u,) is a W-subsolution (L-
subsolution, C-subsolution) of (1.1), and that if u; and u, are W-supersolutions
(L-supersolutions, C-supersolutions) of (1.1), then min (u,, u,) is a W-supersolu-
tion (L-supersolution, C-supersolution) of (1.1). It is not known in general
whether W, L, C-subsolutions (-supersolutions) of (1.1) are subsolutions (super-
solutions) of (1.1). However, in the following situation, we can prove that an
L-subsolution (-supersolution) of (1.1) is indeed a subsolution (supersolution) of

(1.1).
PROPOSITION 1. Let equation (1.1) be of the form
(3.2) —div A(x, Vu) + B(x,u) =0 in Q.

Assume that B(x, u) is nondecreasing with respect to u € R for almost every fixed
x € Q and satisfies the following condition:

(3.3) |B(x, )] < |fs(x)| + h(|t]) forae xeR, “"teR,

where fy€ L4Q) and h: R, —» R, is a nondecreasing function. If u is an L-
subsolution (L-supersolution) of (3.2), then u is a subsolution (supersolution) of (3.2).

We give the proof of Proposition 1 in the last part of this section.

3.1. W-subsolutions and W-supersolutions

THEOREM 3.1. Let ¢, and ¢, be respectively a W-subsolution and a W-
supersolution of (1.1) in Q such that ¢, < ¢, a.e. in 2 and ¢, < g < ¢, a.e. on
09Q. Suppose that there exist a positive constant ¢, and a function f; € L)
such that

(3.4) IB(x, t, O] < |f5()| + h(Jt]) + ¢ 1EPP7,

for ae. xeQ, " (t,£)e R x R", where h: R, —> R, is a nondecreasing function
such that h(|@|) € LA(Q) for @ € LP(Q). Then the problem (1.1)—(1.2) has a solu-
tion u such that ¢, < u < ¢, a.e. in Q.
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Proor. The functions ¢, and ¢, are of the form

(3.5) oy =max {Yygi=1,...,m}, o, =min {Y;:i=1,...,n}

a.e. in Q, where y; and ; are respectively subsolutions and supersolutions of

(1.1) in 2. By adding the same functions to {y;} or {¥;}, we can assume that
m=n. By taking ¢, + (g — ¢;)" — (9 — ¢,)* instead of g, without loss of
generality, we can assume that ¢, <g<¢, ae. in Q. Let A(x, &)= A(x,
E+Vg(x)) and B(x,t, &) = B(x, t + g(x), & + Fg(x)) for ae. xe€Q, ¥ (t,&)e
R x RY. Then we can assume that A satisfies (H,), (H,), (H,) and (H,). Let
u;=y;—gand v; = Y;—g(@=1,...,m) and let uy = max {u;: i = 1,...,m} and
vo =min {v:i=1,...,m}. We note that uy = ¢, —g<0<vy=¢, —g ae.in
Q and that u; and v; (i = 1, ..., m) are respectively subsolutions and supersolu-
tions of the equation

(3.6) —div A(x, Vu) + B(x, u, Vu)=0  in Q

Therefore u, and v, are respectively a W-subsolution and a W-supersolution of
(3.6)in Q. Forie{0,...,m},ae xe€Q, ¥t € R we define

u(x) if t < uy(x)
Tix,0)= <t if u,(x) <t < vy(x),
vi(x) ifoi(x) <t
and
h(x, t) = |t — Ty(x, t)|P"! sgn (t — Ty(x, 1)) .

The functions T;(x, t) and h(x, t) satisfy the Carathéodory condition. Consider
the function B(x, T(u), ¥ T,(u)) where T,(u)(x) = T(x, u(x)) (cf. (2.1)). Put w=
max {|u;| + |v;l:i=1,....,m}. From (2.1) and (3.4) we have for ue W' ?(Q)

|B(x, T(w), VL)l < |f3(0)| + h(w + |g]) + ¢, [P T,(w) + Vg|P™
< fa()] + 27cq [PulP™,
where
Ja(x) = /3] + h(w(x) + 1g(x)])
+ 2%¢y Yo (IPg(x)] + [Pu(x)] + [Po )l
We also have for ae. xe 2, "te R

|h(x, D < (Jug ()] + [vo(x)] + [¢)P™ < [fs(x)] + 2°[¢|P™

where fs(x) = 2°(Jug(x)| + |vo(x)|)Pt. Consequently, the following estimates
hold:
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(3.7 |B(x, Ti(w), ¥ T,(w))| < |fo(x)| + 2%, |FulP", i=0,1,...,m,
for Y ue WhP(Q), ae. x € Q, where f, € LY(Q),
(3.8) |h(x, O] < [fs(x)| + 2P|eP7H,

for ae. xeQ, ¥ te R, where fse Q). For ie{0,1,...,m} we define B,
B: W1P(Q) — LYQ) by

49) {E(u)m = B(x, T, P (x)
| B()() = 1B () — Bo()((0)] sgn u(x)

We consider the following problem

110 —div A(x, Vv) + Bo(v) + ¥, Bi(v) + Bh(x,v) =0 in Q
(3.10) v=0 ondR

where f = 4PP*D(2m + 1)?cPal™ + 1. Theorem 3.1 is proved if the following
two lemmas are proved.

LEMMA 3.1. If ve WP(Q) is a solution of (3.10) then u=v+g is a
solution of (1.1)—(1.2) such that ¢, <u < @, a.e. in Q.

LEMMA 3.2. There exists a solution v € Wg'P(2) of (3.10).

PrROOF OF LEMMA 3.1. Since (v —v;)* e WlP(Q) (i=1,...,m) and h(x, v) =
[v — volP~" in {v > v;}, we have from (2.1)

J [A-(x’ VU) V(U - vi) + (D - vi){ﬁ(xa Vo, VUO)
+ Yy 1B(x, Ti(v), P Ti(v)) — B(x, vo, Fvo)l + Blv — volP*}]dx = 0.
On the other hand, since v; is a supersolution of (3.6), we obtain

J {A(x, Pv;) V(v — v;) + B(x, v;, Pv;)(v — v;)} dx > 0

and hence, by (H,),

0< f (A(x, Pv) — A(x, Vv;)) V(v — v;) dx

< f (v — v;){B(x, v;, Vv;) — B(x, vo, Vvo) — | B(x, v;, ¥v;) — B(x, v, Vv5)l
v>v;

— Blv—velP1}dx <0.

Therefore we have
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0=J v = v)lv = vo”™! dXZJ I —v)" P dx,
v>v; Q

which shows that v <v; ae. in Q2 and hence v < v, ae. in . Similarly, we
obtain uy < v a.e. in 2. Consequently, v is a solution of (3.6), so thatu =v + g
is a solution of (1.1)—(1.2). This proves the assertion of Lemma 3.1.

PROOF OF LEMMA 3.2. Let V = Wy'?(Q2) and V* be its dual space. For u,
v e V we define

<ay(u), vy =f A(x, Vu)-Vvdx ,
Q

Cay(u), v) = L {Bo(u) + 1Ly Bi(u) + Bh(x, w)}v dx .

It follows from (H,), (H,), (3.7) and (3.8) that a,, a,: V — V* are bounded maps.
We define F: V- V* by F(u) = a,(u) + a,(u). We shall show that F is pseudo-
monotone. Let u;, u € V, u; » u weakly in V and lim sup,_, {(F(u;), u; —u)y < 0.
Then {u;};.n is bounded in V and u; — u strongly in L?(£2). By (3.7), (3.8) and
Holder’s inequality we have

[Kap(u), w; — up| < [lu; — u”p{"BO(ui)”q + z;"=1 | By(u:)l

+ B fsllg + 2% lull5™")} =0 asi—oo.
From (H,) we obtain

CF(u), up — uy = ay(w), u; — uy + <ay(u), u; — uy ,

so that
{F(u), u; —uy -0 asi— oo,

which implies
ay(w;),u; —uy >0  asi—oo.
Consequently we have
ay () —ay(u),u; —up) >0  asi—oo.

By Lemma 2.1 we have u; > u strongly in V¥, so that, by Lemmas 2.2 and 24,
forallve V

ay(u;) — a;(u), u —v) -0, {ay(u;) — ay(u),u —vy -0,
and thus

CF(w), wy — vy = <F(uy), w; — up + <F(w)) — F(u), u — v) + (F(u), u —v)

- (F(u), u —v) asi— o0,
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which implies that F is pseudo-monotone. From (H,) and (3.7) we have for
ueV

CF@), uy > oo IPully = il I7ulp™ — 11 f2 14
= @m+ Dlull (I fallg + 27c [Pull5™) + 277B|lull}
— 27B(lluoll + Nlvg 1) — Bllluoll5™ + llvo I3 llull,,

and so, by the definition of f3,

CFu), uy 2 27 {ao |Pullf — 2m + DA%y ull, IFull5™ + Bllull} + o(lull?)

> 277 oo [Pull} + lully) + o(lull?) as flull — oo .

Hence

(3.11) L Fupuwy > as u] - o0 .
flull

From Theorem 2.7 in [20, p. 1807 there exists a solution v € V of
(F@),p>=0 forallpeV,

implying that v is a solution of (3.10). This completes the proof of
Lemma 3.2.

An essential device in the above proof is to consider the equation (3.10).
By using Theorem 3.1 we prove the existence of minimal and maximal solutions
of (1.1)-(1.2) between W-subsolutions and W-supersolutions and establish a
Peano-Ako type theorem. We employ the techniques of Hirai and Ak6 [14]
and Akd [1].

LEMMA 3.3. Let the hypotheses of Theorem 3.1 hold. If u is a solution of
(1.1)—(1.2) such that ¢, < u < @, a.e. in 2, then we have the estimate

lullw:.poy < C,

where C is a constant independent of u.

PrOOF. We can assume that ¢; < g < ¢, ae. in . Since u — g € W?(Q)
we have

f {A(x,Vu)-V(u—g)+ B(x,u, Pu)(u — g)} dx =0.
Q

From (H,), (H;) and (H,) we can estimate
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»

0 {AIPulP™ +1 £+ NIPgl(fol + dI7ulP™)

+ lu—gl(1f3] + h(l@i| + o)) + ¢y [VulP™)} dx

~

<1, {121+ NI7gllfol + (o1l + 102D (1f3] + Al @1l + [@2])} dx

o

“of [VulP dx <
Q

»

+, {I/il + NdPgl + c,(Jos| + @)} PulP™ dx .

Y,

We have for ¢ > 0

(Lfil + NdFgl + c;(lo1] + [@ ) PulP™
<& (I fil + NdPgl + ci(los] + 1@2D)) + et |Pul.

The conclusion of Lemma 3.3 follows by choosing ¢ such that ¢? = a,/2.

THEOREM 3.2. Let the hypotheses of Theorem 3.1 hold. Suppose that f,,
fe LA(Q)NLE(Q), fLeP(Q)NL2(R2) and f,e LM ()N LZ(Q) in (H,) and
(3.4). Moreover, suppose that ¢,, ¢, € Lo (€2). Then the problem (1.1)—(1.2) has
a minimal solution u and a maximal solution @ such that ¢, <u <u < @, a.e. in
Q in the sense that if ue WVP(Q) is any solution of (1.1)—(1.2) with ¢, <u < @,
ae.in Q2,thenu <u<1uae.in Q.

PRrOOF. Put
(3.12) & = {u: u is a solution of (1.1)~(1.2) with ¢, < u < ¢, ae. in Q} .

By Theorem 3.1 we see that & # (. It follows from Lemma 2.3 that for any
subdomain Q, = = Q there exists 8 € (0, 1) such that the restriction of & on Q,
is bounded in C#(2,). We define the functions u and i by

(3.13) u(x) = inf {u(x): ue &}, i(x) = sup {u(x):ue &},

for xe 2. Then we see that u, e C(22). We shall show that u, e ¥ Let
{x'};cn be the set of all rational points of Q and for ie N let {v’},.n be a
sequence in & such that lim,_ v®(x’) = #(x%). Put u, = v{" and 1, = max (u,,
v, v{®). Then A, is a W-subsolution of (1.1) in 2 with ¢, < A, < ¢, ae. in 2
and 4, =g a.e. on 022. From Theorem 3.1 we see that there exists u, € & such
that 4, <u, < ¢, ae. in Q. Inductively we can choose a nondecreasing
sequence {u,},.y = & such that for n>2, 1, <u, < ¢, ae. in Q, where 4, =
max (u,_(, 0V, ..., vf).  Let u(x) = lim,_, , u,(x) for x € 2. By virtue of Ascoli-
Arzela’s Theorem, we see that u, converges to u uniformly on any compact
subsets of 2 and hence ue C(Q). Since v(x) < 4,(x") < u,(x’) < u(x’) for
n > i, we have u(x’) = u(x’) for all ie N. Therefore u =  in Q.

By Lemma 3.3 we see that u, is bounded in W'?(Q2) and hence we can
extract a subsequence, still denoted by u,, such that
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U, > u weakly in W1P(Q),
u, > u strongly in LP(Q).

Since u = g a.e. on 992, we obtain u, — u € W;'?(22) and hence

J (A(x, Vu,) — A(x, Vu))-V(u, — u)ydx = —J A(x, Vu)-V(u, — u) dx
Q Q

- f B(x, u,, Vu,)(u, — u) dx .
Q

The first term on the right hand side of the above equality tends to zero as
n — oo since u, converges to u weakly in W-?(Q). From (3.4) we obtain

J‘ IB(X, Uy, Vun)(un - u)l dx
Q
< up — ull, {1 f31lg + 1h(@1] + 1@2Dllg + ¢, VU, 571} >0 asn—oo.

Therefore we have
f (A(x, Vu,) — A(x, Vu))-V(u, — u) dx -0 asn— oo .
Q

Hence, by Lemmas 2.1 and 2.2, we obtain
A(x, Vu,) = A(x, Vu), B(x, u,, Vu,) > B(x, u, Vu) strongly in LY(Q2),

which proves that u =u#e & Similarly we have ue &% This completes the
proof of Theorem 3.2.

Under the assumptions of Theorem 3.2, we denote by &% the set defined by
(3.12). By virtue of Lemma 2.3, we see that & < C(Q2). We can derive the
following Peano-Akod type theorem for the problem (1.1)—(1.2).

THEOREM 3.3. Let the hypotheses of Theorem 3.2 hold. Suppose that ¢,
@, € L*(Q). Moreover, suppose that B(x,t, &) is nondecreasing with respect to
t € [, (x), @,(x)] for almost every fixed x € Q and every fixed ¢ € R¥. Then we
have for every x, € Q

{uxo): u e F} = [ulxo), ulxo)],

where u and u are, respectively, the minimal solution and the maximal solution of
(1.1)—(1.2) between ¢, and ¢,.

Proor. It follows from Theorem 3.2 that

S ={ueS u<u<uae in Q}.
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Hence we have

{u(xo):ue F} < [u(xo), u(xo)] -

To prove Theorem 3.3 it suffices to derive a contradiction from the assumption
that there exists uy € R such that u(x,) < ug < #t(x,) and u, ¢ {u(x,):u e F}.
We denote by T(x, t) the truncated function

P1(x) ift < (x)
T(x,t)=<t if o;(x) <t < (%)

Pa(x) if @y(x) <t
for ae. xe R, "te R. Weset B(x,t, &) = B(x, T(x, t), £). From (3.4) we have

1B(x, £, )l < | f3()| + k(|91 ()] + |@2(x)]) + ¢, [EP7
forae. xe®,"(t,£)e R x R". We consider the equation
(3.14) —div A(x, Vu) + B(x, u, Vu) = 0 in Q.

Let u, =u, v, =u and d, = ||[v; — u,||,. Since B(x, t, £) is nondecreasing with
respect to t € R, we have for all non-negative functions ¢ € CF ()

f {A(x, V(u, +d,/2)) Vo + B(x,u, +d,/2,V(u, + d,/2)¢e} dx
Q

> f {A(x, Vuy) Vo + B(x, uy, Pu,)p} dx = 0.
Q

Hence u, + d,/2 is a supersolution of (3.14). It is easy to see that any ue & is
a solution of (3.14) in Q and hence A, = min (u; + d,/2, v,) is a W-supersolution
of (3.14) in Q. Similarly, v, — d,/2 is a subsolution of (3.14) in 2 and 4, =
max (u,, v, — d,/2) is a W-subsolution of (3.14) in 2. Since 4, < 4, in Q and
Ay =g = A ae. on 09, it follows from Theorem 3.1 that there exists a solution
u of the problem (3.14)—(1.2) such that 1, <u < 4, in Q. Hence, we have

u, <u<u +d/2, v, —d2<u<v, in Q.

Therefore, u € &. By our assumption we see that u(x,) # uo. Let u, =u,,
v, = u if u(xy) > uy and let u, = u, v, = v, if u(xy) <uy. Then we have u; <
U, <0, <y in Q, uy(Xe) <up <05(Xg), v, — Uzl <dy/2. Put dy=|lv; —Uy|o-
Proceeding as above, there exist u;, v; € & such that u, <u; <vy<v, in Q,
uz(xo) < g < v3(xo), lvs — U3l <d,/2<272d,. By an inductive process we
can construct sequences {u,},.n and {v,},.ny of & such that for ne N, u, <
Uppy < Upyy S0, 02, U,(X0) < thy < 0,(X0)s [0, — Uylloe <2'7"d;. Let u*(x) =
lim,_, u,(x) for x € Q. Then, u*(x,) = u,. From Lemma 2.3 it follows that u,
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converges to u* uniformly on any compact subsets of Q. By an argument
similar to that of Theorem 3.2, we obtain u* € &, which contradicts u*(x,) = u.
This completes the proof of Theorem 3.3.

3.2. L-subsolutions and L-supersolutions

THEOREM 3.4. Let ¢, and ¢, be respectively an L-subsolution and an L-
supersolution of (1.1) in Q such that ¢, < ¢, a.e. in Q and ¢, < g < ¢, ae. on
09. Suppose that there exist a constant ¢ € (0, 1] and a function f; € L'(2) such
that

(3.15) IB(x, t, O < h(|tD(1f30)| + [£177%)

for ae. xe R, (t,£)e R x RY, where h: R, — R, is a nondecreasing function.
Then the problem (1.1)—(1.2) has a solution u such that ¢, < u < ¢, a.e. in Q.

Proor. This result follows from an argument similar to that of [12]. We
give a proof for the sake of completeness. Without loss of generality we can
assume that ¢; < g < ¢, a.e. in 2 and that ¢, and ¢, are of the form (3.5) with
n=m Let A(x,&) (i=1,...,N), Ti(x,t), u, v, { =0,1,...,m), B(x,t,&) and
h(x, t) be as in the proof of Theorem 3.1. To prove Theorem 3.4 it suffices to
solve the problem

—div A(x, Vu) + B(x, u, Vu) =0in Q, Uy <u<vyin 2,
(3.16)
u=0o0n0Q.

Since u, and v, € L*(Q) (I =1,...,m) are respectively subsolutions and super-
solutions of (3.16) in 2, u, and v, are respectively an L-subsolution and an
L-supersolution of (3.16) in Q. Put

M =14 p1llo + lP2llo + 211 (ltlle + l2lle0) -
By a calculation similar to that of (3.7) and (3.8), we have
(3.17) |B(x, Ti(w), VT,w)| < | fo(x)] + 2Ph(M)|Ful""¢,
1=0,1,...,m for " ue W-?(Q), ae. x € Q, where f, € L'(Q),
(3.18) [h(x, t)] < 2P(MP™' + [t|P"Y) for ae. xe R, " teR.

We define u, by u*=min{u:l=1,...,m} and v* =max {v:l=1,...,m}.
Put

K={peViu, —1<¢p<v*+1ae inQ}

where V = W;'?(2). Then K is a closed convex subset of V. Let B, B:V —
LY(Q) (1=0,1,..., m) be the maps defined by (3.9). For u, ve V we define a,,
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a, and a5 by
{a,(u),v) = J A(x, 8u)- Vv dx , {ay(w), v) = J h(x, u)v dx ,
Q Q

{as(u), vy = Lz {Bo(w) + Y1 Bi(w)}v dx.
We note that a;, a,: V- V*. We also define F: V- V* by F(u)=a,(u) +
a,(u). We consider the variational inequality
(3.19) F(u), o —u) + <az(u), o —uy >0 for"peK.
Theorem 3.4 is proved if the following two lemmas are proved.
LEmMA 3.4. If ue K is a solution of (3.19) then u is a solution of (3.16).
LEMMA 3.5. There exists a solution u € K of (3.19).

PrOOF OF LEMMA 3.4. We note that u — min(u,v;)=(u—v;)" and
max (u, u;) —u=(u; —u)* for 1 <i<m Since min (u,v;), max (u,u;)e K we
have from (3.19)

CF(u), (= v)*> + <as), @ —v)*) <0,
SF(u), (u; —w)* > + <as(), (4, —w)*> > 0.

By an argument similar to that of Lemma 3.1, we have u, <u <v, ae. in
Q. Therefore,

{a,(u), p — u) +f B(x,u, Vu)(p —u)dx >0  for " p e K.
Q

For arbitrary non-negative function y € C3(Q2), we can choose a positive con-
stant 6 such that u + ¢ € K. From the above inequality with ¢ = u + 5y we
have

J {A(x, Vu)- B(x, u, Pu)y} dx = 0.
Q
PrROOF OF LEMMA 3.5.
Step 1. For arbitrary z € L*(£2) there exists a unique u € K such that

<F(u),<p—u>+Jz(<p—u)dx_>_0 forVpeK.
Q

In fact, let {z,},.y = L%£2) be a sequence such that
Z, > U strongly in L}(Q),

z,—~>zae. in Q.
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It follows from the proof of Lemma 3.2 that F: ¥V — V* is pseudo-monotone
and that (3.11) holds. From Theorem 8.2 in [20, p. 247] there exists a u, € K
such that

(3.20) (F(u,), @ — uyy + J zol@ —u,)dx >0 for"peK.
Q

By (3.18) we have
<a1(un)’ un> < '_<a2(un)> un> - J ZpUy dx
Q
< j (2P*'M? + M|z,|) dx,
e
and hence, from (H;), {u,},.n» is bounded in V. We can extract a subsequence

of {u,}, still denoted by {u,}, such that for some u € K

u, > u weakly in V,

n

u, > u a.e. in Q.

Put ¢ = u in (3.20). Then we obtain
{ay(uy), u, — u) < —<a,(u,), u, — u)y — f z,(u, —u)dx -0 asn— o0,
Q

and hence
{a;(u,) — a,(u), u, —u) -0 as n— oo .

We have from Lemma 2.1 u, > u strongly in V. Therefore, letting n — oo in
(3.20), we see that

(F(u),go—u>+fz((p—u)dx20 forVpeK.
Q

Let u, and u, € K satisfy the above inequality then we obtain
0 < <ay(uy) — ay(uy), uy —uy)> < —<ay(uy) — ay(uy), uy —uy» <0

since h(x, t) is nondecreasing with respect to te R. By (H,) and Poincaré’s
inequality, we have u; = u,.

Step 2. It follows from Step 1 that for arbitrary ue K there exists a
unique v € K such that

CF(v), o —v) +<aszu), ¢ —v) =0 for"pekK.

We define S: K - K by letting v = S(u) be the unique solution of the above
problem for u € K. The following assertion holds:
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S: Kz - Ky for some R >0,

where K = Kn {p € K: |lo|| <R}.
In fact, set v = S(u) for ue K. From (3.17) and (3.18) we have

ay(v), vy < —<ay(v), v) — <as(u), v)

= f {27 MP + 2(m + DM(Ifal + 2°AM) P ulP™*)} dx
Q

and hence from (H3)
ISEI? < C(1 + [lul”™9),

where C is a constant independent of u. Taking R >0 such that C(1 + RP™%) <
R?, we see that S: K — Kj.

Step 3. The map S: Kz — Ky is compact the continuous in the strong
topology.

In fact, let {u,},.n = Kg. Since Ky is a bounded closed convex subset
of V, we can extract a subsequence, still denoted by u,, such that for some
ue Ky

u, > u weakly in V,

U, > u ae. in Q.
Since {S(u,)} = Kg, we can assume that for some w e Ky

S(u,)—>w weakly in V,

S(u,) »w ae. in Q.
We see that for ne N
ay(S,)), S(u,) — w) < —<ay(S(u,)), S(u,) — wy — {as(u,), S(u,) — w) .
It is easy to see that <a,(S(u,)), S(u,) — w) >0 as n— oco. By (3.17) we have

[<as(u,), S(u,) — wil < 2(m + 1) L (Ifal + 2°h(M) |71, |P7)|S(u,) — W] dx .
We observe that
L [fallS(u,) —wldx —>o00  asn— o0,
and

j [V u,|P~|S(u,) — wldx < |Pu, 57 IS(w,) — Wlpe >0 asn— 0.
Q
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Thus
<a3(un), S(un) - W> -0 as n— oo .
Consequently, we have
<a,(S(u,)) — a,(w), S(u,) —w) - 0.

By Lemma 2.1 we obtain that S(u,) > w strongly in ¥V, which shows the
compactness of S: K —» Kg. Let u,, ue Kg, u,—>u strongly in V. Since S:
Kg — Ky is compact we can extract a subsequence {u,},.ny < {u,},cn such that
for some w e K

S(u,) > w strongly in V,

S(u,) > w ae. in Q.
On the other hand, we have for all ¢ € K

CF(S(up)), @ — S(un)y + {as(uy), ¢ — S(u,)> > 0.
Letting n — oo, we see that from Lemma 2.4 with p, = 1
CF(S(up)), @ — Su,)> = <F(S(uy)), @ — w) + <F(S(u,)), w — S(u,))
-‘)<F(W),([)—W>,
and
a3(uy), ¢ — S(u,)y = <asz(u,), w — S(u,)> + <as(uy), ¢ — w)
- Caz(u), ¢ —w).
Hence we have
<F(W), Qo — W> + <a3(u), ¢ — W> = 0.

It follows from the definition of S that w = S(u) and hence S(u,) — S(u) strongly
in ¥, which proves that S: K — Ky is continuous in the strong topology.

Applying the Schauder fix point theorem we can find a u € K; such that
u = S(u). This completes the proof of Lemma 3.5.

LEMMA 3.6. Let the hypotheses of Theorem 3.4 hold. If u is a solution of
(1.1)—(1.2) such that @, < u < @, a.e. in Q, then we have the estimate

lullwrng < C,
where C is a constant independent of u.

Lemma 3.6 follows from an argument similar to that of Lemma 3.3. By
applying an argument similar to the proof of Theorems 3.2 and 3.3, we can
conclude from Lemma 3.6 the following theorems
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THEOREM 3.5. Let the hypotheses of Theorem 3.4 hold. Suppose that f, €
LN(Q)N LE(Q), fi e LM(Q)NLi(RQ) and f,, fye L{Q)NL7(R) in (H,) and
(3.15). Then the problem (1.1)—(1.2) has a minimal solution u and a maximal
solution u such that ¢, < u <4 < @, a.e. in Q in the sense that if ue WH?(Q) is
any solution of (1.1)-(1.2) with ¢, <u < @, a.e. in Q,thenu <u < # ae. in Q.

THEOREM 3.6. Let the hypotheses of Theorem 3.5 hold. Suppose that B(x,
t, &) is nondecreasing with respect to te [¢@,(x), p,(x)] for almost every fixed
x € Q and every fixed £ € RN. Then we have for every x, € 2

{ulxo): ue #} = [u(xo), u(xo)1,

where & is the set defined by (3.12) and u, u are respectively the minimal solution
and the maximal solution of (1.1)—(1.2) between ¢, and ¢,.

3.3. C-subsolutions and C-supersolutions

THEOREM 3.7. Let ¢, and ¢, be respectively a C-subsolution and a C-
supersolution of (1.1) in Q such that ¢, < ¢, a.e. in Q and @, < g < @, a.e. on
0Q. Suppose that fy e L1(Q), f, € LP*%(Q) and f, € L***(Q) for some positive
constant ¢ in (H,) and (H;). Moreover, suppose that there exists a function
f3 € LYQ) such that

(3.21) |Bx, t, )l < [f5(x)] + k() (A + |17

for ae. xe€Q," (t,&) e R x R", where h: R, — R, is a nondecreasing function.
Then the problem (1.1)—(1.2) has a solution u such that ¢, < u < ¢, a.e. in Q.

Proor. Without loss of generality we can assume that ¢, < g < ¢, a.e. in
Q and that ¢, and ¢, are of the form (3.5) where ¥, Y; € C>1(Q) and
n=m. Put

M=Y" (IYillo + IWillo + 17Willo + 17Pll) -

Let forne N
B(x, T(t), flél<n+ M
mmn@:&&T&8+MWM)HE>n:M
where
-M ft<-—-M
Tt)=<t f-M<t<M
M fM<t.

We see that B,: 2 x R x R — R satisfies the Carathéodory condition and that
¢, and ¢, are respectively a W-subsolution and a W-supersolution of the
equation
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(3.22), —div A(x, Vu) + B,(x,u, Yu) =0 in Q.

From (3.21) we have
[B,(x, t, O < | f3(x)] + h(M)(1 + [n + M[?)

for ae. xe®, ¥ (t,&)e R x R, and hence by Theorem 3.1 there exists a
solution u, of the problem (3.22),—(1.2) such that ¢, < u, < ¢, ae. in 2. From
the proof of Theorem 2.1 in [3, pp. 225-233] we can extract a subsequence of
{u,}ne n Which converges to a solution of (1.1)-(1.2) strongly in W,%?(£).

34. Examples and remark

ExaMPLE 3.1. We consider the problem (1.3)—(1.2). Let B(x,t, £) be non-
decreasing with respect to ¢ € R for almost every fixed x € Q and every fixed
¢ e RM. Suppose that B satisfies the condition

IB(x, £, &)l < h(leD(1 + [EIP7Y)

for ae. xe 2, " (t,£)e R x R", where h: R, — R, is a nondecreasing function.
Moreover, suppose that g e W?(2)n L*(082). By following Remark 2 in [1],
we can construct an L-subsolution ¢, and an L-supersolution ¢, of (1.3) such
that ¢, < ¢, ae. in 2 and ¢, <g < ¢, ae. on 0Q2. In fact, because of the
boundedness of Q, there exists a positive constant M such that

Qc{xeR":—M<x, <M}.
We choose positive constants y and C such that
y=hrO+Dp—-1, C=y7'e*™h0)""™ + |iglls;00-
We define the functions ¢, and ¢, by
P1(¥) = —@(x),  @a(x) = C2 — 7™M,

Since C < ¢,(x) < 2C in Q, we see that ¢, < ¢, in Q and ¢, < g < ¢, ae. on
022. We have for all non-negative functions ¢ € C3(£2)

L {IP@21P"2V 9, Vo + B(x, 03, Vp,)} dx

"
= o {IP@,1P"2V @, Vo + B(x, 0, Vp,)p} dx

Y

f
= {IP0, P72V @, Vo — h(O)(1 + [P, | )p} dx

v
»

= {|C),|p—le-v(p—l)(x.+M) _ h(O)}(p dx >0,
Q
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which implies that @, is a supersolution of (1.3). Similarly we see that ¢, is a
subsolution of (1.3). Since the pseudo-Laplacian operator satisfies the condi-
tions (H;)-(H;) (see, for example, [7, p. 264, Lemma 4.10]), by virtue of
Theorems 3.2 and 3.3 (or Theorems 3.5 and 3.6), there exist a minimal solution
u and a maximal solution # of (1.3)—(1.2) between ¢, and ¢, and the interval
between u and u is filled with the set of solutions of (1.3)—(1.2).

ExaMPLE 3.2. In Theorem 3.6 we assumed that B(x, t, £) is nondecreasing
with respect to t € [, (x), p,(x)]. If B(x,t, &) is strictly decreasing with respect
to te[p,(x), p,(x)], Theorem 3.6 is not true in general. For example, we
consider the problem

(3.23) {Au+iu”=0 inQ2=B,, N>3,

u=0 on 092,

where A and f are positive constants. The problem (3.23) has a trivial solution
u=0. If ue W) L2(Q) is a solution of (3.23), then we see that u € C2(Q)
by the regularity of elliptic equations (see e.g. [19, p. 115, Theorem 1.3; and
p. 251, Theorem 2.1]). Gidas, Ni and Nirenberg [11] showed that there exists
a unique positive solution # of (3.23)if 1 < f < (N + 2)/(N —2). We can regard
u and u# as an L-subsolution and an L-supersolution of (3.23) respectively. By
virtue of the maximum principle, bounded non-trivial and non-negative solu-
tions of (3.23) are positive. Therefore we have

& = {u:uis a solution of 3.23) withu <u < u} = {u, u} .

Thus a Peano-Aké type theorem does not hold for (3.23) with 1 < § < (N + 2)/
(N —2). On the other hand, let § = 1 in (3.23) and let A be the first eigenvalue
of 4 under the Dirichlet condition. Then (3.23) has a positive eigenfunction #,
and we have

& = {cu: c is a constant with 0 < ¢ < 1}.
This shows that a Peano-Akd type theorem holds for (3.23) with § = 1.

REMARK 3.1. Theorems 3.1, 3.4 and 3.7 are related to [6, Theorem], [12,
Theorem] and [3, Theorem 2.1]. We cannot prove the existence of minimal
and maximal solutions and the Peano-Akd type theorem under the generalized
Nagumo condition (3.21).

PrOOF OF ProposITION 1. It suffices to prove that if u,, u, € W'P(2)n
L*(2) are supersolutions (subsolutions) of (3.2), then min (u,, u,) (max (u,, u,))
is a supersolution (subsolution) of (3.2). We use the method of [16, p. 42,
Theorem 6.6]. We set w = min (4, u,), &, =u;, —w and 4, =u, —w. Let
A(x, &) = A(x, & + Vw(x)) and B(x, t) = B(x, t + w(x)). Without loss of general-
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ity we can assume that A4 satisfy (H,), (H,), (H;) and (H,). Let T(t) be the
truncated function

0 ift<O
T@H)=<t if0<t<M
M ifM<T,

where M = |lu, ||, + llu;llo- The functions &, and i, are supersolutions of the
equation

(3.24) —div A(x, Vu) + B(x, T(w)) =0 in Q.
We set V = WP(2) and
K={peV:0<9p<M+1ae. in Q}.
Let foru,veV
{a(u), vy = f A(x, Vu)y-Vvdx,  <ay(u),v) = f B(x, T(w)v dx,
Q Q
where T(u)(x) = T(u(x)). It follows from the proof of Theorem 3.1 that a,,
a,: V- V* where V* is the dual space of V, and that F: V- V* F(u) =

a,(u) + a,(u), is pseudo-monotone and (3.11) holds. From Theorem 8.2 in [20,
p. 247] there exists a u € K such that (F(u),  —u) > 0 for all p € K, i.e.

(3.25) J (A(x, 7u)- V(o —u) + Bx, Tw)(@ —u)} dx>0 forall pe K.
Q
Since min (u, ii,;) € K and u — min (4, ii;) = (u — @i,)*, we have
f ) {A(x, Pu)-V(u — i) + B(x, T(w)(u — ii,)} dx < 0.

On the other hand, since i, is a supersolution of (3.24) and (u — @,)" € W'?(Q),
we obtain

J {A(x, Vi) - V(u — ii;) + B(x, T(@,))(u — ii,)} dx >0
Consequently we have from (H,)

0 sf ) (A(x, Pu) — A(x, Viiy)) V(u — di,) dx

< f (u — i) {B(x, T(@,)) — B(x, T(w))} dx <0,
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which implies that V(u — ii,)* =0 ae. in 2. From Poincaré’s inequality we
have u < i, a.e. in Q. Similarly we have u < i, ae. in 2 and hence 0 <u <
min (i;,%,) =0 ae. in Q, ie. u=0 ae. in Q. For any non-negative function
Y € CZ(Q), we can choose a positive constant é such that éy € K. By (3.25)
with ¢ = Jy we obtain

J {A(x, Pw) VY + B(x, w)y} dx >0,
Q

which shows that w = min (u,, u,) is a supersolution of (3.2). Similarly we see
that max (u,, u,) is a subsolution of (3.2) if u,, u, € W'P(2) n L*(2) are sub-
solutions of (3.2). This completes the proof of Proposition 1.

4. Equations in unbounded domains

Throughout this section we assume that Q is either an exterior domain in
RY or Q = R" and that the conditions (H,)—(H;) and (Hs) hold for (1.1). We
set Qp = 2 N By for R > 0, where By denotes the open ball of radius R centered
at the origin. In case 2 is an exterior domain we assume that there exists a
positive constant a such that 0Q = B,. In case 2 = R" the boundary condi-
tion (1.2) is void, and the problem is to find a solution of (1.1) defined
throughout R™.

DEerINITION 3. A function u is said to be a solution (subsolution, super-
solution) of (1.1) in Q if u is a solution (subsolution, supersolution) of (1.1) in Q
for all R > a.

A function u is said to be a W-subsolution (W-supersolution) of (1.1) in Q if
u is a W-subsolution (W-supersolution) of (1.1) in Q for all R>a. L-
subsolutions, L-supersolutions, C-subsolutions and C-supersolutions are defined
analogously.

THEOREM 4.1. Let ¢, and ¢, be a W-subsolution and a W-supersolution of
(1.1) in Q, respectively, such that ¢, < @, a.e. in Q and ¢, < g < @, a.e. on 02 (if
0Q is non-empty). Suppose that for all R > a there exist a positive constant cpg,
a function fre L%(Qg) and a nondecreasing function hg: R, — R, such that
hr(l@l) € L(2g) for ¢ € L(Qg) and

(4.1) [B(x, £, O)| < [fr()| + he(lt]) + cglEP™

for ae. xeQg, " (t,£)e R x RY. Then the problem (1.1)-(1.2) has a solution u
such that ¢, < u < @, a.e. in Q.

LEMMA 4.1. Let the hypotheses of Theorem 4.1 hold. Let R be a constant
with R > a. If u is a solution of (1.1) in 2, such that ¢, <u < @, a.e. in Q,z
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and u = g a.e. on 0Q (if 022 is non-empty), then we have the estimate
”u“WLp(QR) < Gy,
where Cg is a constant independent of u.

Proor oF LEMMA 4.1. It suffices to prove the lemma for the case that 02
is non-empty. We choose the function ¢ € C3(B,g) so that ¢ =1 in Bg, 0 <
@ < 1in B,g and |[Fp| <4R7! in B,;. Since ¢?(u — g) € Wy'?(2,x) we have

f {@PA(x, Vu)-V(u — g) + ppP~'(u — g)A(x, Vu)- V¢
QZR
+ @P(u — g)B(x,u, Pu)} dx =0.
Put o, = inf {a(x): x € 2,z} and d = |cy[l,0,,- Note that ay > 0. We obtain

from (H,), (H;) and (4.1)

f ao@P|VulP dx < L Lo?{Ifal + | /1lIPulP™" + N|Pg|(lfol + d|Vul~*)}
QZR 2R

+ 4R Npo?~u — g|(|fol + d|VulP™?)

+ @7 |lu — g|(|f2r] + har(lul) + czRIVu,p‘l)] dx .

Let v = || + |@,| + |g|. Since |u —g| < v and |u| < v a.e. in 2,5, we have

LM %o @”|Vul? dx < Lm L2l + NIPgllfol + v@RT'Np|fol + | f2r] + h2r(®))

+ @?IPulP”! (| fil + Nd|Pg| + cgv)
+ 4R7!Np dvp? ™! |FulP~!] dx .

By virtue of Hdlder’s inequality, we have for ¢ > 0

[PulP™ (1 1] + Nd|Pgl + Copv) < e?|Pul? + e72(|fi| + Nd|Vg| + Cypv)’
and
4R INp dve?P ' |PulP™ < e%P|VulP + ¢ P(4R"'Np dv) .
Lemma 4.1 then follows by choosing ¢ so that ay > 4¢4

PrOOF OF THEOREM 4.1. It suffices to prove the theorem for the case 022 is
non-empty. From Theorem 3.1 it follows that for n € NV the problem

—div A(x, Yu) + B(x,u, Pu)=0 in Q,,,,
u=g onodQ, u=¢, ondB,,,

has a solution u, € W?(2,,,) such that ¢, <u, < ¢, ae. in 2,,,. By Lemma
4.1 we see that {u,},>., is bounded in W!?(22,,) and hence we can extract a
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subsequence {ul"}, v of {u,},> 4, such that for some u' e W-7(Q,,)
ul >y weakly in W1P(Q,,),
ult) —» 4 strongly in LP(2,,) .

We choose the function ¢ € C4(B,,) so that ¢ =1in B,,0< ¢ <1 in B,, and
[Vop| <4a”! in B,,. Since u® =g ae. on 0Q and @ul" — uV)e Wi ?(2,,),
we have

f @A, FuD) V() — u®) dx = —f () — uD) {A(x, YuP) Vo
QZa 'QZa

+ B(x, ulV, Vu?)ep} dx .
By virtue of (H,) and (4.1), we have

f [ — u®)A(x, VuV)- Vol dx
Qz«
< 4a'1N]|u,(,” - u(l)“p;Qza{”fO ”q;Q;, + d” V“;(,I)“g;_.(}u} -0 ]

where d = ¢y ».0,,, and
J [ — uD)B(x, ul™), Ful?)| dx
QZa

< N — u Pl 0, {1 f2allgi0,0 + [h2a(101] + 192D g0, + C2alPuP 1154, }

-0 as n— oo .

Since u{! converges to u‘¥) weakly in W!-?(Q,,), we obtain
L) PAXx, Vu'D) P’ —u)dx >0 asn— 0.
20
Consequently we have from (H,)
J;) (A(x, Pult) — A(x, Pu))- P — uV)dx -0 asn— .

By Lemmas 2.1 and 2.2 we see that u{" converges to u'" strongly in W?(Q,)
and hence u'! is a solution of (1.1) in 2, such that ¢, < u'® < ¢, a.e. in £, and
u =g ae. on Q. By an inductive process, we can construct sequences
{uP}, ien and {u®}; n such that {u®},.n is a subsequence of {u{ ™}, 4, and
converges strongly in W'?(Q,,) to u®”, which is a solution of (1.1) in £,, such
that ¢, < u < ¢, ae. in Q,, and u” =g ae. on 9Q. Since u'*V =u® ae. in
Q,., we can define ue WLP(Q) by u=u"® in Q,,. The function u is a solution
of (1.1)-(1.2) such that ¢, <u < ¢, ae. in Q. This completes the proof of
Theorem 4.1.
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THEOREM 4.2. Let the hypotheses of Theorem 4.1 hold except that (H) is
replaced by (Hg). Suppose that ¢y, @, € L5.(Q) and fp e L¥(Qyg) in (4.1) for all
R >a. Then the problem (1.1)-(1.2) has a minimal solution u and a maximal
solution u such that ¢, <u<u< @, ae. in Q in the sense that if u is any
solution of (1.1)—(1.2) with ¢, <u < @, ae. in Q, then u <u <u ae. in Q.

Proor. It suffices to prove the theorem for the case dQ is non-empty.
We denote by % the set defined by (3.12). Let u and @ be the functions defined
by (3.13). It suffices to prove that u, ue . We can construct, similarly to the
proof of Theorem 3.2, a nondecreasing sequence {u,} of & such that u,
converges to # uniformly on compact subsets of Q. Let R be an arbitrary
constant with R > a. From Lemma 4.1 we can extract a subsequence of {u,},
still denoted by {u,}, such that

u, > weakly in W1-P(Q,,),
u,—>u strongly in LP(2,z) .
Similarly to the proof of Theorem 4.1, since # = g a.e. on 02, we see that u,

converges to i strongly in W1:P(Q;), which shows that & is a solution of (1.1) in
Q. Thus, e & Similarly we have u e &.

THEOREM 4.3. Let the hypotheses of Theorem 4.2 hold. Suppose that ¢,
@, € L*(,). Moreover, suppose that B(x,t, &) is nondecreasing with respect to
t € [p,(x), @,(x)] for almost every fixed x € Q and every fixed ¢ € RN. Then we
have for every x, € Q

{u(xo): u € F} = [ulx,), l(xo)],

where & is the set defined by (3.12) and u, u are, respectively, the minimal
solution and the maximal solution of (1.1)—(1.2) between ¢, and ¢@,.

To prove Theorem 4.3 it suffices to consider the case that 092 is non-empty.
We set for R > a

¥ = u: u is a solution of (1.1) in Qp withu <u <u
R a.e. in 2 and u = g a.e. on 02

We note that %% # & because u, ue S and that F < C(2g) by virtue of
Lemma 2.3.

LEMMA 4.2. Let the hypotheses of Theorem 4.3 hold. Then we have for all
R > a and x, € Q4

{u(xo): u € Fr} = [ulxo), u(xo)] -
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PrROOF OF LEMMA 4.2. Suppose that u(x,) < u(x,). It suffices to derive
a contradiction from the assumption that there exists a u,e R such that
u(xo) < ug < i(xo) and ug ¢ {u(xo):ue F}. Let uy=u, vy=u and d, =
vy — uyllw,0,,- Similarly to the proof of Theorem 3.3, the functions 4, =
max (uy, v; —d,/2) and A, =min (u, +d,/2, v,) are respectively a W-subsolution
and a W-supersolution of (3.14) in Q, such that A; </, in Q,z and 4, =g =4,
ae. on 0Q. Since ¢, < A, <1, < @, ae. in Q,p, it follows from Theorem 3.1
that the problem

—div A(x, Vu) + B(x, u, Vu) =0 in Q,¢,
u=g onoQ, u=4, on 0B,

has a solution u € W''P(Q2,,) such that A, <u < 1, ae. in Q,z. Therefore we
have ue %g. By an argument similar to that of Theorem 3.3, we can con-
struct a nondecreasing sequence {u,} of ¥ such that i#(x,) = uy, where ii(x) =
lim,_, ., u,(x) for x € Q,z. From Lemma 4.1 we can assume that

u, > i weakly in W1P(Q2,,),
u, > strongly in LP(2,R) -

Similarly to the proof of Theorem 4.1, we have @#e %. This contradicts
#(xg) = ug-

PRrOOF OF THEOREM 4.3. It follows from Theorem 4.2 that
S ={uef :u<u<iuae in Q}.

We can assume that u(x,) < #(x,). Let R be an arbitrary constant satisfying
|xol < R. Let u, be an arbitrary fixed constant with u(xy) < uy < ti(x,). It
suffices to prove that there exists a u € & such that u(x,) = u,. From Lemma
4.2, for ne N, we can choose a u, € &, such that u,(x,) = u,. By Lemma 4.1
we see that {u,},», is bounded in W!?(Q,,;) and hence we can extract a
subsequence {u{"},.n of {u,},>4 such that for some u® e W'P(Q,,)

u >u  weakly in W1P(Q,z),

ul® - u®  strongly in LP(2,g) .

Since |u,| < o] + |@,| € L*(2,z), we can assume, from Lemma 2.3, that u{!
converges to u'" uniformly on some neighborhood of x,. Therefore we see
uM(xo) = uy. Theorem 4.3 follows from the concluding argument in Theorem
4.1.

THEOREM 4.4. Let ¢, and ¢, be an L-subsolution and an L-supersolution of
(1.1) in Q, respectively, such that ¢, < @, a.e. in Q and ¢, < g < @, a.e. on 3Q (if

09 is non-empty). Suppose that for all R > a there exist a positive constant
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er€(0,1], a function fze L'(Qg) and a nondecreasing function hg: R, — R.
such that

4.2) [B(x, £, )| < he(ItD(L/r(¥)] + 1€1P7%)

for ae. x€Qg, " (t,£)e R x RN. Then the problem (1.1)—(1.2) has a solution u
such that ¢, <u < ¢, ae. in Q.

THEOREM 4.5. Let the hypotheses of Theorem 4.4 hold except that (Hs) is
replaced by (Hg). Suppose that fgr € L5.(22g) in (4.2) for all R > a. Then the
problem (1.1)—(1.2) has a minimal solution u and a maximal solution u such that
@, Su<u<q@,ae inQin the sense that if u is any solution of (1.1)—(1.2) with
o <u<@,ae inf, thenu<u<uae. in Q.

THEOREM 4.6. Let the hypotheses of Theorem 4.5 hold. Suppose that
B(x, t, &) is nondecreasing with respect to t € [¢,(x), ¢,(x)] for almost every fixed
x € Q and every fixed ¢ € RY. Then we have for every x, € Q

{u(xo): ue #} = [u(xo), u(xo)],

where & is the set defined by (3.12) and u, u are, respectively, the minimal
solution and the maximal solution of (1.1)—(1.2) between ¢, and @,.

Theorems 4.4, 4.5 and 4.6 are counterparts of Theorems 3.4, 3.5 and 3.6.
Their proofs are omitted, since they are similar to the proofs of Theorems 4.1,
4.2 and 4.3.

THEOREM 4.7. Let 2 = R" and let ¢, and ¢, be a C-subsolution and a
C-supersolution of (1.1) in RY, respectively, such that ¢, < ¢, in R". Suppose
that fy e LI5(RY), f, € LEXE(RY) and f, € Li75(R™) for some positive constant ¢ in
(H,) and (H;). Moreover, suppose that for all R >0 there exist a function
fr € LUBg) and a nondecreasing function hg: R, — R, such that

(4.3) [B(x, £, )| < [fr(¥)] + he(l2)(1 + [&]7)

for ae. xeQ, (t,)e R x RN. Then equation (1.1) has a solution u such that
0, <u<@,ae inR".

LEMMA 4.3. Let the hypotheses of Theorem 4.7 hold. Let R be a positive
constant. Then there exists a constant pg > p such that if u is a solution of (1.1)
in Byg with |ully,p,, < M, then

“u“xk < Cg,
where Cy is a constant independent of u. and Xz = W1'Pr(By).

Lemma 4.3 is due to [3, Proposition 3.8].
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ProoOF oF THEOREM 4.7. It follows from Theorem 3.7 that for ne N the

problem
—div A(x, Vu) + B(x, u, Vu) =0 in B,,
u= @, on 0B,

has a solution u, € W'?(B,) such that ¢, <u, < ¢, ae. in B,. Let R be an
arbitrary positive constant. By Lemma 4.3 there exists a pgr > p such that
{p}n>4g is bounded in W'Px(B,g). Thus we can extract a subsequence
{uM}, N of {t,}n>ar such that for some u'® € W'?(B,y)

ul™ > uY  weakly in W'P(B,g),
ul >y ae. in Byg.

Put M = (¢ llw;8,, + 1020l0:5,,- Let @€ Cj(B,g) be the function satisfy-
ing 0<¢<1, |[Fp|<4R7! in B,z and ¢ =1 in Bg. Since o’ —uV)e
Wo'?(B,g) N L®(B,g), we have

J eA(x, Vu)- V(i — uV) dx = —f W) —uD){A(x, FuM)-Veo
Bar

Bir
+ B(x, ulV, FulM) e} dx

By Lemma 4.3, we obtain
J lug? — uDPu PP dx < (IPuPl|5 g, Ul —uPlcgp, >0  asn— oo,
Bar
where Cg = pr/(pr — p). Therefore we have from (4.3)

f | — uNA(x, PulP) - Po|dx -0,
B3r

f (s — uM)B(x, uV, PuiM)| dx < f lug) — u (| forl + hyr(M)) dx
Bar

Bar

+ hZR(M)J |“r(nl) —uW |PulVP dx

Bar

-0 asn— oo.

Consequently we have by (H,)
j (A(x, Puly — A(x, Pu®D)- Pl — u)dx -0 asn— o0 .
Bg
By virtue of Lemmas 2.1 and 2.2 we see that ul" converges to u‘!) strongly in

W1?(Bg) and hence u‘") is a solution of (1.1) in Bg such that ¢, < uV < ¢, ae.
in Bg. Theorem 4.7 follows from the concluding argument in Theorem 4.1.
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REMARK 4.1. In Theorems 4.3 and 4.6 we assumed that B(x,t, &) is non-
decreasing with respect to t € [¢,(x), ,(x)]. The following example shows that
Theorems 4.3 and 4.6 are not true in general when B(x, t, &) is strictly decreas-
ing with respect to t € [¢,(x), ¢,(x)]. We consider the equation

(4.4) Au + c(x)uf =0 in RV,

where ¢ € C}(R") is positive, 0 < f < 1 is constant and N > 3. Equation (4.4)
has a trivial solution u =0. Fukagai [9] showed that (4.4) has a unique
positive solution # such that #(x) —» 0 as |x| - oo if

0
J rt PPN D(max -, ¢(x)) dx < o .
0

Therefore we see that under the above condition

{u:u is a solution of (4.4) with u <u <# in RV} = {u, u} .

5. Application

In this section we shall establish the existence of positive solutions of the
equation

(5.1) —div (|FulP"2Fu) + B(x, u, Fu) =0 in RV,
where 1 <p <2, N >3 and B(x, t, £) is as in Theorem 4.7.

THEOREM 5.1.  Suppose that there exist a continuous function ¢: R, — R,
and a continuous nondecreasing function F: R, X R, — R, such that

(5.2) IB(x, t, )l < #(Ix|)F(z, 1<])

for ae. xe RY,Y (t, ) e R, x RN. Moreover, suppose that

(5.3 j rHe=DgE) P dr < oo,
0
and that one of the following conditions is satisfied:
(F,) lim,_, t7'F(t, s)*" V=0  for each fixed s > 0;
(F,) lim,, t"'F(t, )P =0,

Then equation (5.1) possesses infinitely many positive solutions in W,2:?(R™) which
are bounded and bounded away from zero in R™.

Proor. The proof is similar to that of Theorem 1 in [18]. From Jensen’s
inequality we have for s > 0
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(fs ) dt)l/(p—” < §71-(N=2/-1) Js N =D ()11 gy
(5.4) ° ) °
Sf t(Z—P)/(p—l)¢(t)1/(p—l) dt

0

and hence for r > 0

r s 1/(p—1)
J‘ <J (/s 1é(2) dt) ds
0 (o]

(5.5) ,
<[(p— /N - 2] J [1 = (/™ =2/e =030 Dg (0D gy
0
Let C'(R,) denote the locally convex space of continuously differentiable func-
tions on R, with the topology of uniform convergence on compact subsets of
R..
We first consider the case (F,) holds. Let a > 0 be small so that

o)

[(p — DAN = 2)]F(a, 1)”""”J VPN )P dt < af2

0

and

[co]

F(a, 1)1/(p-1)J [(2—p)/(p—1)¢(t)1/(p—l) dt<1.
0

Consider the set
Y={yeC'(R,): a2 <y(r) <aly()| <1forr=>0},

where “’” = d/dr. Define the operator & in C'(R,) by

0 0

r s 1/(p—1)
(5.6) Fyr)=a — J (j (/N O F (y(2), 1y (®)]) dt) ds.

If y € Y, we see, from (5.4) and (5.5) that for r > 0

o> Fy(r) > a — F(a, 1)V jr<r t/s)" 1 4(0) dt)l/(p—l) i

] 0

>a—[(p— DAN = 2)]F(a, )7V Jm V() 1P dt > o2
0

and

r 1/(p—1)
(Fy) ()] = <L /¥ O F (y(0), 1y’ () dt)

9]
< F(a, 1)1/<p—1)f £ 2=PIP-Dg)UP=D g < 1 |
[



34 Takeshi KUra

which shows that #: Y — Y. Let {y,} be a sequence in Y converging to ye Y
as n — oo in the topology of C'(R,). We have for r > 0

[(Fya) (r) — (Fy) ()]
<(p—D7'[F( 1) L $(t) de] 7P/ Lr PO IF (ya(0), [ya(0))
— F(y(@), [y' @)D dt,

which implies that #: Y — Y is continuous. We have for ye Yand r >0

I(Fy)y() < (p— 1)7'F(o, l)l/“’_”[(N - 1)r<2—p)/(p—u<; J' 50) dr)l/(p—n
0

r (2-p)(p—1)
+ ¢(r>(f N1 (1) dt> ]
0

Therefore we see that ZY is relatively compact in C'(R,). Thus we are able
to apply the Schauder-Tychonoff fixed point theorem and conclude that & has
a fixed point y e Y. The function v(x) = y(|x]|) is a solution of the equation

—div (|Fv]P~2Pv) + ¢(Ix|)F(v, [Po)) =0 in RY,

so that it is a C-supersolution of (5.1). Similarly we can show that the
operator ¢ defined by

G Gz(r) = B + J(J (t/sP PO F (1), |2 (1)) d:)m"'” ds
Y 0

has a fixed point z in the set
Z={zeC'(R,):B<z(r)<2B,1z'(r)l < 1 for r > 0},

provided f > 0 is chosen small enough so that

0

[(p — DAN — 2TF (2B, )0 J 10 Dg(e) e dt < B

0o

and
F(2B, 1)1®=D Jw 2P0y e~ g < 1 .
0

The function w(x) = z(]x|) is a C-subsolution of (5.1). If 48 < «, then w < v in
R" and hence it follows from Theorem 4.7 that (5.1) has a solution u such that
w<u<vae in RV,

Next, we consider the case (F,) holds. We take positive constants « and
so large that
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[(p — D/N — D]F(@ @)~ f " gy g <,
0

£o)

Flo, o)D) J =PIV G( VP g < o
0

and
[(p — DAN — 2)]F(2B, 2B~ r PIODGEIE=D gy <
(4]
F(Zﬂ, 2ﬁ)1/(p—1) J\"O t(z—p)/(p—1)¢(t)1/(p—1) dt < 2ﬁ .
(4]

Arguing as in the case of (F;), we can verify that the operators &% and ¢
defined by (5.6) and (5.7) have fixed points y and z in the sets

{yeC'R,): /2 < y(r) < a,|y'(r)] <o for r >0}
and
{ze C'(R,): B < z(r) < 2B,|z'(r)] < 2B for r > 0},

respectively. The functions v(x) = y(|x|) and w(x) = z(|x|) then give respec-
tively a C-supersolution and a C-subsolution of (5.1), which ensure the existence
of the desired solution of (5.1) provided 48 < a. The proof of Theorem 5.1 is
thus complete.

The particular case (p = 2) of the above problem has been considered by
numerous authors including Kawano [15], Kusano and Oharu [18], and
Furusho [10]. The condition (5.3) generalizes the one given by Kawano [15]
for the case p = 2.
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