On the products $\beta_s \beta_t$ in the stable homotopy groups of spheres

Dedicated to Professor Shôrô Araki on his sixtieth birthday

Katsumi SHIMOMURA

(Received August 15, 1988)

§1. Introduction

For a prime $p \ge 5$, H. Toda [7] introduced the β -family $\{\beta_s | s \ge 1\}$ and showed the relation $uv\beta_s\beta_t = st\beta_u\beta_v$ (s + t = u + v) in the *p*-component of the stable homotopy groups $\pi_*(S)$ of spheres. An easy consequence of this relation is $\beta_s\beta_t = 0$ if p|st, since the order of β_s is *p*. In this paper we find the following

THEOREM 1.1. Let s and t be positive integers with $p \nmid st$. Then,

 $\beta_s \beta_t \neq 0$ in $\pi_*(S)$ if $s + t \in I$,

where $I = \{kp^i - (p^{i-1} - 1)/(p-1) | i \ge 1, p \not \mid k+1\}.$

Consider the Adams-Novikov spectral sequence converging to $\pi_*(S)$, in which Miller, Revenel, and Wilson [1] defined the β -elements β_s ($s \ge 1$) surviving to β_s in $\pi_*(S)$. This sequence has sparsity in its E_2 -term enough not to kill the product $\beta_s \beta_t$. Therefore the above theorem follows from the non-triviality in the following

THEOREM 1.2. Let s and t be positive integers with $p \not\mid st$. Then, in the E_2 -term of the Adams-Novikov spectral sequence,

$$\beta_s \beta_t \neq 0$$
 if $s + t \in I$.

Furthermore suppose that $s + t \ge p^2 + p + 2$. Then we have

 $\beta_s \beta_t = 0$ if $p \not\downarrow (s+t)(s+t+1)$, or if s+t+1 = kp and $p \not\not\downarrow k(k+1)$.

Notice that p|n(n + 1) if $n \in I$. We also note that the relation " $\beta_s \beta_t = 0$ if p|st" is also valid in the E_2 -term ([2], [6; Cor. 2.8]), and that $\beta_s \beta_t = 0$ if and only if p|st in both $\pi_*(S)$ and the E_2 -term for the case when p = 5 and $s + t \leq p^2 - p + 1$ ([3; Chap. 7]).

This theorem does not determine whether or not $\beta_s \beta_t$ $(p \not\prec st)$ is trivial in the E_2 -term for the following cases:

a)
$$p^2|s+t+p$$
, b) $s+t=kp^3-p^2-1$, and c) $s+t=kp^2-p-1\notin I$.

In §2, we recall the Brown-Peterson spectrum BP at p and the E_2 -term

 H^*BP_* of the above spectral sequence; and give the elements $B_s\beta_t$ in $H^2N_0^2$ mapped to $\beta_s\beta_t$ in H^4BP_* by the Greek letter map $G: H^2N_0^2 \to H^4BP_*$. Then the triviality in Theorem 1. 2 is proved in Theorem 2. 9 by noticing $uv\beta_s\beta_t$ $= st\beta_u\beta_v(s + t = u + v)$ in H^4BP_* and by showing $B_u\beta_v = 0$ for u = 1, 2. Furthermore G is an isomorphism (see Lemma 3.3); and the non-triviality in Theorem 1. 2 is proved for the case p|s + t in §3 by mapping $B_1\beta_v$ to $H^3M_1^1$ whose structure is given in [4], and for the case p|s + t + 1 in §4 after determining the structure of $H^1M_0^2$ at the corresponding degree.

§2. Triviality in the E_2 -term

Throughout the paper p denotes a prime ≥ 5 . Let BP be the Brown-Peterson spectrum at the prime p. Then the coefficient ring BP_{*} and the BP_{*}-homology BP_{*}BP are the polynomial rings

$$A = BP_* = Z_{(p)}[v_1, v_2, \cdots]$$
 and $\Gamma = BP_*BP = BP_*[t_1, t_2, \cdots],$

where $|v_i| = e(i) = |t_i|$. Here we use the notation

(2.1)
$$|x| = (\deg x)/(2p-2)$$
 and $e(i) = (p^i - 1)/(p-1)$.

The pair $(A, \Gamma) = (BP_*, BP_*BP)$ is the Hopf algebroid (cf. [3]), and we use here the following formulae for the right unit $\eta: A \to \Gamma$ and the coproduct $\Delta: \Gamma \to \Gamma \otimes_A \Gamma$.

(2.2)
$$\eta v_{1} = v_{1} + pt_{1}, \quad \eta v_{2} \equiv v_{2} + v_{1}t_{1}^{p} - v_{1}^{p}t_{1} \mod(p).$$
$$\eta v_{3} \equiv v_{3} + v_{2}t_{1}^{p^{2}} - v_{2}^{p}t_{1} + v_{1}t_{2}^{p} + v_{1}^{2}V \mod(p, v_{1}^{p}) \text{ and}$$
$$\eta v_{4} \equiv v_{4} + v_{3}t_{1}^{p^{3}} + v_{2}t_{2}^{p^{2}} - t_{1}\eta v_{3}^{p} - t_{2}v_{2}^{p^{2}} \mod(p, v_{1}); \text{ and}$$
$$\Delta t_{1} = t_{1} \otimes 1 + 1 \otimes t_{1} \text{ and } \Delta t_{2} = t_{2} \otimes 1 + t_{1} \otimes t_{1}^{p} + 1 \otimes t_{2} + v_{1}T.$$

Here $pv_1V = v_1^p t_1^{p^2} - v_1^{p^2} t_1^p + v_2^p - \eta v_2^p$ and $pT = t_1^p \otimes 1 + 1 \otimes t_1^p - \Delta t_1^p$. For a Γ -comodule M with coaction ψ , we define the homology H^*M as the homology of the codar complex

$$\Omega^k M = M \otimes_A \Gamma \otimes_A \cdots \otimes_A \Gamma \quad (k \text{ copies of } \Gamma)$$

with the differential $d_k: \Omega^k M \to \Omega^{k+1} M$ given inductively by

(2.3)
$$d_0m = \psi m - m, \ d_1x = x \otimes 1 - \Delta x + 1 \otimes x,$$
$$d_1m \otimes x = d_0m \otimes x + m \otimes d_1x \text{ and}$$
$$d_{k+1}m \otimes x \otimes y = d_1m \otimes x \otimes y - m \otimes x \otimes d_ky$$

for $m \in M$, $x \in \Gamma$ and $y \in \Omega^k M$ $(k \ge 1)$.

Consider the Γ -comodules N_n^i and M_n^i with the coaction η induced from the right unit η of Γ defined inductively by the equalities On the products $\beta_s \beta_t$

$$N_n^0 = A/(p, v_1, \dots, v_{n-1})(N_0^0 = A), \ M_n^i = v_{n+i}^{-1} N_n^i \text{ and the exact sequence}$$

 $0 \longrightarrow N_n^i \xrightarrow{\lambda} M_n^i \longrightarrow N_n^{i+1} \longrightarrow 0.$

Then we have the long exact sequence

$$(2.4) \qquad \cdots \longrightarrow H^k N_n^i \xrightarrow{\lambda} H^k M_n^i \longrightarrow H^k N_n^{i+1} \xrightarrow{\delta_k} H^{k+1} N_n^i \longrightarrow \cdots$$

for each i, k and n, and the Greek letter map

$$G = \delta_{k+i-1} \cdots \delta_{k+1} \delta_k \colon H^k N_0^i \longrightarrow H^{k+i} N_0^0 = H^{k+i} A,$$

whose range is the E_2 -term of the Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres. As usual, we write an element of M_n^i as a summation of fractions x/v for $x \in v_{n+i}^{-1} N_n^0$ and $v = a_n a_{n+1} \cdots a_{n+i-1}$ $(a_j = v_j^{e_j} \text{ for } n \leq j < n + i \text{ and } e_j > 0)$ with a convention that x/v = 0 if $a_j | x$ for some j. Hereafter, $v_0 = p$. With a calculation by (2. 2-3), we find the element

$$B_{s} = v_{2}^{s} / pv_{1}$$
 in $H^{0} N_{0}^{2}$,

and define

$$\beta_s = GB_s \in H^2 A,$$

which is the β -elements given in [1].

From here on we study the product $\beta_s \beta_t$ in the E_2 -term $H^4 A$.

LEMMA 2.5 [2; Lemma 4.4]. The element β_s is represented by

$$\beta_s \equiv {\binom{s}{2}} K_{s-2} + sT_{s-1} \mod(p, v_1) \text{ in } \Omega^2 A,$$

where $K_i = v_2^i (2t_2 \otimes t_1^p + t_1 \otimes t_1^{2^p})$ and $T_i = v_2^i T$.

LEMMA 2.6 [2; Remark after Prop. 6. 1]. In H^4A , we have

$$uv\beta_s\beta_t = st\beta_u\beta_v$$
 if $s + t = u + v$.

We notice that H^*M is an H^*A -module for a comodule M, and that each map of (2.4) is an H^*A -module map. Thus we have

$$\beta_s \beta_t = G B_s \beta_t \in H^4 A$$
 for $B_s \beta_t \in H^2 N_0^2$.

LEMMA 2.7. Let u be a positive integer. Then in $H^2N_0^2$,

$$(2.7.1) uK_{u-1}/pv_1 = -2T_u/pv_1, and$$

(2.7.2)
$$B_1\beta_u = T_u/pv_1 \text{ if } p \not\mid u \text{ and } B_2\beta_{u-1} = K_{u-1}/pv_1 \text{ if } p|u.$$

PROOF. By (2.2-3), we compute

Katsumi SHIMOMURA

(2.7.3)
$$d_1 H/p^2 v_1^p = (uK_{u-1} + 2T_u)/pv_1,$$

where $H = v_1^{p-1} v_2^{u} t_1^{p} - p v_1^{p-2} v_2^{u} t_2 - p u v_1^{p-1} v_2^{u-1} t_1^{p} t_2.$

Thus we have (2.7.1). (2.7.2) follows from (2.7.1) since $B_1\beta_u = {\binom{u}{2}}K_{u-1} + uT_u / pv_1$ and $B_2\beta_{up-1} = (K_{up-1} - T_{up})/pv_1$ by Lemma 2.5. q.e.d.

LEMMA 2.8. Let u be an integer such that $u \ge p^2 + p + 1$. Then,

$$T_u/pv_1 = K_{u-1}/pv_1 = 0$$
 in $H^2 N_0^2$

if $p \not\mid (u + 1)(u + 2)$, or if u + 2 = kp and $p \not\mid k(k + 1)$.

PROOF. Put $D = v_2^{u-1}t_1^p t_2 + v_2^{u-p^2-p-1}(v_2t_2^p\eta v_3^p + v_2^pt_1^p\eta v_4 - t_1^p\eta v_3^{p+1}), E = v_3t_1^{p^3} + v_2t_2^{p^2} - t_1\eta v_3^p - v_2^{p^2}t_2$ and $F = v_1v_2^u\zeta^p t_1^p + (u+1)^{-1}v_2^{u+1}\zeta^p$ for the element $\zeta = v_2^{-1}t_2 - v_2^{-1}t_1^{p+1} + v_2^{-p}t_2^p - v_2^{-p-1}t_1^p\eta v_3$. Then D/pv_1 , E/pv_1^2 and F/pv_1^2 belong to $\Omega^1 N_0^2$ by the assumption on u. By (2.3), we have $(d_1x\eta v) = d_1x(1 \otimes \eta v) - x \otimes d_0v$ for $x \in \Omega^1 M$ and $v \in \Omega^0 M$ (M is a Γ -comodule). Using this and the equalities in (2.2–3), we compute

(2.8.1)
$$d_1 D/pv_1 = (v_2^u \zeta \otimes t_1^p - K_{u-1} - v_2^{u-p^2} g^p)/pv_1, \ d_1 E/pv_1^2 = (g^p + v_2^{p^2} T)/pv_1, \ d_1 \zeta^p/pv_1^2 = 0 \ and \ d_1 F/pv_1^2 = -v_2^u \zeta^p \otimes t_1^p/pv_1,$$

where $g = t_1 \otimes t_2^p + t_2 \otimes t_1^{p^2}$. We also have the element $U = v_3^{p+1} - v_2^p v_4 \in A$ such that $d_1 U/pv_1 = v_2^{p^2+p+1}(\zeta - \zeta^p)/pv_1$ (cf. [1; (3.20)]). Now consider the element

$$C_{u} = (v_{1}D + v_{2}^{u-p^{2}}E + F - v_{1}v_{2}^{u-p^{2}-p-1}Ut_{1}^{p} + uv_{1}v_{2}^{u-p^{2}-1}t_{1}^{p}\eta v_{4})$$

of $\Omega^2 N_0^2$, and we have

(2.8.2)
$$d_1 C_u / p v_1^2 = T_u / p v_1 - K_{u-1} / p v_1 \in \Omega^2 N_0^2.$$

Thus $T_u/pv_1 = K_{u-1}/pv_1$ in $H^2 N_0^2$ if $p \not\prec (u+1)$, which is trivial if $p \not\prec (u+2)$ by (2.7.1).

For the case u = kp - 2, we further consider the elements

$$X_1 = v_2^{kp-2p}(t_1^{p^2}\eta v_3 - 2^{-1}v_2t_1^{2p^2} - v_1t_1^{p^2}t_2^p) \text{ and }$$

$$X_2 = v_2^{kp-2p}((t_1^{p^2+p} - t_2^p)\eta v_2^{p-1} - 2^{-1}v_1v_2^{p-3}v_3t_1^{2p} + \zeta^p\eta v_2^{2p-1} + v_1v_2^{-p^2+p-3}Ut_1^p)$$

and recall [6; Lemma 2.6] that the element V satisfies

$$V \equiv -v_2^{p-1}t_1^p + 2^{-1}v_1v_2^{p-2}t_1^{2p} \operatorname{mod}(p, v_1^2) \text{ and}$$
$$d_1v_2^{sp} V/pv_1^{p+2} = T_s^p/pv_1^3 + sv_2^{sp-p}t_1^{p^2} \otimes V/pv_1^2$$

Then we obtain

350

On the products $\beta_s \beta_t$

$$\begin{aligned} d_1 X_1 / p v_1^4 &= v_2^{k^p - p} t_1^{p^2} \otimes t_1 / p v_1^4 + 2^{-1} K_{k-2}^p / p v_1^3 - v_2^{k_p - 2p} t_1^{p^2} \otimes V / p v_1^2 \text{ and} \\ d_1 X_2 / p v_1^2 &= v_2^{k^p - 2p} t_1^{p^2} \otimes V / p v_1^2 + 2^{-1} K_{kp-3} / p v_1 \end{aligned}$$

in the same way as we compute above. Therefore,

$$d_1 Y/p v_1^{p+4} = -2^{-1} \binom{k+1}{2} K_{kp-3}/p v_1$$

for $Y = v_2^{kp} t_1 - k v_1^p X_1 - 2^{-1} k v_1 C_{k-1}^p + 2^{-1} k v_1^2 v_2^{kp-p} V - {\binom{k+1}{2}} v_1^{p+2} X_2$, which implies $K_{u-1}/pv_1 = 0$ in $H^2 N_0^2$ if $p \neq k(k+1)$. Thus the lemma is also valid for this case. q.e.d.

THEOREM 2.9. In the E_2 -term H^4A , we have

$$\beta_s \beta_t = 0$$
 if $p | st$, if $p \not\downarrow (s+t)(s+t+1)$ and $s+t \ge p^2 + p + 2$,
or if $s+t+1 = kp$, $p \not\downarrow k(k+1)$ and $s+t \ge p^2 + p + 2$.

PROOF. Lemma 2.6 implies the triviality for the case p|st, and the equalities $u\beta_s\beta_t = st\beta_1\beta_u$ and $2(u-1)\beta_s\beta_t = st\beta_2\beta_{u-1}$ for u = s + t - 1. Let $u \ge p^2 + p + 1$ and suppose that $p \not\prec u(u+1)(u+2)$, or that u+2 = kp and $p \not\prec k(k+1)$. Then $B_1\beta_u = 0$ in $H^2N_0^2$ by Lemmas 2.7-8, and so $\beta_s\beta_t = stu^{-1}\beta_1\beta_u = 0$. In case p|u, the triviality similarly follows from the equality $B_2\beta_{u-1} = 0$ shown by Lemmas 2.7-8. q.e.d.

§3. Non-triviality for the case p | s + t

In \S 3–4, we study the element

 $\beta_s \beta_t$ in $H^4 A$ for $s, t \ge 1$ with p|(u+1)(u+2), where u = s + t - 1.

In this section we assume that p|u + 1 and prove the non-triviality of $\beta_s \beta_t$ by showing that $\delta \lambda B_1 \beta_u \neq 0$ in $H^3 M_1^1$. Here $\lambda: H^2 N_0^2 \to H^2 M_0^2$ is the localization map in §2, and $\delta: H^2 M_0^2 \to H^3 M_1^1$ is the boundary homomorphism associated to the short exact sequence

(3.1)
$$0 \longrightarrow M_1^1 \xrightarrow{f} M_0^2 \xrightarrow{p} M_0^2 \rightarrow 0 \qquad (fx = x/p).$$

LEMMA 3.2. $\lambda B_1 \beta_u = -v_2^u t_1^p \otimes \zeta/pv_1$ in $H^2 M_0^2$.

PROOF. Note that (2.8.1) is also valid in $\Omega^2 M_0^2$ for the case $u < p^2 + p + 1$. Then we obtain

(3.2.1)
$$d_1 Z/pv_1^2 = (-v_2^u t_1^p \otimes \zeta - K_{u-1} + T_u)/pv_1,$$

for $Z = v_1 D + v_2^{u^- p^2} E + u v_1 v_2^{u^- p^2 - 1} t_1^p \eta v_4 + v_1 v_2^u \zeta t_1^p$. Now apply Lemma 2. 7 to get the lemma. q.e.d.

Since $H^k M_0^0 = 0 = H^k M_0^1$ for $k \ge 2$ by [1; Th. 3.16, Th. 4.2], the exact sequences (2.4) for (k, n, i) = (3, 0, 0), (2, 0, 1) imply the following

LEMMA 3.3. The Greek letter map $G: H^2N_0^2 \rightarrow H^4A$ is an isomorphism.

PROPOSITION 3.4. In the E_2 -term H^4A , we have the non-triviality

 $\beta_s \beta_t \neq 0$ if $p \not\mid st$, $p \mid s + t$ and $p^2 \not\mid s + t + p$.

PROOF. Note first that $\zeta/v_1 = \zeta^{p^i}/v_1$ $(i \ge 0)$ in $H^1M_1^1$ (cf. [1; Lemma 3. 19]) and the following:

(3.4.1)[5; Lemma 2.6] There exists an element ζ' of $v_2^{-1}\Gamma/(p^2, v_1^p)$ such that

$$d_1\zeta'/p^2v_1^p = 0$$
 and $\zeta'/pv_1 = \zeta^{p^2}/pv_1$ in $\Omega^*M_0^2$.

We also have the relations $v_2^u t_1^p \otimes \zeta \otimes \zeta/v_1 = 0$ and $T_u/v_1 = -v_2^{u+1}g_1/v_1$ in $H^*M_1^1$. In fact, these are given by $2^{-1}d_2v_2^u t_1^p \otimes \zeta^2/v_1$ and $(d_1v_2^{u-p^2} E + uv_1v_2^{u-p^2-1}t_1^p\eta v_4)/v_1^2$. Then by the definition of δ , (2.7.3), (3.2.1) and Lemma 3.2,

$$\delta \lambda B_1 \beta_u = f^{-1} (d_2 (-H + p v_1^{p-2} Z) \otimes \zeta' / p^2 v_1^p)$$

= $v_2^{u+1} g_1 \otimes \zeta / v_1,$

which equals the generator $x_1^a G_1 \otimes \zeta^{(2)}/v_1$ (ap = u + 1) of $H^3 M_1^1$ if $p \not| a + 1$ by [4;Th.4.4]. Thus we see that $B_1 \beta_u \neq 0$ and so is $\beta_1 \beta_u$ by Lemma 3.3. Hence we have the proposition by Lemma 2.6. q.e.d.

§4. Non-triviality for the case p|s + t + 1

The integer u also denotes $s + t - 1 \ge 1$ here, and is supposed to be p|u+2. Consider the long exact sequence

(4.1)
$$0 \longrightarrow H^0 M_1^1 \xrightarrow{f_0} H^0 M_0^2 \xrightarrow{p} H^0 M_0^2 \xrightarrow{\delta'_0} H^1 M_1^1$$
$$\xrightarrow{f_1} H^1 M_0^2 \xrightarrow{p} H^1 M_0^2 \xrightarrow{\delta'_1} H^2 M_1^1 \xrightarrow{f_2} H^2 M_0^2$$

assiciated to the short exact sequence (3.1). Note that this exact sequence is homogeneous. We first determine $X = H^1 M_0^2$ at the degree

$$kq = \{(ap-1)(p+1) - 2\}q \quad (q = 2p - 2)$$

for u = ap - 2 by the following

LEMMA 4.2. Let B be a direct sum of submodules $L \langle g \rangle$ ($g \in Y(j) \subset X = H^1M_0^2$), where Y(j) is a homogeneous subset of X with the degree j and $L \langle g \rangle$ denotes the Z-module generated by g which is isomorphic to Z/n if the order of g

352

is n. Then B = X at the degree j if B contains $\text{Im } f_1$ and the set $\{\delta'_1 g | g \in Y(j)\}$ is linearly independent.

This is proved in a same manner to [6; Lemma 3.9] by using [1; Remark 3.11]. We also need

LEMMA 4.3. The $\mathbb{Z}/p[v_1]$ -module $H^n M_1^1$ at the degree kq is 0)[1; Th. 5.3] the direct sum of $L' \langle x_i^s / v_1^i \rangle$ for $(i, s, j) \in A(k)$, if n = 0, 1)[6; Th. 3.10] the direct sum of $L' \langle x_i^s \zeta / v_1^i \rangle$ for $(i, s, j) \in A(k)$, and $L' \langle y_m / v_1^i \rangle$ for $m = sp^i$ with $(i, s, j) \in A_0(k)$, if n = 1, and 2)[4; Th. 4.4] the direct sum of $L' \langle x_i^s G_i / v_1^i \rangle$ for $(i, s, j) \in A(k - |G_i|)$ with $p \not\prec s + 1$, and $L' \langle y_m \otimes \zeta / v_1^i \rangle$ for $m = sp^i$ with $(i, s, j) \in A_0(k)$ $(|G_i| = -(p + 1)e(i - 1) - 1)$, if n = 2.

Here $L' \langle x/v_1^j \rangle$ denotes the submodule generated by the element x/v_1^j which is isomorphic to $\mathbb{Z}/p[v_1]/(v_1^j)$, $\Lambda(l)$ and $\Lambda_0(l)$ are the sets of triples of integers

$$\begin{split} &A(l) = \{(i, s, j) | i \ge 0, \ j \le a_i \ and \ sp^i(p+1) - j = l \ for \ s \ with \ p \not < s\}, \ and \\ &A_0(l) = \{(i, s, j) | i \ge 0, \ j \le A(sp^i) \ and \ sp^i(p+1) + 1 - j = l \\ & for \ s \ with \ p \not < s(s+1) \ or \ p^2 | s + 1\}, \end{split}$$

for the integers a_i and A(m) defined by

 $a_{0} = 1, a_{i} = p^{i} + p^{i-1} - 1; and A(sp^{i}) = 2 + \varepsilon(s)p^{i}(p^{2} - 1) + (p + 1)e(i)$ $(p \neq s, and \varepsilon(s) = 1 \quad if \ p^{2}|s + 1, and = 0 \quad otherwise), and the generators \ satisfy$ $(4.3.1) \qquad y_{m}/v_{1}^{3} = v_{2}^{m}(t_{1} - 2^{-1}v_{1}\zeta^{p})/v_{1}^{3} \quad if \ p|m, and$ $(4.3.2) \qquad x_{i}^{s}G_{i}/v_{1} = v_{2}^{m}T/v_{1} = T_{m}/v_{1} \quad (m = sp^{i} - e(i - 1) - 1) \quad if \ i \ge 2.$

Here we note that $i \ge 2$ if $(i, s, j) \in \Lambda(k) \bigcup \Lambda_0(k)$ except for the case i = 1 and p|s+1 and so we see that $p \nmid j$ if $(i, s, j) \in \Lambda(k) \bigcup \Lambda_0(k)$ since $k \equiv -3 \mod p$.

PROPOSITION 4.4. The Z-module $H^1M_0^2$ at degree kq is the direct sum of $L \langle g \rangle$ for $g \in Y(kq)$, where

$$Y(kq) = \{ ym/pv_1^j | m = sp^i \text{ and } (i, s, j) \in \Lambda_0(k) \}.$$

PROOF. Let B denote the direct sum of $L\langle g \rangle$ for $g \in Y(kq)$. If $\Lambda(k) = \phi$, then $B \supset \text{Im } f_1$ by Lemma 4.3. For the element $x = x_i^s / v_1^j \in H^0 M_1^1$ with $(i, s, j) \in \Lambda(k)$, we obtain

$$\delta'_0(f_0 x) = -jy_m / v_1^{j+1} - 2^{-1} j x \zeta + \cdots$$

by [1; prop. 6.9] and (4.3.1), where f_0 is the map in (4.1) and \cdots denotes an element killed by v_1^{j-1} . Therefore $x\zeta$ is dependent on the elements of Y(kq) in Im f_1 and so we have $B \supset \text{Im } f_1$.

By the definition of δ'_1 , we have

Katsumi SHIMOMURA

(4.4.1)
$$\delta'_1(y) = -jt_1 \otimes y/v_1 + f_1^{-1}(d_1y_m)/p^2v_1^j$$

for $y = y_m/pv_1^j \in Y(kq)$ and $y_m^{\sim}/p^2v_1^j \in \Omega^1 M_0^2$ with $y = y_m^{\sim}/pv_1^j$, whose last term is killed by v_1^{j-1} since $y_m^{\sim}/p^2v_1^j = v_2^m(t_1 - 2^{-1}v_1\zeta')/p^2v_1^j + \cdots$ and $(d_1y_m^{\sim})/p^2v_1^j$ $= mv_1v_2^{m-1}t_1^p \otimes (t_1 - 2^{-1}v_1\zeta')/p^2v_1^j + \cdots$ by (3.4.1) and (4.3.1). The element $v_2^m t_1 \otimes t_1/v_1^{j+1}$ turns out to be a part of \cdots by considering $d_1v_2^m t_1^2/v_1^{j+1}$. Then the first term of (4.4.1) turns into

$$-jt_1 \otimes y/v_1 = 2^{-1}jy \otimes \zeta + \cdots$$

by (4.3.1). Therefore we see that the set $\{\delta'_1(y)|y \in Y(kq)\}$ is linearly independent by Lemma 4.3, since $p \not\downarrow j$. Hence the proposition follows from Lemma 4.2. q.e.d.

By observing the proof of this proposition, we also have

PROPOSITION 4.5. Im δ'_1 at the degree k is the submodule of $H^2M_1^1$ generated by $2t_1 \otimes y/v_1 = -y \otimes \zeta + \cdots$ for $y \in Y(kq)$.

COROLLARY 4.6. In the E_2 -term H^4A , we have the non-triviality

 $\beta_s \beta_t \neq 0$ if $p \not\mid st$, $p \mid s + t + 1$ and $s + t \in I$.

PROOF. By virtue of the exact sequence (4.1), we see that $T_u/pv_1 \neq 0$ for $u + 1 \in I$ by (4.3.2), Lemma 4.3 and Proposition 4.5. Now the corollary follows from Lemmas 2.6–7 and 3.3. q.e.d.

References

- H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
- [2] S. Oka and K. Shimomura, On products of the β -elements in the stable homotopy of spheres, Hiroshima Math. J. 12 (1982), 611–626.
- [3] D. C. Ravenel, Complex cobordism and stable homotopy group of spheres, Academic press, 1986.
- [4] K. Shimomura, On the Adams-Novilov spectral sequence and products of β-elements, Hiroshima Math. J. 16 (1986), 209-224.
- [5] K. Shimomura, Non-triviality of some products of β -elements in the stable homotopy of spheres, Hiroshima Math. J. 17 (1987), 349-353.
- [6] K. Shimomura and H. Tamura, Non-triviality of some compositions of β -elements in the stable homotopy of the Moore spaces, Hiroshima Math. J. 16 (1986), 121–133.
- [7] H. Toda, Algebra of stable homotopy of Z_p -spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197–251.

Department of Mathematics, Faculty of Education, Tottori University

354