On the products $\beta_{s} \beta_{t}$ in the stable homotopy groups of spheres

Dedicated to Professor Shôrô Araki on his sixtieth birthday

Katsumi Shimomura

(Received August 15, 1988)

§1. Introduction

For a prime $p \geqq 5$, H. Toda [7] introduced the β-family $\left\{\beta_{s} \mid s \geqq 1\right\}$ and showed the relation $u v \beta_{s} \beta_{t}=s t \beta_{u} \beta_{v}(s+t=u+v)$ in the p-component of the stable homotopy groups $\pi_{*}(S)$ of spheres. An easy consequence of this relation is $\beta_{s} \beta_{t}=0$ if $p \mid s t$, since the order of β_{s} is p. In this paper we find the following

Theorem 1.1. Let s and t be positive integers with $p \nmid s t$. Then,

$$
\beta_{s} \beta_{t} \neq 0 \text { in } \pi_{*}(S) \quad \text { if } s+t \in I,
$$

where $I=\left\{k p^{i}-\left(p^{i-1}-1\right) /(p-1) \mid i \geqq 1, p \nmid k+1\right\}$.
Consider the Adams-Novikov spectral sequence converging to $\pi_{*}(S)$, in which Miller, Revenel, and Wilson [1] defined the β-elements $\beta_{s}(s \geqq 1)$ surviving to β_{s} in $\pi_{*}(S)$. This sequence has sparsity in its E_{2}-term enough not to kill the product $\beta_{s} \beta_{t}$. Therefore the above theorem follows from the nontriviality in the following

Theorem 1.2. Let s and t be positive integers with $p \nmid s t$. Then, in the $E_{2}-$ term of the Adams-Novikov spectral sequence,

$$
\beta_{s} \beta_{t} \neq 0 \text { if } s+t \in I \text {. }
$$

Furthermore suppose that $s+t \geqq p^{2}+p+2$. Then we have

$$
\beta_{s} \beta_{t}=0 \text { if } p \nmid(s+t)(s+t+1) \text {, or if } s+t+1=k p \text { and } p \nmid k(k+1) .
$$

Notice that $p \mid n(n+1)$ if $n \in I$. We also note that the relation " $\beta_{s} \beta_{t}=0$ if $p \mid s t "$ is also valid in the E_{2}-term ([2], [6; Cor. 2.8]), and that $\beta_{s} \beta_{t}=0$ if and only if $p \mid s t$ in both $\pi_{*}(S)$ and the E_{2}-term for the case when $p=5$ and $s+t$ $\leqq p^{2}-p+1$ ([3; Chap. 7]).

This theorem does not determine whether or not $\beta_{s} \beta_{t}(p \nmid s t)$ is trivial in the E_{2}-term for the following cases:
a) $\quad p^{2} \mid s+t+p, \quad$ b) $s+t=k p^{3}-p^{2}-1$, and c) $s+t=k p^{2}-p-1 \notin I$.

In $\S 2$, we recall the Brown-Peterson spectrum $B P$ at p and the E_{2}-term
$H^{*} B P_{*}$ of the above spectral sequence; and give the elements $B_{s} \beta_{t}$ in $H^{2} N_{o}^{2}$ mapped to $\beta_{s} \beta_{t}$ in $H^{4} B P_{*}$ by the Greek letter map $G: H^{2} N_{o}^{2} \rightarrow H^{4} B P_{*}$. Then the triviality in Theorem 1.2 is proved in Theorem 2.9 by noticing $u v \beta_{s} \beta_{t}$ $=s t \beta_{u} \beta_{v}(s+t=u+v)$ in $H^{4} B P_{*}$ and by showing $B_{u} \beta_{v}=0$ for $u=1$, 2. Furthermore G is an isomorphism (see Lemma 3.3); and the non-triviality in Theorem 1.2 is proved for the case $p \mid s+t$ in $\S 3$ by mapping $B_{1} \beta_{v}$ to $H^{3} M_{1}^{1}$ whose structure is given in [4], and for the case $p \mid s+t+1$ in $\S 4$ after determining the structure of $H^{1} M_{0}^{2}$ at the corresponding degree.

§2. Triviality in the \boldsymbol{E}_{2}-term

Throughout the paper p denotes a prime $\geqq 5$. Let $B P$ be the BrownPeterson spectrum at the prime p. Then the coefficient ring $B P_{*}$ and the $B P_{*}{ }^{-}$ homology $B P_{*} B P$ are the polynomial rings

$$
A=B P_{*}=Z_{(p)}\left[v_{1}, v_{2}, \cdots\right] \text { and } \Gamma=B P_{*} B P=B P_{*}\left[t_{1}, t_{2}, \cdots\right]
$$

where $\left|v_{i}\right|=e(i)=\left|t_{i}\right|$. Here we use the notation

$$
\begin{equation*}
|x|=(\operatorname{deg} x) /(2 p-2) \text { and } e(i)=\left(p^{i}-1\right) /(p-1) \tag{2.1}
\end{equation*}
$$

The pair $(A, \Gamma)=\left(B P_{*}, B P_{*} B P\right)$ is the Hopf algebroid (cf. [3]), and we use here the following formulae for the right unit $\eta: A \rightarrow \Gamma$ and the coproduct $\Delta: \Gamma$ $\rightarrow \Gamma \otimes_{A} \Gamma$.

$$
\begin{align*}
\eta v_{1} & =v_{1}+p t_{1}, \quad \eta v_{2} \equiv v_{2}+v_{1} t_{1}^{p}-v_{1}^{p} t_{1} \bmod (p) \tag{2.2}\\
\eta v_{3} & \equiv v_{3}+v_{2} t_{1}^{p^{2}}-v_{2}^{p} t_{1}+v_{1} t_{2}^{p}+v_{1}^{2} V \bmod \left(p, v_{1}^{p}\right) \text { and } \\
\eta v_{4} & \equiv v_{4}+v_{3} t_{1}^{p^{3}}+v_{2} t_{2}^{p^{2}}-t_{1} \eta v_{3}^{p}-t_{2} v_{2}^{p^{2}} \bmod \left(p, v_{1}\right) ; \text { and } \\
\Delta t_{1} & =t_{1} \otimes 1+1 \otimes t_{1} \text { and } \Delta t_{2}=t_{2} \otimes 1+t_{1} \otimes t_{1}^{p}+1 \otimes t_{2}+v_{1} T .
\end{align*}
$$

Here $p v_{1} V=v_{1}^{p} t_{1}^{p^{2}}-v_{1}^{p^{2}} t_{1}^{p}+v_{2}^{p}-\eta v_{2}^{p}$ and $p T=t_{1}^{p} \otimes 1+1 \otimes t_{1}^{p}-\Delta t_{1}^{p}$. For a Γ-comodule M with coaction ψ, we define the homology $H^{*} M$ as the homology of the codar complex

$$
\Omega^{k} M=M \otimes_{A} \Gamma \otimes_{A} \cdots \otimes_{A} \Gamma \quad(k \text { copies of } \Gamma)
$$

with the differential $d_{k}: \Omega^{k} M \rightarrow \Omega^{k+1} M$ given inductively by

$$
\begin{align*}
& d_{0} m=\psi m-m, d_{1} x=x \otimes 1-\Delta x+1 \otimes x, \tag{2.3}\\
& d_{1} m \otimes x=d_{0} m \otimes x+m \otimes d_{1} x \text { and } \\
& d_{k+1} m \otimes x \otimes y=d_{1} m \otimes x \otimes y-m \otimes x \otimes d_{k} y
\end{align*}
$$

for $m \in M, x \in \Gamma$ and $y \in \Omega^{k} M(k \geqq 1)$.
Consider the Γ-comodules N_{n}^{i} and M_{n}^{i} with the coaction η induced from the right unit η of Γ defined inductively by the equalities

$$
\begin{gathered}
N_{n}^{0}=A /\left(p, v_{1}, \cdots, v_{n-1}\right)\left(N_{0}^{0}=A\right), M_{n}^{i}=v_{n+i}^{-1} N_{n}^{i} \text { and the exact sequence } \\
0 \longrightarrow N_{n}^{i} \xrightarrow[C]{\lambda} M_{n}^{i} \longrightarrow N_{n}^{i+1} \longrightarrow 0
\end{gathered}
$$

Then we have the long exact sequence

$$
\begin{equation*}
\cdots \longrightarrow H^{k} N_{n}^{i} \xrightarrow{\lambda} H^{k} M_{n}^{i} \longrightarrow H^{k} N_{n}^{i+1} \xrightarrow{\delta_{k}} H^{k+1} N_{n}^{i} \longrightarrow \cdots \tag{2.4}
\end{equation*}
$$

for each i, k and n, and the Greek letter map

$$
G=\delta_{k+i-1} \cdots \delta_{k+1} \delta_{k}: H^{k} N_{0}^{i} \longrightarrow H^{k+i} N_{0}^{0}=H^{k+i} A
$$

whose range is the E_{2}-term of the Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres. As usual, we write an element of M_{n}^{i} as a summation of fractions x / v for $x \in v_{n+i}^{-1} N_{n}^{0}$ and $v=a_{n} a_{n+1} \cdots a_{n+i-1}$ $\left(a_{j}=v_{j}^{e_{j}}\right.$ for $n \leqq j<n+i$ and $e_{j}>0$) with a convention that $x / v=0$ if $a_{j} \mid x$ for some j. Hereafter, $v_{0}=p$. With a calculation by (2. 2-3), we find the element

$$
B_{s}=v_{2}^{s} / p v_{1} \text { in } H^{0} N_{0}^{2}
$$

and define

$$
\beta_{s}=G B_{s} \in H^{2} A
$$

which is the β-elements given in [1].
From here on we study the product $\beta_{s} \beta_{t}$ in the E_{2}-term $H^{4} A$.
Lemma 2.5 [2; Lemma 4.4]. The element β_{s} is represented by

$$
\beta_{s} \equiv\binom{s}{2} K_{s-2}+s T_{s-1} \bmod \left(p, v_{1}\right) \text { in } \Omega^{2} A
$$

where $K_{i}=v_{2}^{i}\left(2 t_{2} \otimes t_{1}^{p}+t_{1} \otimes t_{1}^{2 p}\right)$ and $T_{i}=v_{2}^{i} T$.
Lemma 2.6 [2; Remark after Prop. 6. 1]. In $H^{4} A$, we have

$$
u v \beta_{s} \beta_{t}=s t \beta_{u} \beta_{v} \text { if } s+t=u+v
$$

We notice that $H^{*} M$ is an $H^{*} A$-module for a comodule M, and that each map of (2.4) is an $H^{*} A$-module map. Thus we have

$$
\beta_{s} \beta_{t}=G B_{s} \beta_{t} \in H^{4} A \text { for } B_{s} \beta_{t} \in H^{2} N_{0}^{2}
$$

Lemma 2.7. Let u be a positive integer. Then in $H^{2} N_{0}^{2}$,

$$
\begin{align*}
& u K_{u-1} / p v_{1}=-2 T_{u} / p v_{1}, \text { and } \tag{2.7.1}\\
& B_{1} \beta_{u}=T_{u} / p v_{1} \text { if } p \nmid u \text { and } B_{2} \beta_{u-1}=K_{u-1} / p v_{1} \text { if } p \mid u . \tag{2.7.2}
\end{align*}
$$

Proof. By (2.2-3), we compute

$$
\begin{equation*}
d_{1} H / p^{2} v_{1}^{p}=\left(u K_{u-1}+2 T_{u}\right) / p v_{1} \tag{2.7.3}
\end{equation*}
$$

where

$$
H=v_{1}^{p-1} v_{2}^{u} t_{1}^{p}-p v_{1}^{p-2} v_{2}^{u} t_{2}-p u v_{1}^{p-1} v_{2}^{u-1} t_{1}^{p} t_{2} .
$$

Thus we have (2.7.1). (2.7.2) follows from (2.7.1) since $B_{1} \beta_{u}=\binom{u}{2} K_{u-1}$ $\left.+u T_{u}\right) / p v_{1}$ and $B_{2} \beta_{u p-1}=\left(K_{u p-1}-T_{u p}\right) / p v_{1}$ by Lemma 2.5. q.e.d.

Lemma 2.8. Let u be an integer such that $u \geqq p^{2}+p+1$. Then,

$$
T_{u} / p v_{1}=K_{u-1} / p v_{1}=0 \text { in } H^{2} N_{0}^{2}
$$

if $p \nmid(u+1)(u+2)$, or if $u+2=k p$ and $p \nmid k(k+1)$.
Proof. Put $D=v_{2}^{u-1} t_{1}^{p} t_{2}+v_{2}^{u-p^{2}-p-1}\left(v_{2} t_{2}^{p} \eta v_{3}^{p}+v_{2}^{p} t_{1}^{p} \eta v_{4}-t_{1}^{p} \eta v_{3}^{p+1}\right), E=v_{3} t_{1}^{p^{3}}$ $+v_{2} t_{2}^{p^{2}}-t_{1} \eta v_{3}^{p}-v_{2}^{p^{2}} t_{2}$ and $F=v_{1} v_{2}^{u} \zeta^{p} t_{1}^{p}+(u+1)^{-1} v_{2}^{u+1} \zeta^{p}$ for the element ζ $=v_{2}^{-1} t_{2}-v_{2}^{-1} t_{1}^{p+1}+v_{2}^{-p} t_{2}^{p}-v_{2}^{-p-1} t_{1}^{p} \eta v_{3}$. Then $D / p v_{1}, E / p v_{1}^{2}$ and $F / p v_{1}^{2}$ belong to $\Omega^{1} N_{0}^{2}$ by the assumption on u. By (2.3), we have ($d_{1} x \eta v$) $=d_{1} x(1 \otimes \eta v)-x \otimes d_{0} v \quad$ for $\quad x \in \Omega^{1} M \quad$ and $\quad v \in \Omega^{0} M \quad$ (M is a Γ comodule). Using this and the equalities in (2.2-3), we compute

$$
\begin{gather*}
d_{1} D / p v_{1}=\left(v_{2}^{u} \zeta \otimes t_{1}^{p}-K_{u-1}-v_{2}^{u-p^{2}} g^{p}\right) / p v_{1}, d_{1} E / p v_{1}^{2}=\left(g^{p}+v_{2}^{p^{2}} T\right) / p v_{1} \tag{2.8.1}\\
d_{1} \zeta^{p} / p v_{1}^{2}=0 \text { and } d_{1} F / p v_{1}^{2}=-v_{2}^{u} \zeta^{p} \otimes t_{1}^{p} / p v_{1}
\end{gather*}
$$

where $g=t_{1} \otimes t_{2}^{p}+t_{2} \otimes t_{1}^{p^{2}}$. We also have the element $U=v_{3}^{p+1}-v_{2}^{p} v_{4} \in A$ such that $d_{1} U / p v_{1}=v_{2}^{p^{2}+p+1}\left(\zeta-\zeta^{p}\right) / p v_{1}$ (cf. [1; (3.20)]). Now consider the element

$$
C_{u}=\left(v_{1} D+v_{2}^{u-p^{2}} E+F-v_{1} v_{2}^{u-p^{2}-p-1} U t_{1}^{p}+u v_{1} v_{2}^{u-p^{2}-1} t_{1}^{p} \eta v_{4}\right)
$$

of $\Omega^{2} N_{0}^{2}$, and we have

$$
\begin{equation*}
d_{1} C_{u} / p v_{1}^{2}=T_{u} / p v_{1}-K_{u-1} / p v_{1} \in \Omega^{2} N_{0}^{2} \tag{2.8.2}
\end{equation*}
$$

Thus $T_{u} / p v_{1}=K_{u-1} / p v_{1}$ in $H^{2} N_{0}^{2}$ if $p \nmid(u+1)$, which is trivial if $p \nmid(u+2)$ by (2.7.1).

For the case $u=k p-2$, we further consider the elements

$$
\begin{gathered}
X_{1}=v_{2}^{k p-2 p}\left(t_{1}^{p^{2}} \eta v_{3}-2^{-1} v_{2} t_{1}^{2 p^{2}}-v_{1} t_{1}^{p^{2}} t_{2}^{p}\right) \text { and } \\
X_{2}=v_{2}^{k p-2 p}\left(\left(t_{1}^{p^{2}+p}-t_{2}^{p}\right) \eta v_{2}^{p-1}-2^{-1} v_{1} v_{2}^{p-3} v_{3} t_{1}^{2 p}+\zeta^{p} \eta v_{2}^{2 p-1}+v_{1} v_{2}^{-p^{2}+p-3} U t_{1}^{p}\right)
\end{gathered}
$$

and recall [6; Lemma 2.6] that the element V satisfies

$$
\begin{aligned}
& V \equiv-v_{2}^{p-1} t_{1}^{p}+2^{-1} v_{1} v_{2}^{p-2} t_{1}^{2 p} \bmod \left(p, v_{1}^{2}\right) \text { and } \\
& \\
& \quad d_{1} v_{2}^{s p} V / p v_{1}^{p+2}=T_{s}^{p} / p v_{1}^{3}+s v_{2}^{s p-p} t_{1}^{p^{2}} \otimes V / p v_{1}^{2} .
\end{aligned}
$$

Then we obtain

$$
\begin{aligned}
d_{1} X_{1} / p v_{1}^{4}= & v_{2}^{k p-p} t_{1}^{p^{2}} \otimes t_{1} / p v_{1}^{4}+2^{-1} K_{k-2}^{p} / p v_{1}^{3}-v_{2}^{k p-2 p} t_{1}^{p^{2}} \otimes V / p v_{1}^{2} \text { and } \\
& d_{1} X_{2} / p v_{1}^{2}=v_{2}^{k p-2 p} t_{1}^{p^{2}} \otimes V / p v_{1}^{2}+2^{-1} K_{k p-3} / p v_{1}
\end{aligned}
$$

in the same way as we compute above. Therefore,

$$
d_{1} Y / p v_{1}^{p+4}=-2^{-1}\binom{k+1}{2} K_{k p-3} / p v_{1}
$$

for $Y=v_{2}^{k p} t_{1}-k v_{1}^{p} X_{1}-2^{-1} k v_{1} C_{k-1}^{p}+2^{-1} k v_{1}^{2} v_{2}^{k p-p} V-\binom{k+1}{2} v_{1}^{p+2} X_{2}$, which implies $K_{u-1} / p v_{1}=0$ in $H^{2} N_{0}^{2}$ if $\mathrm{p} \nmid k(k+1)$. Thus the lemma is also valid for this case.
q.e.d.

Theorem 2.9. In the E_{2}-term $H^{4} A$, we have

$$
\begin{aligned}
& \beta_{s} \beta_{t}=0 \text { if } p \mid s t \text {, if } p \nmid(s+t)(s+t+1) \text { and } s+t \geqq p^{2}+p+2 \text {, } \\
& \text { or if } s+t+1=k p, p \nmid k(k+1) \text { and } s+t \geqq p^{2}+p+2
\end{aligned}
$$

Proof. Lemma 2.6 implies the triviality for the case $p \mid s t$, and the equalities $u \beta_{s} \beta_{t}=s t \beta_{1} \beta_{u}$ and $2(u-1) \beta_{s} \beta_{t}=s t \beta_{2} \beta_{u-1}$ for $u=s+t-1$. Let $u \geqq p^{2}+p+1$ and suppose that $p \nmid u(u+1)(u+2)$, or that $u+2=k p$ and $p \nmid k(k+1)$. Then $B_{1} \beta_{u}=0$ in $H^{2} N_{0}^{2}$ by Lemmas $2.7-8$, and so $\beta_{s} \beta_{t}$ $=s t u^{-1} \beta_{1} \beta_{u}=0$. In case $p \mid u$, the triviality similarly follows from the equality $B_{2} \beta_{u-1}=0$ shown by Lemmas 2.7-8.
q.e.d.

§3. Non-triviality for the case $\boldsymbol{p} \mid \boldsymbol{s}+\boldsymbol{t}$

In $\S \S 3-4$, we study the element
$\beta_{s} \beta_{t}$ in $H^{4} A$ for $s, t \geqq 1$ with $p \mid(u+1)(u+2)$, where $u=s+t-1$.
In this section we assume that $p \mid u+1$ and prove the non-triviality of $\beta_{s} \beta_{t}$ by showing that $\delta \lambda B_{1} \beta_{u} \neq 0$ in $H^{3} M_{1}^{1}$. Here $\lambda: H^{2} N_{0}^{2} \rightarrow H^{2} M_{0}^{2}$ is the localization map in $\S 2$, and $\delta: H^{2} M_{0}^{2} \rightarrow H^{3} M_{1}^{1}$ is the boundary homomorphism associated to the short exact sequence

$$
\begin{equation*}
0 \longrightarrow M_{1}^{1} \xrightarrow{f} M_{0}^{2} \xrightarrow{p} M_{0}^{2} \rightarrow 0 \quad(f x=x / p) . \tag{3.1}
\end{equation*}
$$

Lemma 3.2. $\quad \lambda B_{1} \beta_{u}=-v_{2}^{u} t_{1}^{p} \otimes \zeta / p v_{1}$ in $H^{2} M_{0}^{2}$.
Proof. Note that (2.8.1) is also valid in $\Omega^{2} M_{0}^{2}$ for the case $u<p^{2}+$ $p+1$. Then we obtain

$$
\begin{equation*}
d_{1} Z / p v_{1}^{2}=\left(-v_{2}^{u} t_{1}^{p} \otimes \zeta-K_{u-1}+T_{u}\right) / p v_{1} \tag{3.2.1}
\end{equation*}
$$

for $Z=v_{1} D+v_{2}^{u-p^{2}} E+u v_{1} v_{2}^{u-p^{2}-1} t_{1}^{p} \eta v_{4}+v_{1} v_{2}^{u} \zeta t_{1}^{p}$. Now apply Lemma 2. 7 to get the lemma.
q.e.d.

Since $H^{k} M_{0}^{0}=0=H^{k} M_{0}^{1}$ for $k \geqq 2$ by [1; Th. 3.16, Th. 4.2], the exact sequences (2.4) for $(k, n, i)=(3,0,0),(2,0,1)$ imply the following

Lemma 3.3. The Greek letter map $G: H^{2} N_{0}^{2} \rightarrow H^{4} A$ is an isomorphism.
Proposition 3.4. In the E_{2}-term $H^{4} A$, we have the non-triviality

$$
\beta_{s} \beta_{t} \neq 0 \text { if } p \nmid s t, p \mid s+t \text { and } p^{2} \nmid s+t+p .
$$

Proof. Note first that $\zeta / v_{1}=\zeta^{p^{i}} / v_{1}(i \geqq 0)$ in $H^{1} M_{1}^{1}$ (cf. [1; Lemma 3. 19]) and the following:
(3.4.1)[5; Lemma 2.6] There exists an element ζ^{\prime} of $v_{2}^{-1} \Gamma /\left(p^{2}, v_{1}^{p}\right)$ such that

$$
d_{1} \zeta^{\prime} / p^{2} v_{1}^{p}=0 \text { and } \zeta^{\prime} / p v_{1}=\zeta^{p^{2}} / p v_{1} \text { in } \Omega^{*} M_{0}^{2} .
$$

We also have the relations $v_{2}^{u} t_{1}^{p} \otimes \zeta \otimes \zeta / v_{1}=0$ and $T_{u} / v_{1}=-v_{2}^{u+1} g_{1} / v_{1}$ in $H^{*} M_{1}^{1}$. In fact, these are given by $2^{-1} d_{2} v_{2}^{u} t_{1}^{p} \otimes \zeta^{2} / v_{1}$ and $\left(d_{1} v_{2}^{u-p^{2}} E\right.$ $\left.+u v_{1} v_{2}^{u-p^{2}-1} t_{1}^{p} \eta v_{4}\right) / v_{1}^{2}$. Then by the definition of δ, (2.7.3), (3.2.1) and Lemma 3.2,

$$
\begin{aligned}
\delta \lambda B_{1} \beta_{u} & =f^{-1}\left(d_{2}\left(-H+p v_{1}^{p-2} Z\right) \otimes \zeta^{\prime} / p^{2} v_{1}^{p}\right) \\
& =v_{2}^{u+1} g_{1} \otimes \zeta / v_{1},
\end{aligned}
$$

which equals the generator $x_{1}^{a} G_{1} \otimes \zeta^{(2)} / v_{1}(a p=u+1)$ of $H^{3} M_{1}^{1}$ if $p \nmid a+1$ by $\left[4 ;\right.$ Th.4.4]. Thus we see that $B_{1} \beta_{u} \neq 0$ and so is $\beta_{1} \beta_{u}$ by Lemma 3.3. Hence we have the proposition by Lemma 2.6.
q.e.d.
§4. Non-triviality for the case $\boldsymbol{p} \mid \boldsymbol{s}+\boldsymbol{t}+\mathbf{1}$
The integer u also denotes $s+t-1 \geqq 1$ here, and is supposed to be $p \mid u+2$. Consider the long exact sequence

$$
\begin{align*}
0 \longrightarrow & H^{0} M_{1}^{1} \xrightarrow{f_{0}} H^{0} M_{0}^{2} \xrightarrow{p} H^{0} M_{0}^{2} \xrightarrow{\delta_{0}^{\prime}} H^{1} M_{1}^{1} \tag{4.1}\\
& \xrightarrow{f_{1}} H^{1} M_{0}^{2} \xrightarrow{p} H^{1} M_{0}^{2} \xrightarrow{\delta_{1}^{\prime}} H^{2} M_{1}^{1} \xrightarrow{f_{2}} H^{2} M_{0}^{2}
\end{align*}
$$

assiciated to the short exact sequence (3.1). Note that this exact sequence is homogeneous. We first determine $X=H^{1} M_{0}^{2}$ at the degree

$$
k q=\{(a p-1)(p+1)-2\} q \quad(q=2 p-2)
$$

for $u=a p-2$ by the following
Lemma 4.2. Let B be a direct sum of submodules $L\langle g\rangle(g \in Y(j) \subset X$ $=H^{1} M_{0}^{2}$), where $Y(j)$ is a homogeneous subset of X with the degree j and $L\langle g\rangle$ denotes the \boldsymbol{Z}-module generated by g which is isomorphic to \boldsymbol{Z} / n if the order of g
is n. Then $B=X$ at the degree j if B contains $\operatorname{Im} f_{1}$ and the set $\left\{\delta_{1}^{\prime} g \mid g \in Y(j)\right\}$ is linearly independent.

This is proved in a same manner to [6; Lemma 3.9] by using [1; Remark 3.11]. We also need

Lemma 4.3. The $\boldsymbol{Z} / p\left[v_{1}\right]$-module $H^{n} M_{1}^{1}$ at the degree $k q$ is $0)\left[1 ;\right.$ Th. 5.3] the direct sum of $L^{\prime}\left\langle x_{i}^{s} / v_{1}^{j}\right\rangle$ for $(i, s, j) \in \Lambda(k)$, if $n=0$, 1) $\left[6 ;\right.$ Th. 3.10] the direct sum of $L^{\prime}\left\langle x_{i}^{s} \zeta / v_{1}^{j}\right\rangle$ for $(i, s, j) \in \Lambda(k)$, and $L^{\prime}\left\langle y_{m} / v_{1}^{j}\right\rangle$ for $m=s p^{i}$ with $(i, s, j) \in \Lambda_{0}(k)$, if $n=1$, and
2) $\left[4 ;\right.$ Th. 4.4] the direct sum of $L^{\prime}\left\langle x_{i}^{s} G_{i} / v_{1}^{j}\right\rangle$ for (i, $\left.s, j\right) \in \Lambda\left(k-\left|G_{i}\right|\right)$
with $p \nmid s+1$, and $L^{\prime}\left\langle y_{m} \otimes \zeta / v_{1}^{j}\right\rangle$ for $m=s p^{i}$ with $(i, s, j) \in \Lambda_{0}(k)$

$$
\left(\left|G_{i}\right|=-(p+1) e(i-1)-1\right), \quad \text { if } n=2 .
$$

Here $L^{\prime}\left\langle x / v_{1}^{j}\right\rangle$ denotes the submodule generated by the element x / v_{1}^{j} which is isomorphic to $\boldsymbol{Z} / p\left[v_{1}\right] /\left(v_{1}^{j}\right), \Lambda(l)$ and $\Lambda_{0}(l)$ are the sets of triples of integers

$$
\begin{gathered}
\Lambda(l)=\left\{(i, s, j) \mid i \geqq 0, j \leqq a_{i} \text { and } s p^{i}(p+1)-j=l \text { for } s \text { with } p \nmid s\right\} \text {, and } \\
\Lambda_{0}(l)=\left\{(i, s, j) \mid i \geqq 0, j \leqq A\left(s p^{i}\right) \text { and } s p^{i}(p+1)+1-j=l\right. \\
\text { for } \left.s \text { with } p \nmid s(s+1) \text { or } \mathrm{p}^{2} \mid s+1\right\},
\end{gathered}
$$

for the integers a_{i} and $A(m)$ defined by

$$
a_{0}=1, a_{i}=p^{i}+p^{i-1}-1 ; \text { and } A\left(s p^{i}\right)=2+\varepsilon(s) p^{i}\left(p^{2}-1\right)+(p+1) e(i)
$$

($p \nmid s$, and $\varepsilon(s)=1$ if $p^{2} \mid s+1$, and $=0$ otherwise), and the generators satisfy

$$
\begin{equation*}
y_{m} / v_{1}^{3}=v_{2}^{m}\left(t_{1}-2^{-1} v_{1} \zeta^{p}\right) / v_{1}^{3} \text { if } p \mid m, \text { and } \tag{4.3.1}
\end{equation*}
$$

$$
\begin{equation*}
x_{i}^{s} G_{i} / v_{1}=v_{2}^{m} T / v_{1}=T_{m} / v_{1}\left(m=s p^{i}-e(i-1)-1\right) \text { if } i \geqq 2 . \tag{4.3.2}
\end{equation*}
$$

Here we note that $i \geqq 2$ if $(i, s, j) \in \Lambda(k) \cup \Lambda_{0}(k)$ except for the case $i=1$ and $p \mid s+1$ and so we see that $p \nmid j$ if $(i, s, j) \in \Lambda(k) \cup \Lambda_{0}(k)$ since $k \equiv-3 \bmod p$.

Proposition 4.4. The \boldsymbol{Z}-module $H^{1} M_{0}^{2}$ at degree $k q$ is the direct sum of $L\langle g\rangle$ for $g \in Y(k q)$, where

$$
Y(k q)=\left\{y m / p v_{1}^{j} \mid m=s p^{i} \text { and }(i, s, j) \in \Lambda_{0}(k)\right\} .
$$

Proof. Let B denote the direct sum of $L\langle g\rangle$ for $g \in Y(k q)$. If $\Lambda(k)=\phi$, then $B \supset \operatorname{Im} f_{1}$ by Lemma 4.3. For the element $x=x_{i}^{s} / v_{1}^{j} \in H^{0} M_{1}^{1}$ with $(i, s, j) \in \Lambda(k)$, we obtain

$$
\delta_{0}^{\prime}\left(f_{0} x\right)=-j y_{m} / v_{1}^{j+1}-2^{-1} j x \zeta+\cdots
$$

by [1; prop. 6.9] and (4.3.1), where f_{0} is the map in (4.1) and \cdots denotes an element killed by v_{1}^{j-1}. Therefore $x \zeta$ is dependent on the elements of $Y(k q)$ in $\operatorname{Im} f_{1}$ and so we have $B \supset \operatorname{Im} f_{1}$.

By the definition of δ_{1}^{\prime}, we have

$$
\begin{equation*}
\delta_{1}^{\prime}(y)=-j t_{1} \otimes y / v_{1}+f_{1}^{-1}\left(d_{1} y_{m}^{\tilde{2}}\right) / p^{2} v_{1}^{j} \tag{4.4.1}
\end{equation*}
$$

for $y=y_{m} / p v_{1}^{j} \in Y(k q)$ and $\tilde{y}_{m}^{\sim} / p^{2} v_{1}^{j} \in \Omega^{1} M_{0}^{2}$ with $y=y_{m}^{\tilde{m}} / p v_{1}^{j}$, whose last term is killed by v_{1}^{j-1} since $y_{m}^{\tilde{m}} / p^{2} v_{1}^{j}=v_{2}^{m}\left(t_{1}-2^{-1} v_{1} \zeta^{\prime}\right) / p^{2} v_{1}^{j}+\cdots$ and $\left(d_{1} y_{m}^{\sim}\right) / p^{2} v_{1}^{j}$ $=m v_{1} v_{2}^{m-1} t_{1}^{p} \otimes\left(t_{1}-2^{-1} v_{1} \zeta^{\prime}\right) / p^{2} v_{1}^{j}+\cdots$ by (3.4.1) and (4.3.1). The element $v_{2}^{m} t_{1} \otimes t_{1} / v_{1}^{j+1}$ turns out to be a part of \cdots by considering $d_{1} v_{2}^{m} t_{1}^{2} / v_{1}^{j+1}$. Then the first term of (4.4.1) turns into

$$
-j t_{1} \otimes y / v_{1}=2^{-1} j y \otimes \zeta+\cdots
$$

by (4.3.1). Therefore we see that the set $\left\{\delta_{1}^{\prime}(y) \mid y \in Y(k q)\right\}$ is linearly independent by Lemma 4.3, since $p \nmid j$. Hence the proposition follows from Lemma 4.2.
q.e.d.

By observing the proof of this proposition, we also have
Proposition 4.5. Im δ_{1}^{\prime} at the degree k is the submodule of $H^{2} M_{1}^{1}$ generated by $2 t_{1} \otimes y / v_{1}=-y \otimes \zeta+\cdots$ for $y \in Y(k q)$.

Corollary 4.6. In the E_{2}-term $H^{4} A$, we have the non-triviality

$$
\beta_{s} \beta_{t} \neq 0 \text { if } p \nmid s t, p \mid s+t+1 \text { and } s+t \in I .
$$

Proof. By virtue of the exact sequence (4.1), we see that $T_{u} / p v_{1} \neq 0$ for $u+1 \in I$ by (4.3.2), Lemma 4.3 and Proposition 4.5. Now the corollary follows from Lemmas 2.6-7 and 3.3.
q.e.d.

References

[1] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[2] S. Oka and K. Shimomura, On products of the β-elements in the stable homotopy of spheres, Hiroshima Math. J. 12 (1982), 611-626.
[3] D. C. Ravenel, Complex cobordism and stable homotopy group of spheres, Academic press, 1986.
[4] K. Shimomura, On the Adams-Novilov spectral sequence and products of β-elements, Hiroshima Math. J. 16 (1986), 209-224.
[5] K. Shimomura, Non-triviality of some products of β-elements in the stable homotopy of spheres, Hiroshima Math. J. 17 (1987), 349-353.
[6] K. Shimomura and H. Tamura, Non-triviality of some compositions of β-elements in the stable homotopy of the Moore spaces, Hiroshima Math. J. 16 (1986), 121-133.
[7] H. Toda, Algebra of stable homotopy of Z_{p}-spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197-251.

