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Introduction

The moduli space of 1-instantons on S4 = HP1 is isomorphic to Sp(2)\

SL(2, H) ([2], [3], [9]). The main purpose of this paper is to generalize

this basic fact to the case of HP". More precisely, we consider self-dual
connections, i.e. solutions to a first order equation which is a reduction of the

Yang-Mills equation given by physicists [4], [20].

At present a general theory for self-dual connections on quaternionic

Kahler manifolds is developed by M. Mamone Capria & S. M. Salamon [12]

and T. Nitta [15]. Thus it would be worthwhile to study self-dual connections
concretely. In this point of view E. Corrigan, P. Goddard & A. Kent [5] have

provided an interesting family of self-dual connections on HP", as a generaliza-
tion of the ADHM construction. They have also counted the number of

parameters of this family. For 1-instantons (see §1), from the table of H. T.

Laquer [11], we know that this number coincides with the nullity of the second

variation of the Yang-Mills functional at the canonical connection for the
symmetric space Sp(n + l)/Sp(l) x Sp(n). However, even in this case, the

completeness of the ADHM construction is a problem [5]. In Theorem 1.1,

we will give an affirmative answer to this, using a result in algebraic geometry

due to H. Spindler [19]. In Theorem 1.2, we will give a compactification

of the moduli space of 1-instantons. In Theorem 1.3, we will examine the

convergence of the Yang-Mills action densities.

1. Notation and the results

We begin with a review of quaternionic geometry (for details, see [12],

[14, 15], [16, 17, 18]). Let M4" be a quaternionic Kahler manifold. By defini-
tion its holonomy group is contained in Sp(n)-Sp(l) c SO(4n). Note that the
natural representation of GL(n, H) x Sp(l) on Λ2(C2n ® C2) is decomposed

to Λ2C2n®S2C2 + S2C2n®Λ2C2. Accordingly, we have a decomposition

Λ2T*M ® C = A2 + ΛQ. Let E be a complex unitary vector bundle over M

with a unitary connection D. We assume that its curvature form F(D) is a

section of Λ0 (x) u(£). Then D is said to be self-dual. Note that D becomes a
Yang-Mills connection. If a transformation g : M -» M preserves the GL(π, H)
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Sp(l)-structure of M, then g*D is also self-dual. Let Z be the twistor space
of M and let p : Z -» M be the canonical projection. We note that Z has
a complex structure, and that F(p*D) is a (1, l)-form. Hence the pull-back
connection p*D defines a unique holomorphic vector bundle structure on p*E.
Moreover, if the scalar curvature of M is positive, then Z has a Kahler metric
and p*D turns out to be an Einstein-Hermitian connection. In particular,
D attains the minimum of the Yang-Mills functional. Also, it should be
remarked that the Atiyah-Ward correspondence is established by T. Nitta [15].

Clearly the symmetric space HP" = Sp(n + l)/Sp(l) x Sp(ή) is a quater-
nionic Kahler manifold. We set E = Sp(n + 1) x v Hn for the projection v :
Sp(l) x Sp(n) -> Sp(n), and we call self-dual connections on E l-instantons. Let

V be the unique invariant connection on the homogeneous vector bundle
E. Then V is self-dual and called the standard l-instanton. The action of
GL(n + 1, H) on HP" preserves the GL(n, H) Sp(l)-structure. Thus we have a
self-dual connection g*V on g*E for g e GL(n + I, H). Using an Sp(n)-bundle

equivalence yg : £ -> #*£, we obtain a 1-instanton y*#*P = P7 #, which is unique
up to S/?(n)-gauge transformations on E. Now we can state the main result.

THEOREM 1.1 Let Jin denote the moduli space of l-instantons on HP".
Then Jίn is identified with Sp(n + l)\SL(n + 1, H) via the correspondence #ι— >

r g for geSL(n + I, H).

Let M(m, H) denote the set of m x m quaternionic matrices. We set
&n+l = {Ae M(n + 1, H); *A = A, A > 0} and 0>n+l = {B e M(n + 1, H); *B = B,

B > 0}, where f denotes the Hermitian conjugation. Then Sp(n + 1)\

SL(n H- 1, H)-^^>

n+ί/R+, g^g- g, is an isomorphism. Therefore we may
identify Jin with ^n+1/R+ and we will usually use the notation DA instead of

F /l 1 / 2for Ae0>n+1.
Let {Dj be a sequence of l-instantons. Proposition 3.3 will provide the

following situation: There exist a subsequence {j} c= {/}, a linear sub variety S
in //P", gauge transformations {y,} on E, and a self-dual connection D^ on
E\HP"\S such that y/D, converges to Dx in C^ on HP"\S. For the above
{ j } , we remark that if an exceptional set S is minimal, then S is unique. So,
Proposition 3.3 would imply

THEOREM 1.2. Let Mn = {(D ,̂ S); D^ is α limit of l-instantons, S is the
minimal exceptional set}/~, where (D ,̂ S) ~ (D ,̂ S') means that S — S' and D^ is
gauge equivalent to D'^. Then we have an identification

Thus we have a natural compactification Jin of Jίn in view of
H. Nakajima's work [13].
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In [7], S. K. Donaldson introduces the rough compactification of the
moduli space of (anti) self-dual connections on 4-manifolds, using the conver-
gence of the Yang-Mills action densities \F\2 as measure. We also investigate
the behavior of \F\2 when the connections converge to Jϊn\Jίn.

We give first some definitions. For X = (Xy) e M(w, H\ let tr X = Σxu
Then tr (gAg'1) = tr A for g e Sp(n + 1) and A e &n+i. For / x m quaternionic
matrices X and 7, we define an inner product (X, Y) = tr (fAT). Let S4"4"3 =
{ze/f + 1 ;(z,z)= 1} and equip HP" = S4n+3/Sp(l) with the standard metric
induced from that of S4π+3. For A e ^B+1 and z e Hn+1

9 we set

, zΓ4(z, z)2{3(A2z, z)2 + (tr A2 + 2(tr ^)2)(Az, z)2

- 4 tr Λ(Λ 2z, z)(Az, z) - 2(Λ3z, z)(Az, z)}

and we consider Φ(A) as a rational function on HP". Let FA denote the
curvature of DA for A e &n+ί. We shall prove that \FA\

2 = Φ(A) in Proposition
3.1. Now we can state the following

THEOREM 1.3. Let A€&H+I, B e $n+1\{Q} and let SB denote the linear
subvariety {z e HP"; Bz = 0}. We assume that A approaches B.

(i) // rank B > 2, then limA^B\FA\2 = Φ(B) in Ll(HPn).
(ii) // rank 5=1, then for any continuous function φ on HP", we have

limA^B§Hpnφ\FA\
2 = 4π2 $Sgφ, where the integrals stand for those with respect to

the canonical Riemannian volume elements.

2. The moduli space of 1-instantons

In this section, we give a proof of Theorem 1.1, following the program of
R. Hartshorne [9]. Hereafter we denote Hn+1 by V when it is regarded as a
right C-vector space. Let p : P(V) = (F\{0})/CX -> HP" = (Hn+1\{0})/Hx be
the natural projection. We note that P(V) is the twistor space of HP".
Therefore, as mentioned in §1, a 1-instanton D gives a holomorphic vector
bundle ND9 which is C°°-isomorphic to p*E. We know that c2(ND) = 1 and
JVβlp"1 (point) is holomorphically isomorphic to the trivial bundle CP1 x C2n.
Due to H. Spindler [19, p. 20, Cor.] it follows that ND is a null correlation
bundle.

Let N be a null correlation bundle on P(V). Then, by definition, there
exists a resolution

where Ω denotes the holomorphic contangent bundle of P(V). We know
that Hom(0(-l), Ω(l)) - (φ e Horn (V, Vv)\ φ v = -φ}, where Vy is the
dual vector space of V and φ v is the transposed mapping of φ. Let
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stfc = {φeHom(K Fv); φy = -φ, φ is bijective} and let J\TC denote the
moduli space of null correlation bundles on P(V). Then J f c is naturally
identified with j/c/Cx [19, Satz 4.2, a)].

For a complex manifold X, we denote by X~ the manifold with the
opposite complex structure. The right action of j e H on V defines an iso-
morphism jR : P(V) -> P(V~). We define an action of j on ~/Γc by j N = j%N~
for N G Jf0. Clearly, we see that if N e Jfc is induced by a 1-instanton, then

j N = N.
Let eθ9 •-, en be the standard basis of Hn+1 and set en+1+i =jet. Thus we

have a basis eθ9 •••, e2π+1 of K, and by this, we identify Hom(K, K v ) with the
space M(2n + 2, C) of (2π + 2) x (2n + 2) complex matrices. Let λ denote the
standard embedding of M(n + 1, //) into M(2n + 2, C), and set J = λ(jln+ί).
We define an action of j on stfc by 7 φ = 'Jcp J for φ e <s/c, where ' J is the

transposed matrix of J and φ is the usual complex conjugate of φ. Then the
induced action of j on £#C/CK coincides with the action of j on J f c under the
above identification.

Let JT = {N e Λ/"c = j/c/Cx; j-N = N} and j* = {Λ e M(n + 1, H);
fX = ^4, det >1(A) 7^ 0}. Then we have an isomorphism jtf/Rx -> jV induced by

λ(j ). We note that λ(?gAg} = tλ(g)λ(jA)λ(g) for g e GL(n + 1, H) and A e j/.
Clearly yΓ is stable under the action of GL(n + 1, H) on Jfc which is induced
by the action on HP".

LEMMA 2.1. (1) jV '/GL(n + 1, H) has a finite set of complete representa-
tives {J, = λ(j diag (!„+!_,, - 1,)); 0 < / < (n + l)/2}.

(2) Let NI be the null correlation bundle corresponding to J{. // 0 < / <
(n + l)/2, there exists a point z e HP" such that Nl\p~1(z) is holomorphίcally

non-trivial

PROOF. (1) This is immediate if we consider in ^/GL(n + 1, H).
(2) Let TV be a null correlation bundle corresponding to φ e j/c. Let w: ,

w2 e V be linearly independent and let P(W) denote the project! ve line
(w1C + w2C \{0})/CX cP(F). Then it is easy to see that N\P(W) is holo-
morphically non-trivial if and only if ίw1φw2 = 0. When M^ = e0 4- en+1-t and

w2 = w1j, we have *wίjlw2 = 0. Π

PROOF OF THEOREM 1.1. From Lemma 2.1, it follows that for 0 < / <

(n + l)/2 and g E GL(n + 1, //), g*Nt is not isomorphic to any null correlation
bundle induced by a 1-instanton. On the other hand, N0 is induced by the
standard 1-instanton V. Let D be a 1-instanton and let N denote the null
correlation bundle induced by D. Considering the action of GL(n + 1, H\ we
may assume that there exists a holomorphic isomorphism ψ : N0 -> N. Then

ψ*p*D is an Einstein-Hermitian connection on N0. From the uniqueness of
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Einstein-Hermitian connections due to S. K. Donaldson [6, 8] (see also [10]), it
follows that ψ*p*D = p*F and ψ is an isometry. Furthermore, ψ is constant
along the fibers of p because p*D and p*V are trivial on the fibers. Hence ψ
defines a gauge transformation y on E. Therefore, y*D = V. Thus we know
that GL(n + 1, H) acts transitively on Jίn. Clearly the isotropy subgroup of V
is Sp(n +1). Π

3. Limits of 1-instantons

In this section, we give proofs of Theorems 1.2 and 1.3. To begin with, we
notice that E = {(z, v) e HP" x #"+1; fzt; = 0}. Let pE denote the orthogonal
projection HP" x Hn+1 -> E. Then the standard 1-instanton V is given by a
covariant derivative pE°d. Let π denote the projection /f"+1\{0} -+HP" and
let s be a mapping H" -> fί"+1\{0} defined by s(x) = e0 + x with x = £"=1 ^x,- e

//". Now we identify Hn with π o s(Hn) and regard s as a local section of
HP" x H"+1. Then we have an expression of the curvature of V\ F1 = \s\~2pE-
ds Λ d*s pE (see [1]).

Next, we shall prove that \FA\
2 = Φ(A) for A e 0>n+l as mentioned in

§ 1. Recall that \F(P g)\2 = \g*F^2 for any g e GL(n + 1, H) and in particular,
IflTJ2 = \FA\

2 for a e 0>n+l with A = a2.

PROPOSITION 3.1. \a*F^\2 = Φ(a2) for a e ̂ n+1.

PROOF. For A e έPn+1 and ^ 6 5p(n + 1), we know that g*Φ(A) = Φ(*gAg)
and \FτgAg\

2 = g*\FA\
2. Therefore we may assume that a = diag (α0, , an). If

g e Sp(n + 1) is diagonal, then ga = ag. Hence it is enough to show that
|α*F1|

2 = Φ(α2) at y = ̂ n

i=,eiyi with y^R. Let ft = (ln+1 - Isl'V^.
Then at y,

Let θij = dzi Λ dZj - y^ dz0 Λ dzj - yj dzt Λ dz0 + y^j dz0 Λ dz0, where z0, ,
zn are the standard coordinates of H"+l. Let ( , )Hpn and ( , ) denote
the standard metrics on HP" and Hn+1 respectively. Then we have that
(dxi Λ dXj9 dxk Λ dx^jjpn = |5|4(^-, θkl) at y because π*(ί/Xj Λ dxj) = θ^. Let

Qijki = <*i<*j<ik<ii(&ik(<*2s> s) ~ ^Λyiyk)(δji(a2s9 s) - α/α,^,). Then we have at y,

Note that (dzi Λ d1j9 dzi Λ rfz,-) =16, (ί/z, Λ dzy, dz^ Λ dz;) = 8 for i Φj, (dzt Λ rfzj ,
dzi Λ ί/Zj) = 24, and the others are 0. Then a straightforward calculation
shows that |α*F1|

2(j;) = Φ(a2)(s(y)). Π
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COROLLARY 3.2. Let A and B be as in Theorem 1.3. Then we have

\imA^B\FA\
2(z) = oo for any z e SB.

For B E ̂ π+1, we set MB = HP"\SB, KB = MBx Ker B, PB = ((Ker β)1\
{0})/#x, and EB = {(z, ι;) e PB x (Ker 5)1; fzι; = 0}. Let κβ be the orthogonal
projection Hn+1 -> Ker 5 and let εB = ln+1 — KB. Then εB induces a projection
πB:MB-^PB. By Theorem 1.1, UKKer/J)1 defines a 1-instanton dβ on EB. Let
ίβ denote the trivial connection on KB. Clearly π%dB + tB is a self-dual connec-
tion on π$EB + Kβ. From this connection, we obtain a self-dual connection
DB on £|Mβ, because £|Mβ is isomorphic to πj£β + KB.

PROPOSITION 3.3. Let A and B be as in Theorem 1.3. Then, after suitable
gauge transformations on E, DA approaches DB on MB.

PROOF. We assume, without loss of generality, that B = diag (/?2, 0),
A = diag (β2, α2) and that α converges to zero. Let us define an isometry

τz(vn v2) = Ό! + (KB - \εBz\~2εBz- \κBz))hz(v2) ,

where z e Mβ, v1 e (n%EB)29 v2 e (KB)Z and Λz = (1 + |εβzΓ2κ:βz \κBz))~1/2 e
Horn (Ker β, Ker B). Let α = diag (β, α) and zα = diag (1, α). We note that
α*(π|£β + KB) = diag(/J, l)*(π|£β + Xβ). Hence it is enough to show that
limα^0α*τ*F = πjjβ*^ + ίβ, where Fβ denotes the standard 1-instanton on EB.

Moreover, this is reduced to the case β = 1 e Horn ((Ker B)1, (Ker β)1).
Let σ be a section of π££β + Kβ. Setting wz = lw+1 — |z|~ 2z< 1"z for z e Mβ,

we have

Also we see that limα^ 0/*τ = ln+1 and limα_0(ι*M)2 = 1Π+1 - \εBz\~2εBz-\εBz).

From this, it follows that limα_> 0**τ*P' = (ln+1 — \£Bz\~2εBz^(εBz)) o d =

π%rB H- ίβ. D

Now the proof of Theorem 1.2 is completed as mentioned in § 1.

PROOF OF THEOREM 1.3. We may assume that A and B are diagonal, and
we use freely the notations in the proof of Proposition 3.1.

(i) From Lebesgue's dominated convergence theorem, it follows that Φ(A]
converges to Φ(B) in Ll(HPn\

(ii) Note that \imA^B\FA\
2(z) = 0 for z e HP" with Bz φ 0. Thus we can

assume that B = diag (0, 1, 0, , 0) and a = A1/2 = diag (α0, 1, α 2» ' " > flJ Let
p = (a2 + a\r\ + ••• + tf2r2)1/2 with r( = IxJ. Then (As, s) = p2 + r2 and

61111 = P4? where we substitute rf for jv For ε > 0, ωx e S3 and ^ e C°(Hn)
with compact support, we have
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Jo
Γε/p

, ί3(l + t2Γ4φ(ρtωί9x2,'-,xn)dt = φ(Q, x2, ,xn)/12.
Jo

Note that Q1212 = αip2(fl£ + r\ + a§rf -f ••• + α2rπ

2) and (As, s)4 >

(2(p2r?)1/2)2 2(r2 a\r\^ (α§ + r2 + a\r\ + ••• + α2r2). Hence

(As, s)~4βi2i2 rι '"rn ^ a2rιrl '"rn/$- Similar arguments show that if Qijkι¥=

βi i iu tnen πm^^β(^s? s)~4Qijkirΐ'"rn = 0. We notice that the Riemannian
volume element on HP" has an expression (s, s)~2n~2d4n. Here we denote the

standard volume element on Rm by dm. Now for φ e C°(Hn) with compact

support, we have

φ (As, 5)-4(S, s)lim^ ί
JH^

= 4π2 ί ^(0,x2,-,x l l

JH»-I

This completes the proof. Π
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