HIROSHIMA MATH. J.
19 (1989), 243-249

Three Riemannian metrics on the moduli space
of 1-instantons over CP?

Katsuhiro KOBAYASHI
(Received May 20, 1988)

1. Introduction

The natural metric on 5-sphere of radius 1 induces the Fubini-Study metric
grs On the complex projective plane CP2.  The moduli space .# of 1-instantons
over (CP?, ggs) is homeomorphic to the cone on CP? (Buchdahl [B] and
Furuta [F]). The generic part .#* of the moduli space carries three natural
Riemannian metrics g; (J = I, Il and I-II). We refer to Matumoto [M] for the
definition of the Riemannian symmetric tensors. In this paper we will give
explicit formulas of the metrics and study their basic geometric properties.

Buchdahl and Furuta defined an SU(3)-equivariant difffomorphism F:
CP? x (0, 1) =~ M* = M-{cone point}. We use a local coordinate system
C? x (0, 1) > CP? x (0,1) defined by (W, W,, 1) = ([1, Wy, W,1, A) with W, =
X, +iX, and W, = X5 +iX,. Note that F(C? x (0, 1)) is open and dense in
A*. The metric tensors split with respect to this coordinate system as

F*gy = @y(A) d2? + Y;(A)ges (J =1, 11 and I-1I).
More explicitly, we can write ¢,(1) and ¥,(1) by using a new paramater
Z =1 — A? as follows:
0(A) =8n%(Z*log Z +3Zlog Z — 3Z? + 2Z + 1)/Z(1 — Z)?,
U(A) = 4n*(—6Z%log Z + Z3 + 6Z> — 9Z + 2)/(Z + 2)(1 — Z)?*;
ou(A) = 16n%(Z> — 2Z + 6)/15Z2, Yy(4) = 8n*(—3Z2? — 4Z + 12)(1 — Z)/15Z ;
or-n(A) = ou(A),  Yin(A) = 24n*(Z* — Z° + 227 + 8)(1 — Z2)/5Z(Z + 2)*.

In fact, ¢,;(4) and ¥,(4) are positive for 0 < 4 < 1 and g, defines actually the
positive definite Riemannian metrics for not only J = I but also J = II and I-IIL

From the above formulas or their asymptotic ones given in §4, we get the

following proposition, where K;(u,v) (J =1, II and I-II) denote the sectional
curvatures of F*g,.

PROPOSITION. (a) As A— 1 (near the collar) all the sectional curvatures
converge to the negative constant —5/32n? for (M*,gy) and (M*,g,_y). On
(M*, g,), we can induce a C* metric on 0.4 so that (04, g,) is isometric to
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(CP?, 4n?gys) and K,(0/04, X) converges to 3/8n% as A — 1.
(b) As A — 0 (near the cone point),

K(0/04, X) ~ —3/8n>, Ki(X,Y)~ (3/4n*2?)(Kgs(X, Y) — 1) — 3/87%;
Ky(0/04, X) ~ —21/16n2, Kyu(X, Y)~ (21/167212)(Kes(X, Y) — 1) + 3/167212 ;
Ky_n(0/02, X) ~ —9/321%, K,_u(X, Y) ~ (3/167242)(Kps(X, Y) — 1) — 9/3272

where X, Ye TCP? and Kgg denotes the sectional curvature of (CP2, ggs). Note
that 1 £ Kgg(X, Y) < 4.

(c) The volume and diameter of (M*, g,) are finite and those of (M*, gi_y)
and (M*, gy) are infinite.

The computation of g, is due to Hideo Doi and originally to Mikio
Furuta. The author would like to thank them for permitting him to contain
their results in this paper.

2. Diffeomorphism F: CP? x (0, 1) = .#* due to Buchdahl and Furuta

A 1-parameter family of l-instantons V, (4 € [0, 1)) is defined as follows.
We define a quaternion line bundle E with ¢, = —1 by E = {([X], {X); X € C3,
[X]eCP? EeH}. We identify the Lie algebra of SU(2) with ImH of
imaginary quaternions as in [M]. We fix a local frame field u: C*(c CP?)—
E|c: defined by u([1, W, W,]) = (1 + r?)"2(1, W,, W,). Then, ¥, is defined on
C? by

(2.1) Viu=uA,,
Ay =1+ 72— A2 Im (W, dW, + W, dW,) + jA(— W, dW, + W, dW,)},

where A, is a local Im H-valued 1-form. Note that this local connection
extends to a connection ¥, over E and V, is a reducible connection. A, will be
called a local connection form of ¥, with respect to u.

Let o/ be the space of self-dual connections on E. We define SU(3)-action
on & by gV =yfi(g”")*F, where y,-.: E— (9" ')*E is a SU(3)-bundle equi-
valence and (¢~ ')*/ is the pull back of ¥ by g~'. This means in local
connection forms that

(22 gVu=uA", A =cldc+c (g ")*Ac.

where ¢ is determined by g~!(u(w)) = u(g 'w)c and (g *)*4 is the pull back of
Abygt

We define a smooth map F: SU(3) x (0, 1) -« by F(g,4) =g-V,. Note
that the SU(3)-action on &/ has U(2) as isotoropy subgroup at ¥, and the
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image of F is transverse to the action of the gauge transformation group %
Moreover we have

THEOREM (Buchdahl [B], Furuta [F]). The map F induces an SU(3)-
equivariant diffeomorphism F: SU(3)/U(2) x (0, 1) =~ .#*.

3. Computation of the metrics

The metrics (A#*,g;) J =1, II and I-1I) are SU(3)-invariant and F is
SU(3)-equivariant. So, F*g, splits into F*g; = ¢,(4) dA? + ,(A)ggs, because ggs
is a unique SU(3)-invariant metric on CP? up to constant multiple. Define
g/ e SU(3) and v e T}, ;CP? by

cost —sint 0
. 0
g;l=]|sint cost O] and v=(—3;g,‘1[1,0,0]|0

0 0 1
so that ggs(v, v) = 1. Then, by the definition of the metrics

(3.1) @y(A) = F*g,(0/04, 0/02) = gy(p40:V;, p40;V;) and
0
(3.2) Yy(A) = F*gy(v, v) = g;(p*V, pV), V= E(g:‘l)'Vﬂo >

because F,(0/04) = p,0,V, and F,v =p,V. Hereafter, we fix a local coordinate
system C2? —» CP? defined by (W,, W,)—[1, W,, W,] and treat an element
of QF(ad E) as a local Im H-valued p-form. By derivating 4; by A and de-
noting Q, = 1 +r2 — 1%, B=W,dW, + W, dW, and y = — W, dW, + W, dW,,
we have

0,y =24Q;%Im B+ (242Q7* + Q7 )jy -

Let A, be the local connection form of (g; ') ¥, with respect to u. By (2.2),
Ay = ¢ lde, + ¢ (97 )*Ac,, where ¢, = (cos t — W, sin t)/|cos t — W, sin t|.
By derivating A, by ¢, we have

V= —242072X, Im (B + jiy) + A0 Im (A dW, + j dW,) .
Denoting d* = dX, A dX, A dX; A dX, and Q = 1 + r?, we note also that
(33) dW, A #dW, = 2(1 + |W[)Q 2d* (i=1,2), dW, A +dW;=0(,j=1,2),
AW, A xdW,; = 2W,W,Q72d* (i #j) and d*dW;=0.

We will prove the formulas on ¢,(4) and y;(4) in the introduction by the
following (1)—(6).
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(1) ¥(A)=<Vh V*y: Recall 6,V = —xdp +V = —x{d*V + [4,, «V]}.
Using (3.3) we get d«V = j{2AW,0;2071(A?Q7' — 1)}d* [A4,, *V] =
2072 {4A(Im W,)Q™% + 2jW,(A2Q™% + Q7')}d* and therefore

(34) op V = —+{422Q72Q7*(Im W, + jAW,)d*} .

To describe the orthogonal projection, we need the following key
observation:

(35) LEmMA. Let X = (A2 — 3)7'Q;'Im {A2(A> + L)W, + 2i3W,}
Q°ad E). Then, 6y dy X = —#{412Q52Q 2(Im W, + jAW,)d*}.

This lemma is verified by a direct calculation based on the definition
of dy, and dy,.

From (3.4) and (3.5) we see that V" is given by V"=V —d, X. Now
VLV = Y —dp X, VR = (U VP = LV —dpX) = W V) —
(V,dp, X>. To compute {V,dy X) we first calculate the integrand and get
Re (X A *dy X) = —8(A2 — 3)71Q°Q 7 2{A*(A* + 1) X7 + 24°|W,|*}d* by using
(3.3). Let A(a, b, i) denote [c-r*'Q;°Q"d*. Then, we have

V,dp X) = ZJ Re (X A *dp X) = —(A% — 3)71(104° + 24*)A(3,2, 1) .

Ccp2

Similarly,

KV, V> = —J Re (V A +V)

cp2

=6A*(A* —1)A(4, 1, 1) + (A* + 24%){A(2, 2, 1) + 2A4(2,2,0)} .

Thus, using another expression A(a, b, i) = A272@*D [1_ .. (y — (1 — 2%))"*! x
(1 — y)***=3-iy=a dy we obtain y/,(4) in the introduction.

2 @A) = B,V (0,7,)">: By the definition of §, we have 0p,(0:V3) =
—*{d*0,A; + [A;, *x0,A,;]}. By a direct computation using (3.3) we have
d+0,A, =0 and [A;,%0;4,] =0. So, we have 6, (0,/;) =0. In particular,
(0,7,)F = 0,7,. Then, ¢,(4) is calculated by a similar method as in (1).

(3) (H. Doi) ¢yu(A): Let F(V) be a curvature form of a connection ¥, and
let us denote F(V;) by F,. Since dy,0,V, = 0,F,, we have ¢y(l) = (0, F),
(6,F,)*> by (3.1) and the definition of the metric of type II. By a direct
computation we have

F, =1 —1%)Q;*{K + 2jAdW, A dW,} and
0,F, = 24(1 — 22 — r)Q K + 2{422(1 — 22) + (1 — 342)0,} Q7% dW, A dW,
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where K is (1 +r?)* times the Kéhler form of ggg, more explicitly, K =
{1 + Wy 2)dW, A dW, + (1 + (W) dW, A dW, — W W, dW, A dW, —
W, W, dW, A dW,}. Since *9,F, = 0,F,, we have Op,0p,0; F;, = *dy dyp,0,F, =
*[F,, 0,F,] which vanishes because [K,jdW; A dW,] =0. This means that
(0,F,)" = 0,F,. Using A(a, b,i), we compute the L2>-norm of J,F, and we
obtain ¢ (4).

(4) (H. Doi) yy(A) = ((XF)",(XF)*>, where XF = (8/0t)F(g;'V;)lo: Since
F(g;'V,) = Ad (c;*)(g;*)*F,, where (g, ')*F, is a pull back of F, by g;!. Let
o = —4073X,A2K — 2jA073X,(Q; + 422)dW, A dW,. Since « is self-dual,
Op,0p, 0 = x[F;, a]. We note [K,jdW; A dW,] =0 again and get [F;,a] =0.
Hence, a € Ker oy, 0y,. By a direct computation, we obtain

J _ 0 0. _ 0, _
XF =_—c 1|0F/1 + Fi=¢lo + 5:(9: 1)*Fﬂo = =(g; 1)*Fﬂo — [F;, Im W;] and
ot ot ot ot

%g:l)*mo = (1 = %)+ (1 — 22)k(—6Q5 22X, dW; A dW;).

Since dp dpi=[F;,i]1= —4(1 —2%)Q;?4k dW, A dW,, we can write XF =
(1—-A%a + dpdyp, for some B € Q°ad E). This implies that (XF)*=
(1 — A%)a. By computing the L2-norm of (1 — A?)a, we obtain Y, (A).
(5) @i—u(4): Since (0,7,)" = 0,7, we have ¢;_y(4) = @y(4).
(6) ¥-u(4): Since *dp V" = dp V", we have
Yr-n(A) = dp V¥, dp V") = —2f Re (dp V" A dp V).
cp2

The computation of this integral is complicated and we used the formula
processing software REDUCE 3.2 to complete it.

4. Asymptotic behavior of the metrics

We will give asymptotic formulas of the metrics near the cone point and
the collar. We study their sectional curvatures, too.
As 1 — 0 (near the cone point) the metrics are asymptotically

g ~ 2m2(272% + 2042 + 10) dA2/15 + 2n2(54* + 642)gps/9,
gu ~ 16m2(164* + 1042 + 5) dA?/15 + n?(244* + 84%)grs/3 and
Gion ~ 16m2(164% + 1042 + 5) dA%/15 + m2(564* + 4842)ggs/9 .

We take a new parameter Y defined by Y2 =1 — A2, that is, Y = Z'2,
Then, as Y — O (near the collar) the metrics are asymptotically
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g1~ 872((26Y* + 6Y2)log Y + 15Y* + 6Y2 + 1) dY?
+27%(—12Y*log Y — 3Y* — 6Y2% + 2)ggs,
gu~ 16n2(5Y* + 4Y% + 6) dY?/15Y2 + 872(Y* — 16Y? + 12)ggs/15Y? and
Gron ~ 16m2(5Y* + 4Y2 + 6) dY2/15Y? + 4872(2Y* — 2Y? + 1)ggs/5Y2.

This implies that g, is C'-asymptotic to the product metric near the collar and
extends to the boundary of collar in C! sense.

Applying the well-known lemma below to the (asymptotic) formulas of the
metrics, we can easily get Proposition in the introduction.

(4.1) Lemma. K,(0/04, X) = oy 'y {—yi2 + ¥i?Y;'/4 + oie;'/4} and
Ky(X,Y) =5 {Kes(X, Y) — Yi> @y 5! /4}, where X, Ye TCP?.

We recall the results of Groisser-Parker [GP2] on the metric of type I
which can be applied also to a general metric on CP% There are a number r,,
a neighborhood U of the cone point [V,] in .# and a difffomorphism F:
CP? x (0,r,) > U — {[F,]} so that g, satisfies F§g; = dr? + r*(ggs + O(r?)) and
the sectional curvature K, of Fgg, satisfies K,(d/0r, X) = O(1) and Ky(X, Y) =
(Kps(X, Y) — 1)/r? + O(1) for X, Ye TCP? as r —» 0 in this coordinate system.
Near the collar g, is C%-asymptotic to the product metric 4n2(2dt? + ggs) for
some coordinate system. We find for example that the constants O(1) in the
curvature K, are equal to —3/8xn2 in our standard metric case.

Followings are the graphs showing the behavior of the .sectional curvatures.
Let X,=4% 1In each case J=1I, II and I-II, let K; denote K,(9/0X;,
d/0X;) and put ¢, = 1/n2, ¢, = 3/8n2, ¢y = 1/4n?%, c, = 5/32n2, c5 = 21/167* and
c¢ = 9/32n%.  Suppose the metric is given by g, = &,(X,) dX2 + ¥,(X,)grs and
let eq = #;20/0X, and e; = Y;'29/0X; (1 <i <4). Then, K, is calculated by

K)(aoeo+aye;, boeo+bye, +bye, +bye;)=(ad+b})Ko, +aibiK,, +aibiK,;,

where a2 +a?=1, b3 +b? +b2+b2=1 and ayh, + a;b, =0. Note that
4% = 0 corresponds to the cone point in these graphs.

o \
K
Kz K3 . Ky,
<y 0 _ —C4
Koy C2 o Koy
O/ 3
) K3 Ky, —Ce Kis
—cs
12=0 1 2=0 1 12=0 1

Case of g Case of gy Case of g,y
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