Moduli space of 1 -instantons on a quaternionic projective space $H P^{n}$

Hideo Doi and Takayuki Okai
(Received May 20, 1988)

Introduction

The moduli space of 1 -instantons on $S^{4}=H P^{1}$ is isomorphic to $S p(2) \backslash$ $S L(2, H)$ ([2], [3], [9]). The main purpose of this paper is to generalize this basic fact to the case of $H P^{n}$. More precisely, we consider self-dual connections, i.e. solutions to a first order equation which is a reduction of the Yang-Mills equation given by physicists [4], [20].

At present a general theory for self-dual connections on quaternionic Kähler manifolds is developed by M. Mamone Capria \& S. M. Salamon [12] and T. Nitta [15]. Thus it would be worthwhile to study self-dual connections concretely. In this point of view E. Corrigan, P. Goddard \& A. Kent [5] have provided an interesting family of self-dual connections on $H P^{n}$, as a generalization of the ADHM construction. They have also counted the number of parameters of this family. For 1 -instantons (see §1), from the table of H. T. Laquer [11], we know that this number coincides with the nullity of the second variation of the Yang-Mills functional at the canonical connection for the symmetric space $S p(n+1) / S p(1) \times S p(n)$. However, even in this case, the completeness of the ADHM construction is a problem [5]. In Theorem 1.1, we will give an affirmative answer to this, using a result in algebraic geometry due to H . Spindler [19]. In Theorem 1.2, we will give a compactification of the moduli space of 1 -instantons. In Theorem 1.3, we will examine the convergence of the Yang-Mills action densities.

1. Notation and the results

We begin with a review of quaternionic geometry (for details, see [12], $[14,15],[16,17,18])$. Let $M^{4 n}$ be a quaternionic Kähler manifold. By definition its holonomy group is contained in $S p(n) \cdot S p(1) \subset S O(4 n)$. Note that the natural representation of $G L(n, H) \times S p(1)$ on $\Lambda^{2}\left(C^{2 n} \otimes C^{2}\right)$ is decomposed to $\Lambda^{2} C^{2 n} \otimes S^{2} C^{2}+S^{2} C^{2 n} \otimes \Lambda^{2} C^{2}$. Accordingly, we have a decomposition $\Lambda^{2} T^{*} M \otimes C=\Lambda_{2}+\Lambda_{0}$. Let E be a complex unitary vector bundle over M with a unitary connection D. We assume that its curvature form $F(D)$ is a section of $\Lambda_{0} \otimes \mathfrak{u}(E)$. Then D is said to be self-dual. Note that D becomes a Yang-Mills connection. If a transformation $g: M \rightarrow M$ preserves the $G L(n, H)$.
$S p(1)$-structure of M, then $g^{*} D$ is also self-dual. Let Z be the twistor space of M and let $p: Z \rightarrow M$ be the canonical projection. We note that Z has a complex structure, and that $F\left(p^{*} D\right)$ is a $(1,1)$-form. Hence the pull-back connection $p^{*} D$ defines a unique holomorphic vector bundle structure on $p^{*} E$. Moreover, if the scalar curvature of M is positive, then Z has a Kähler metric and $p^{*} D$ turns out to be an Einstein-Hermitian connection. In particular, D attains the minimum of the Yang-Mills functional. Also, it should be remarked that the Atiyah-Ward correspondence is established by T. Nitta [15].

Clearly the symmetric space $H P^{n}=S p(n+1) / S p(1) \times S p(n)$ is a quaternionic Kähler manifold. We set $E=S p(n+1) \times{ }_{v} H^{n}$ for the projection v : $S p(1) \times S p(n) \rightarrow S p(n)$, and we call self-dual connections on E 1-instantons. Let ∇ be the unique invariant connection on the homogeneous vector bundle E. Then ∇ is self-dual and called the standard 1 -instanton. The action of $G L(n+1, H)$ on $H P^{n}$ preserves the $G L(n, H) \cdot S p(1)$-structure. Thus we have a self-dual connection $g^{*} \nabla$ on $g^{*} E$ for $g \in G L(n+1, H)$. Using an $S p(n)$-bundle equivalence $\gamma_{g}: E \rightarrow g^{*} E$, we obtain a 1 -instanton $\gamma_{g}^{*} g^{*} \nabla=\nabla \cdot g$, which is unique up to $S p(n)$-gauge transformations on E. Now we can state the main result.

Theorem 1.1 Let \mathscr{M}_{n} denote the moduli space of 1-instantons on $H P^{n}$. Then \mathscr{M}_{n} is identified with $S p(n+1) \backslash S L(n+1, H)$ via the correspondence $g \mapsto$ $\nabla \cdot g$ for $g \in S L(n+1, H)$.

Let $M(m, H)$ denote the set of $m \times m$ quaternionic matrices. We set $\mathscr{P}_{n+1}=\left\{A \in M(n+1, H) ;{ }^{\dagger} A=A, A>0\right\}$ and $\hat{\mathscr{P}}_{n+1}=\left\{B \in M(n+1, H) ;{ }^{\dagger} B=B\right.$, $B \geq 0\}$, where ${ }^{\dagger}$ denotes the Hermitian conjugation. Then $S p(n+1) \backslash$ $S L(n+1, H) \rightarrow \mathscr{P}_{n+1} / R_{+}^{\times}, \quad g \mapsto^{\dagger} g \cdot g$, is an isomorphism. Therefore we may identify \mathscr{M}_{n} with $\mathscr{P}_{n+1} / R_{+}^{\times}$and we will usually use the notation D_{A} instead of $\nabla \cdot A^{1 / 2}$ for $A \in \mathscr{P}_{n+1}$.

Let $\left\{D_{i}\right\}$ be a sequence of 1 -instantons. Proposition 3.3 will provide the following situation: There exist a subsequence $\{j\} \subset\{i\}$, a linear subvariety S in $H P^{n}$, gauge transformations $\left\{\gamma_{j}\right\}$ on E, and a self-dual connection D_{∞} on $E \mid H P^{n} \backslash S$ such that $\gamma_{j}^{*} D_{j}$ converges to D_{∞} in $C_{\text {loc }}^{\infty}$ on $H P^{n} \backslash S$. For the above $\{j\}$, we remark that if an exceptional set S is minimal, then S is unique. So, Proposition 3.3 would imply

Theorem 1.2. Let $\hat{\mathcal{M}}_{n}=\left\{\left(D_{\infty}, S\right) ; D_{\infty}\right.$ is a limit of 1-instantons, S is the minimal exceptional set $\} / \sim$, where $\left(D_{\infty}, S\right) \sim\left(D_{\infty}^{\prime}, S^{\prime}\right)$ means that $S=S^{\prime}$ and D_{∞} is gauge equivalent to D_{∞}^{\prime}. Then we have an identification

$$
\widehat{\mathscr{M}}_{n}=\left(\hat{\mathscr{P}}_{n+1} \backslash\{0\}\right) / R_{+}^{\times} .
$$

Thus we have a natural compactification $\hat{\mathscr{M}}_{n}$ of \mathscr{M}_{n} in view of H. Nakajima's work [13].

In [7], S. K. Donaldson introduces the rough compactification of the moduli space of (anti) self-dual connections on 4-manifolds, using the convergence of the Yang-Mills action densities $|F|^{2}$ as measure. We also investigate the behavior of $|F|^{2}$ when the connections converge to $\hat{\mathscr{M}}_{n} \backslash \mathscr{M}_{n}$.

We give first some definitions. For $X=\left(X_{i j}\right) \in M(m, H)$, let $\operatorname{tr} X=\sum X_{i i}$. Then $\operatorname{tr}\left(g A g^{-1}\right)=\operatorname{tr} A$ for $g \in S p(n+1)$ and $A \in \widehat{\mathscr{P}}_{n+1}$. For $l \times m$ quaternionic matrices X and Y, we define an inner product $(X, Y)=\operatorname{tr}\left({ }^{\dagger} X Y\right)$. Let $S^{4 n+3}=$ $\left\{z \in H^{n+1} ;(z, z)=1\right\}$ and equip $H P^{n}=S^{4 n+3} / S p(1)$ with the standard metric induced from that of $S^{4 n+3}$. For $A \in \hat{\mathscr{P}}_{n+1}$ and $z \in H^{n+1}$, we set

$$
\begin{aligned}
\Phi(A)(z)= & 8(A z, z)^{-4}(z, z)^{2}\left\{3\left(A^{2} z, z\right)^{2}+\left(\operatorname{tr} A^{2}+2(\operatorname{tr} A)^{2}\right)(A z, z)^{2}\right. \\
& \left.-4 \operatorname{tr} A\left(A^{2} z, z\right)(A z, z)-2\left(A^{3} z, z\right)(A z, z)\right\}
\end{aligned}
$$

and we consider $\Phi(A)$ as a rational function on $H P^{n}$. Let F_{A} denote the curvature of D_{A} for $A \in \mathscr{P}_{n+1}$. We shall prove that $\left|F_{A}\right|^{2}=\Phi(A)$ in Proposition 3.1. Now we can state the following

Theorem 1.3. Let $A \in \mathscr{P}_{n+1}, B \in \hat{\mathscr{P}}_{n+1} \backslash\{0\}$ and let S_{B} denote the linear subvariety $\left\{z \in H P^{n} ; B z=0\right\}$. We assume that A approaches B.
(i) If rank $B \geq 2$, then $\lim _{A \rightarrow B}\left|F_{A}\right|^{2}=\Phi(B)$ in $L^{1}\left(H P^{n}\right)$.
(ii) If rank $B=1$, then for any continuous function ϕ on $H P^{n}$, we have $\lim _{A \rightarrow B} \int_{H P^{n}} \phi\left|F_{A}\right|^{2}=4 \pi^{2} \int_{S_{B}} \phi$, where the integrals stand for those with respect to the canonical Riemannian volume elements.

2. The moduli space of $\mathbf{1}$-instantons

In this section, we give a proof of Theorem 1.1, following the program of R. Hartshorne [9]. Hereafter we denote H^{n+1} by V when it is regarded as a right C-vector space. Let $p: P(V)=(V \backslash\{0\}) / C^{\times} \rightarrow H P^{n}=\left(H^{n+1} \backslash\{0\}\right) / H^{\times}$be the natural projection. We note that $P(V)$ is the twistor space of $H P^{n}$. Therefore, as mentioned in $\S 1$, a 1 -instanton D gives a holomorphic vector bundle N_{D}, which is C^{∞}-isomorphic to $p^{*} E$. We know that $c_{2}\left(N_{D}\right)=1$ and $N_{D} \mid p^{-1}$ (point) is holomorphically isomorphic to the trivial bundle $C P^{1} \times C^{2 n}$. Due to H. Spindler [19, p. 20, Cor.] it follows that N_{D} is a null correlation bundle.

Let N be a null correlation bundle on $P(V)$. Then, by definition, there exists a resolution

$$
0 \rightarrow \mathcal{O}(-1) \rightarrow \Omega(1) \rightarrow N \rightarrow 0,
$$

where Ω denotes the holomorphic contangent bundle of $P(V)$. We know that $\operatorname{Hom}(\mathcal{O}(-1), \Omega(1))=\left\{\varphi \in \operatorname{Hom}\left(V, V^{\vee}\right) ; \varphi^{\vee}=-\varphi\right\}$, where V^{\vee} is the dual vector space of V and φ^{\vee} is the transposed mapping of φ. Let
$\mathscr{A}^{c}=\left\{\varphi \in \operatorname{Hom}\left(V, V^{\vee}\right) ; \varphi^{\vee}=-\varphi, \varphi\right.$ is bijective $\}$ and let \mathscr{N}^{c} denote the moduli space of null correlation bundles on $P(V)$. Then \mathscr{N}^{c} is naturally identified with $\mathscr{A}^{c} / C^{\times}[19$, Satz 4.2, a) $]$.

For a complex manifold X, we denote by X^{-}the manifold with the opposite complex structure. The right action of $j \in H$ on V defines an isomorphism $j_{R}: P(V) \rightarrow P\left(V^{-}\right)$. We define an action of j on \mathscr{N}^{c} by $j \cdot N=j_{R}^{*} N^{-}$ for $N \in \mathscr{N}^{c}$. Clearly, we see that if $N \in \mathscr{N}^{c}$ is induced by a 1 -instanton, then $j \cdot N=N$.

Let e_{0}, \cdots, e_{n} be the standard basis of H^{n+1} and set $e_{n+1+i}=j e_{i}$. Thus we have a basis $e_{0}, \cdots, e_{2 n+1}$ of V, and by this, we identify $\operatorname{Hom}\left(V, V^{\vee}\right)$ with the space $M(2 n+2, C)$ of $(2 n+2) \times(2 n+2)$ complex matrices. Let λ denote the standard embedding of $M(n+1, H)$ into $M(2 n+2, C)$, and set $J=\lambda\left(j 1_{n+1}\right)$. We define an action of j on \mathscr{A}^{c} by $j \cdot \varphi={ }^{t} J \bar{\varphi} J$ for $\varphi \in \mathscr{A}^{c}$, where ${ }^{t} J$ is the transposed matrix of J and $\bar{\varphi}$ is the usual complex conjugate of φ. Then the induced action of j on $\mathscr{A}^{c} / C^{\times}$coincides with the action of j on \mathscr{N}^{c} under the above identification.

Let $\mathcal{N}=\left\{N \in \mathcal{N}^{c}=\mathscr{A}^{c} / C^{\times} ; j \cdot N=N\right\}$ and $\mathscr{A}=\{A \in M(n+1, H)$; ${ }^{\dagger} A=A$, $\left.\operatorname{det} \lambda(A) \neq 0\right\}$. Then we have an isomorphism $\mathscr{A} / R^{\times} \rightarrow \mathcal{N}$ induced by $\lambda(j)$. We note that $\lambda\left(j^{\dagger} g A g\right)=^{t} \lambda(g) \lambda(j A) \lambda(g)$ for $g \in G L(n+1, H)$ and $A \in \mathscr{A}$. Clearly \mathcal{N} is stable under the action of $G L(n+1, H)$ on \mathcal{N}^{c} which is induced by the action on $H P^{n}$.

Lemma 2.1. (1) $\mathcal{N} / G L(n+1, H)$ has a finite set of complete representatives $\left\{J_{l}=\lambda\left(j \operatorname{diag}\left(1_{n+1-l},-1_{l}\right)\right) ; 0 \leq l \leq(n+1) / 2\right\}$.
(2) Let N_{l} be the null correlation bundle corresponding to J_{l}. If $0<l \leq$ $(n+1) / 2$, there exists a point $z \in H P^{n}$ such that $N_{l} \mid p^{-1}(z)$ is holomorphically non-trivial.

Proof. (1) This is immediate if we consider in $\mathscr{A} / G L(n+1, H)$.
(2) Let N be a null correlation bundle corresponding to $\varphi \in \mathscr{A}^{c}$. Let w_{1}, $w_{2} \in V$ be linearly independent and let $P(W)$ denote the projective line $\left(w_{1} C+w_{2} C \backslash\{0\}\right) / C^{\times} \subset P(V)$. Then it is easy to see that $N \mid P(W)$ is holomorphically non-trivial if and only if ${ }^{t} w_{1} \varphi w_{2}=0$. When $w_{1}=e_{0}+e_{n+1-l}$ and $w_{2}=w_{1} j$, we have ${ }^{t} w_{1} J_{l} w_{2}=0$.

Proof of Theorem 1.1. From Lemma 2.1, it follows that for $0<l \leq$ $(n+1) / 2$ and $g \in G L(n+1, H), g^{*} N_{l}$ is not isomorphic to any null correlation bundle induced by a 1 -instanton. On the other hand, N_{0} is induced by the standard 1 -instanton ∇. Let D be a 1 -instanton and let N denote the null correlation bundle induced by D. Considering the action of $G L(n+1, H)$, we may assume that there exists a holomorphic isomorphism $\psi: N_{0} \rightarrow N$. Then $\psi^{*} p^{*} D$ is an Einstein-Hermitian connection on N_{0}. From the uniqueness of

Einstein-Hermitian connections due to S. K. Donaldson [6, 8] (see also [10]), it follows that $\psi^{*} p^{*} D=p^{*} \nabla$ and ψ is an isometry. Furthermore, ψ is constant along the fibers of p because $p^{*} D$ and $p^{*} \nabla$ are trivial on the fibers. Hence ψ defines a gauge transformation γ on E. Therefore, $\gamma^{*} D=\nabla$. Thus we know that $G L(n+1, H)$ acts transitively on \mathscr{M}_{n}. Clearly the isotropy subgroup of ∇ is $S p(n+1)$.

3. Limits of 1 -instantons

In this section, we give proofs of Theorems 1.2 and 1.3. To begin with, we notice that $E=\left\{(z, v) \in H P^{n} \times H^{n+1} ;{ }^{\dagger} z v=0\right\}$. Let p_{E} denote the orthogonal projection $H P^{n} \times H^{n+1} \rightarrow E$. Then the standard 1 -instanton ∇ is given by a covariant derivative $p_{E} \circ d$. Let π denote the projection $H^{n+1} \backslash\{0\} \rightarrow H P^{n}$ and let s be a mapping $H^{n} \rightarrow H^{n+1} \backslash\{0\}$ defined by $s(x)=e_{0}+x$ with $x=\sum_{i=1}^{n} e_{i} x_{i} \in$ H^{n}. Now we identify H^{n} with $\pi \circ s\left(H^{n}\right)$ and regard s as a local section of $H P^{n} \times H^{n+1}$. Then we have an expression of the curvature of $\nabla: F_{1}=|s|^{-2} p_{E}$. $d s \wedge d^{\dagger} s \cdot p_{E}$ (see [1]).

Next, we shall prove that $\left|F_{A}\right|^{2}=\Phi(A)$ for $A \in \mathscr{P}_{n+1}$ as mentioned in §1. Recall that $|F(\nabla \cdot g)|^{2}=\left|g^{*} F_{1}\right|^{2}$ for any $g \in G L(n+1, H)$ and in particular, $\left|a^{*} F_{1}\right|^{2}=\left|F_{A}\right|^{2}$ for $a \in \mathscr{P}_{n+1}$ with $A=a^{2}$.

Proposition 3.1. $\left|a^{*} F_{1}\right|^{2}=\Phi\left(a^{2}\right)$ for $a \in \mathscr{P}_{n+1}$.
Proof. For $A \in \mathscr{P}_{n+1}$ and $g \in S p(n+1)$, we know that $g^{*} \Phi(A)=\Phi\left({ }^{\dagger} g A g\right)$ and $\left|F_{\dagger_{g A g}}\right|^{2}=g^{*}\left|F_{A}\right|^{2}$. Therefore we may assume that $a=\operatorname{diag}\left(a_{0}, \cdots, a_{n}\right)$. If $g \in S p(n+1)$ is diagonal, then $g a=a g$. Hence it is enough to show that $\left|a^{*} F_{1}\right|^{2}=\Phi\left(a^{2}\right)$ at $y=\sum_{i=1}^{n} e_{i} y_{i}$ with $y_{i} \in R$. Let $f_{i}=\left(1_{n+1}-|s|^{-2} s{ }^{\dagger} s\right) e_{i}$. Then at y,

$$
F_{1}=|s|^{-2} \sum_{i, j=1}^{n} f_{i}{ }^{\dagger} f_{j} d x_{i} \wedge d \bar{x}_{j}
$$

Let $\theta_{i j}=d z_{i} \wedge d \bar{z}_{j}-y_{i} d z_{0} \wedge d \bar{z}_{j}-y_{j} d z_{i} \wedge d \bar{z}_{0}+y_{i} y_{j} d z_{0} \wedge d \bar{z}_{0}$, where z_{0}, \cdots, z_{n} are the standard coordinates of H^{n+1}. Let $(,)_{H P^{n}}$ and (,) denote the standard metrics on $H P^{n}$ and H^{n+1} respectively. Then we have that $\left(d x_{i} \wedge d \bar{x}_{j}, d x_{k} \wedge d \bar{x}_{l}\right)_{H P^{n}}=|s|^{4}\left(\theta_{i j}, \theta_{k l}\right)$ at y because $\pi^{*}\left(d x_{i} \wedge d \bar{x}_{j}\right)=\theta_{i j}$. Let $Q_{i j k l}=a_{i} a_{j} a_{k} a_{l}\left(\delta_{i k}\left(a^{2} s, s\right)-a_{i} a_{k} y_{i} y_{k}\right)\left(\delta_{j l}\left(a^{2} s, s\right)-a_{j} a_{l} y_{j} y_{l}\right)$. Then we have at y,

$$
\left|a^{*} F_{1}\right|^{2}=\left(a^{2} s, s\right)^{-4}|s|^{4} \sum_{i, j, k, l=1}^{n} Q_{i j k l}\left(\theta_{i j}, \theta_{k l}\right)
$$

Note that $\left(d z_{i} \wedge d \bar{z}_{j}, d z_{i} \wedge d \bar{z}_{j}\right)=16,\left(d z_{i} \wedge d \bar{z}_{j}, d z_{j} \wedge d \bar{z}_{i}\right)=8$ for $i \neq j,\left(d z_{i} \wedge d \bar{z}_{i}\right.$, $\left.d z_{i} \wedge d \bar{z}_{i}\right)=24$, and the others are 0 . Then a straightforward calculation shows that $\left|a^{*} F_{1}\right|^{2}(y)=\Phi\left(a^{2}\right)(s(y))$.

Corollary 3.2. Let A and B be as in Theorem 1.3. Then we have $\lim _{A \rightarrow B}\left|F_{A}\right|^{2}(z)=\infty$ for any $z \in S_{B}$.

For $B \in \hat{\mathscr{P}}_{n+1}$, we set $M_{B}=H P^{n} \backslash S_{B}, K_{B}=M_{B} \times \operatorname{Ker} B, P_{B}=\left((\operatorname{Ker} B)^{\perp} \backslash\right.$ $\{0\}) / H^{\times}$, and $E_{B}=\left\{(z, v) \in P_{B} \times(\operatorname{Ker} B)^{\perp} ;{ }^{\dagger} z v=0\right\}$. Let κ_{B} be the orthogonal projection $H^{n+1} \rightarrow \operatorname{Ker} B$ and let $\varepsilon_{B}=1_{n+1}-\kappa_{B}$. Then ε_{B} induces a projection $\pi_{B}: M_{B} \rightarrow P_{B}$. By Theorem 1.1, $B \mid(\operatorname{Ker} B)^{\perp}$ defines a 1 -instanton d_{B} on E_{B}. Let t_{B} denote the trivial connection on K_{B}. Clearly $\pi_{B}^{*} d_{B}+t_{B}$ is a self-dual connection on $\pi_{B}^{*} E_{B}+K_{B}$. From this connection, we obtain a self-dual connection D_{B} on $E \mid M_{B}$, because $E \mid M_{B}$ is isomorphic to $\pi_{B}^{*} E_{B}+K_{B}$.

Proposition 3.3. Let A and B be as in Theorem 1.3. Then, after suitable gauge transformations on E, D_{A} approaches D_{B} on M_{B}.

Proof. We assume, without loss of generality, that $B=\operatorname{diag}\left(\beta^{2}, 0\right)$, $A=\operatorname{diag}\left(\beta^{2}, \alpha^{2}\right)$ and that α converges to zero. Let us define an isometry $\tau: \pi_{B}^{*} E_{B}+K_{B} \rightarrow E \mid M_{B}$ by

$$
\tau_{z}\left(v_{1}, v_{2}\right)=v_{1}+\left(\kappa_{B}-\left|\varepsilon_{B} z\right|^{-2} \varepsilon_{B} z \cdot{ }^{\dagger}\left(\kappa_{B} z\right)\right) h_{z}\left(v_{2}\right),
$$

where $z \in M_{B}, \quad v_{1} \in\left(\pi_{B}^{*} E_{B}\right)_{z}, \quad v_{2} \in\left(K_{B}\right)_{z}$ and $h_{z}=\left(1+\left|\varepsilon_{B} z\right|^{-2} \kappa_{B} z \cdot{ }^{\dagger}\left(\kappa_{B} z\right)\right)^{-1 / 2} \in$ $\operatorname{Hom}(\operatorname{Ker} B, \operatorname{Ker} B)$. Let $a=\operatorname{diag}(\beta, \alpha)$ and $t_{\alpha}=\operatorname{diag}(1, \alpha)$. We note that $a^{*}\left(\pi_{B}^{*} E_{B}+K_{B}\right)=\operatorname{diag}(\beta, 1)^{*}\left(\pi_{B}^{*} E_{B}+K_{B}\right)$. Hence it is enough to show that $\lim _{\alpha \rightarrow 0} a^{*} \tau^{*} \nabla=\pi_{B}^{*} \beta^{*} \nabla_{B}+t_{B}$, where ∇_{B} denotes the standard 1-instanton on E_{B}. Moreover, this is reduced to the case $\beta=1 \in \operatorname{Hom}\left((\operatorname{Ker} B)^{\perp},(\operatorname{Ker} B)^{\perp}\right)$.

Let σ be a section of $\pi_{B}^{*} E_{B}+K_{B}$. Setting $u_{z}=1_{n+1}-|z|^{-2} z \cdot{ }^{\dagger} z$ for $z \in M_{B}$, we have

$$
\left(l_{\alpha}^{*} \tau^{*} \nabla\right) \sigma=l_{\alpha}^{*} \tau^{-1} \cdot l_{\alpha}^{*} u \cdot d\left(l_{\alpha}^{*} \tau \cdot \sigma\right) .
$$

Also we see that $\lim _{\alpha \rightarrow 0} l_{\alpha}^{*} \tau=1_{n+1}$ and $\lim _{\alpha \rightarrow 0}\left(l_{\alpha}^{*} u\right)_{z}=1_{n+1}-\left|\varepsilon_{B} z\right|^{-2} \varepsilon_{B} z \cdot{ }^{\dagger}\left(\varepsilon_{B} z\right)$. From this, it follows that $\lim _{\alpha \rightarrow 0} l_{\alpha}^{*} \tau^{*} \nabla=\left(1_{n+1}-\left|\varepsilon_{B} z\right|^{-2} \varepsilon_{B} z \cdot{ }^{\dagger}\left(\varepsilon_{B} z\right)\right) \circ d=$ $\pi_{B}^{*} \nabla_{B}+t_{B}$.

Now the proof of Theorem 1.2 is completed as mentioned in § 1.
Proof of Theorem 1.3. We may assume that A and B are diagonal, and we use freely the notations in the proof of Proposition 3.1.
(i) From Lebesgue's dominated convergence theorem, it follows that $\Phi(A)$ converges to $\Phi(B)$ in $L^{1}\left(H P^{n}\right)$.
(ii) Note that $\lim _{A \rightarrow B}\left|F_{A}\right|^{2}(z)=0$ for $z \in H P^{n}$ with $B z \neq 0$. Thus we can assume that $B=\operatorname{diag}(0,1,0, \cdots, 0)$ and $a=A^{1 / 2}=\operatorname{diag}\left(a_{0}, 1, a_{2}, \cdots, a_{n}\right)$. Let $\rho=\left(a_{0}^{2}+a_{2}^{2} r_{2}^{2}+\cdots+a_{n}^{2} r_{n}^{2}\right)^{1 / 2}$ with $r_{i}=\left|x_{i}\right|$. Then $(A s, s)=\rho^{2}+r_{1}^{2}$ and $Q_{1111}=\rho^{4}$, where we substitute r_{i} for y_{i}. For $\varepsilon>0, \omega_{1} \in S^{3}$ and $\phi \in C^{0}\left(H^{n}\right)$ with compact support, we have

$$
\begin{aligned}
& \lim _{A \rightarrow B} \int_{0}^{\varepsilon}(A s, s)^{-4} Q_{1111} \phi\left(r_{1} \omega_{1}, x_{2}, \cdots, x_{n}\right) r_{1}^{3} d r_{1} \\
& \quad=\lim _{A \rightarrow B} \int_{0}^{\varepsilon / \rho} t^{3}\left(1+t^{2}\right)^{-4} \phi\left(\rho t \omega_{1}, x_{2}, \cdots, x_{n}\right) d t=\phi\left(0, x_{2}, \cdots, x_{n}\right) / 12 .
\end{aligned}
$$

Note that $Q_{1212}=a_{2}^{2} \rho^{2}\left(a_{0}^{2}+r_{1}^{2}+a_{3}^{2} r_{3}^{2}+\cdots+a_{n}^{2} r_{n}^{2}\right)$ and $(A s, s)^{4} \geq$ $\left(2\left(\rho^{2} r_{1}^{2}\right)^{1 / 2}\right)^{2} \cdot 2\left(r_{1}^{2} \cdot a_{2}^{2} r_{2}^{2}\right)^{1 / 2} \cdot\left(a_{0}^{2}+r_{1}^{2}+a_{3}^{2} r_{3}^{2}+\cdots+a_{n}^{2} r_{n}^{2}\right)$. Hence $(A s, s)^{-4} Q_{1212} r_{1}^{3} \cdots r_{n}^{3} \leq a_{2} r_{2}^{2} r_{3}^{3} \cdots r_{n}^{3} / 8$. Similar arguments show that if $Q_{i j k l} \neq$ Q_{1111}, then $\lim _{A \rightarrow B}(A s, s)^{-4} Q_{i j k l} r_{1}^{3} \cdots r_{n}^{3}=0$. We notice that the Riemannian volume element on $H P^{n}$ has an expression $(s, s)^{-2 n-2} d^{4 n}$. Here we denote the standard volume element on R^{m} by d^{m}. Now for $\phi \in C^{0}\left(H^{n}\right)$ with compact support, we have

$$
\begin{aligned}
& \lim _{A \rightarrow B} \int_{H^{n}} \phi \cdot(A s, s)^{-4}(s, s)^{2} \sum Q_{i j k l}\left(\theta_{i j}, \theta_{k l}\right)(s, s)^{-2 n-2} d^{4 n} \\
& \quad=4 \pi^{2} \int_{H^{n-1}} \phi\left(0, x_{2}, \cdots, x_{n}\right) \cdot\left(1+r_{2}^{2}+\cdots+r_{n}^{2}\right)^{-2 n} d^{4 n-4} .
\end{aligned}
$$

This completes the proof.

References

[1] M. F. Atiyah: Geometry of Yang-Mills Fields, Lezioni Fermiane Pisa, 1979.
[2] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Yu. I. Manin: Construction of Instantons, Phys. Letter 65A (1978), 185-187.
[3] M. F. Atiyah, N. J. Hitchin and I. M. Singer: Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London A 362 (1978), 425-461.
[4] E. Corrigan, C. Devchand, D. B. Fairlie and J. Nuyts: First-order equations for gauge fields in spaces of dimension greater than four, Nuclear Phys. B214 (1983), 452-464.
[5] E. Corrigan, P. Goddard and A. Kent: Some comments on the ADHM construction in $4 k$ dimensions, Comm. Math. Phys. 100 (1985), 1-13.
[6] S. K. Donaldson: Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), 1-26.
[7] S. K. Donaldson: Connections, cohomology and the intersection forms of 4-manifolds, J. Differential Geom. 24 (1986), 275-341.
[8] S. K. Donaldson: Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), 231-247.
[9] R. Hartshorne: Stable vector bundles and instantons, Comm. Math. Phys. 59 (1978), 1-15.
[10] S. Kobayashi: Differential Geometry of Complex Vector Bundles, Iwanami, 1987.
[11] H. T. Laquer: Stability properties of the Yang-Mills functional near the canonical connection, Michigan Math. J. 31 (1984), 139-159.
[12] M. Mamone Capria and S. M. Salamon: Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), 517-530.
[13] H. Nakajima: Compactness of the moduli space of the Yang-Mills connections in higher dimensions, J. Math. Soc. Japan 40 (1988), 383-392.
[14] T. Nitta: Connections for vector bundles over quaternionic Kähler manifolds, Proc. Japan Acad. 63 Ser. A (1987), 23-25.
[15] T. Nitta: Vector bundles over quaternionic Kähler manifolds, Tôhoku Math. J. 40 (1988), 425-440.
[16] S. M. Salamon: Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171.
[17] S. M. Salamon: Quaternionic structures and twistor spaces, in "Global Riemannian Geometry", T. J. Willmore and N. Hitchin ed., Ellis Horwood Limited, 1984.
[18] S. M. Salamon: Differential geometry of quaternionic manifolds, Ann. Sci. École. Norm. Sup. 4^{e} série t. 19 (1986), 31-55.
[19] H. Spindler: Holomorphe Vectorbündel auf P_{n} mit $c_{1}=0$ und $c_{2}=1$, Manuscripta Math. 42 (1983), 171-198.
[20] R. S. Ward: Completely solvable gauge-field equations in dimension greater than four, Nuclear Phys. B236 (1984), 381-396.

> Department of Mathematics,
> Faculty of Science,
> Hiroshima University

