
HIROSHIMA MATH. J.
19 (1989), 225-242

A predator-prey diffusion model in age-dependent
population dynamics

Shin-ya TAKIGAWA

(Received May 12, 1988)

1. Introduction

In this paper we study an age-dependent predator-prey model with spatial
movement in which the predator species has a tendency to eat the prey species
in the specific age-interval. Age-dependent diffusion models for a single bio-
logical species were first proposed by Gurtin [4], where the population density
of the species u = u(a, ί, x) is governed by the following:

(1.1) Du + λu = kΔu

with the boundary condition at a = 0

(1.2) ιι(0,ί,x) = βu(a,t9x)da.
Jo

Here a stands for age, ί for time and x for spatial position. The operator D is
defined by

(1.3) (Du)(a, t, x) = lim^o -(u(a + h,t + h,x)- u(a, ί, x ) ) .
n

The functions λ and β denote the death modulus and the birth modulus of the
population, respectively, both of which in general depend on α, ί, x, u itself and
the total population density

Γ00

, x) = u(a, ί,
Jo

(1.4) P(ί, x)= u(a,t,x)da.
Jo

The equation (1.1) is the so-called balance equation and (1.2) describes the birth
process of the species.

Nonlinear age-dependent population models (including several interacting
populations) without spatial diffusion have been studied by many authors (see,
for instance, Gurtin and MacCamy [5], Webb [11] and the references therein).
The existence and uniqueness of solutions in age-dependent diffusion models for
a single species has been also investigated (see, for instance, Busenberg and
lannelli [1], Di Blasio [2], Kunisch, Schappacher and Webb [7] and MacCamy
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[8]). Among them, in [1] and [8] several types of nonlinear diffusion terms
are treated and the asymptotic behavior of solutions is also investigated.

We extend such models so as to describe the predator-prey interaction in
age-dependent diffusion problems. Suppose that the spatial domain is a one-
dimensional bounded open interval (0, /). Let u(a, f, x) and v(t, x) denote the
population density of the prey and the predator, respectively. Here we neglect
the age-dependence of the predator. Then, our model consists of

(1.5) Dii + M,! +λ2P + u = kluxx ( α > 0 , 0 < x < / )

and
/ I f 0 0 \

(1.6) vt + ( ε 1 + ε2v - ——— c(a)μ(a)u da\v = k2vxx (0 < x
\ A + \L Jo /

with P(ί, x) defined by (1.4) and

, x) = Γ
Jo

(1.7) Q(t,x)= μ(a)h(a)u(a,t,x)da.
Jo

Here μ(ά) denotes the intrinsic predation rate, c(ά) shows the effect of the
predation on the growth rate of the predator and β(ί, x) means the average
"quantity" (the total number counted with the weighted function h(a)) of the
prey which could be eaten by a predator in absence of the limitations of its
digestive capacity. The total predation "quantity" per predator is assumed to
be bounded and β(ί, x) is so normalized that its supremum should be one. The
functional form of the predation term μ(a)uv/(l + β) in our model is based on

the cannibalism model of Diekmann, Nisbet, Gurney and van den Bosch [3].
From a biological point of view, we require that u(a, f, x) > 0 and v(t, x) > 0.
We study the equations (1.4)-(1.7) supplemented with the boundary conditions

(1.8) «(0, ί, x) = I β(a, P(t, x))w(α, ί, x) da ,
Jo

(1.9) Mx(α, ί, x) = Όx(t, x) = 0 (x = 0, /)

and the initial conditions

(1.10) u(a, 0, x) = ιι0(α, x) > 0 , y(0, x) = ι;0(x) > 0 .

This paper proceeds as follows: In Section 2, we consider the initial-
boundary value problem (1.4)-(1.10). By the integration of the equation for u
along the characteristics a — t = constant, we transform the problem into a
system of integral equations for P, Q, v and B(t, x) = w(0, ί, x) and prove the
global existence and uniqueness of regular solutions. In Section 3, we find
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spatially homogeneous stationary solutions of the form (u(a\ 0) which corre-

spond to the extinction of the predator, and investigate their local stability.
Let us give a brief explanation of our results under the assumption β(a, P) =

β(a). Define by

(1.11) N
f 0 0

= β(a)e-λ>
Jo

da

the net reproductive rate of the prey population at the trivial solution (0, 0). If

N < 1, then
lim,^ P(t, x) = lim,^ υ(t, x) = 0 ,

that is, both of the species become extinct. If N > 1, then (0, 0) is unstable and

there exists a unique stationary solution of the form (ΰ(a\ 0) with ΰ(a) > 0. Let

(1.12)

with

(1.13)

S =
β o

c(a)μ(a)u(a) da — εt

Q
f00

μ(a)h(a)u
Jo

'(a) da.

5 is the growth rate of the predator population at (u(a\ 0). If S < 0, then
(ΰ(a), 0) is stable, while, if S > 0, then it is unstable.

2. Existence and uniqueness

In this section we consider the initial-boundary value problem

(2.1)

(2.2)

(2.3)

where

(2.4)

Du + ί λ1 + A2P(ί, x) + V )u = kιuxx (a > 0, 0 < x < /)

/ i Γ00 \
Vt + lεi+ε^- c(a)μ(a)u da\v = k2vxx (0 < x <

\ A ~r V/VΓ5 x) Jo /

Γ00

w(0, ί, x) = β(a, P(ί, x))ιι(α, ί, x) rfα (0 < x < /)
Jo

(α>0)ux(a, ί, 0) = wx(α, ί, /) = 0

vx(t, 0) = ι;,(ί, /) = 0

β, 0, x) = ιι0(α, x) (α > 0, 0 < x < /)

y(0, x) = υ0(x) (0 < x < /),

+Q-(u(a H- /ί, ί H- Λ, x) — w(α, ί, x)),
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(2.5) P(ί, x) = \ u(a, ί, x) da
Jo

and

(2.6) β(ί, x) = I μ(a)h(a)u(a, ί, x

Throughout this paper we assume the following:

(A.I) βeC(R+ x R+) is non-negative and bounded. Furthermore, /?(•, P)

is locally Lipschitz continuous from R+ to L°°(/?+);
(A.2) μ(ά), h(a) and c(α) are all non-negative, bounded, continuous func-

tions on /?+;

(A.3) A l 9 Λ 2 > fcι> &2> ει and ε2 are aU positive constants.

Here we set /?+ = [0, oo).
By a global solution of (2.1)-(2.3) we mean a pair of non-negative functions

(u, v) = (u(a9 ί, x), v(t, x)) such that u e C(R+ x R+ x [0, /]), u( , ί, x) e !/(/?+),
MX e C((0, oo) x (0, oo) x [0, /]), uxx, Du e C((0, oo) x (0, oo) x (0, /)), v e
C(R+ x [0, /]), vx E C((0, oo) x [0, /]), vxx, vt e C((0, oo) x (0, /)) and (u, v) satis-
fies the equations (2.1)-(2.3) for all ί > 0.

Here we state the main result of this section.

THEOREM 2.1. Suppose, in addition to (A.1)-(A.3), that the following condi-

tions are imposed on the initial functions u0 and v0:

(A.4) MO 6 C(R+ x [0, /]) π L1^, C[0, /]), w0(α, x) > 0 and

κ0(0, x) = ί β(a, P0(x))u0(a, x) da
Jo

with

Γ00

P0(x) = M0(α, x) da

(A.5) v0 e C[0, /] and v0(x) > 0.
Then, there exists a unique global solution of (2.1)-(2.3).

We first state some results from the theory of parabolic equations which
will be used in the proof of our theorem.

LEMMA 2.2. Consider the initial-boundary value problem:

wί = kwxx + ξ(t, x)w (t > 0, 0 < x < /)

(2.7) <{ w,(ί, 0) = wx(ί, /) = 0 (ί > 0)

w(0, x) = w0(x) (0 < x < /)
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and the integral equation associated with (2.7):

w(ί, x) = N(kt,x,y)w0(y)dyP
Jo

HJo Jo
(2.8) + I ds \ N(k(t-s),x,y)ξ(s,y)w(s,y)dy

(t > 0, 0 < x < /),

where wϋ e C[0, /], ξ e C(R+ x [0, /]), N(t, x, y) denotes the fundamental solution

of

ί w, = wxx (0 < x < /)

\wx(t, 0) = Wχ(t, I) = 0

/c is α positive constant. Then, the following assertions hold:
(i) There exists a unique solution w e C(R+ x [0, /]) of (2.8).
(ii) Let w = w(t, x\ζ) denote the solution of (2.8) together with its depen-

dence on ξ. Then, for any T > 0 and any r > 0, there are some constants Mt ,
M2 > 0 such that if \\ξ\\τ, \\ξ\\τ < r, then

(2.9)

(2.10) |w(ί, x\ξ) - w(ί, x||)| < M2 Γ |{(s, •) - ξ(s,
Jo

for (ί, x) 6 [0, T] x [0, /]. Here, || ||Γ and H^ denote the usual sup-norm in
C([0, T] x [0, /]) and in C[0, /], respectively.

(iii) // w(ί, x) is a solution of (2.7), fnen w = w(f, x|ξ). Assume, in addition,
that ζ(t, x) is locally Holder continuous on (0, oo) x [0, /] with respect to x.
Then w(t, x\ξ) also satisfies (2.7).

PROOF OF THEOREM 2.1. Let (u, v) be a solution of (2.1)-(2.3). For any
fixed c > 0, define ul(t, x) = u(t + c, ί, x). Then u1 satisfies the following:

w,1 + λ(t + c, t, x\P, Q, v)ul =k1u
1

xx (t > 0, 0 < x < /)

ιιί(ί,0) = ιιί(ί,/) = 0 (ί>0)

where

μ(a)v(t, x)
(2.12) λ(a, t, x\P, Q, v) = λl + λ2P(t, x) +

1 + β(ί, x)

The first equation of (2.11) implies u}< k^uxx,so it follows from the com-
parison theorem that
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iΛf, x) < N(kίt9 x, y)u0(c, y) dy < \u0(c, )L -
Jo

By setting c = a — ί, we have u(a, f, x) < |tt0(α — f, ) lαo f°Γ α ^ *• Thus, the
assumption u0 e Ll(R+, C[0, /]) implies that the integral ^ u(a, ί, x) da is uni-

formly convergent on any compact set of R+ x [0, /], so the functions P(ί, x)
and β(f, x), defined by (2.5) and by (2.6), respectively, become continuous on

R+ x [0, /]. As λ(a, ί, x\P, β, t;), defined by (2.12), is also continuous, it follows
from Lemma 2.2 that u1 satisfies

u 1 ( t , x ) = Nfat, x,
Jo

- \ ds\ N(kl(t-s\x,y)λ(s^c,s,y\P,Q,v)ul(s,y)dy.
Jo Jo

, y)u0(c, y) dy
1 c\

(2.13)

Next, for any fixed c > 0, we define w2(α, x) = u(a, a + c, x). Then, u2

satisfies the following:

{ u2

a + λ(a, a + c, x\P, β, v)u2 = k^u2

xx (a > 0, 0 < x < /)

ιι2(α,0) = ιιί(fl,/) = 0 (α>0)

w2(0, x) = β(c, x) (0 < x < /)

with B(t, x) = w(0, ί, x), from which we have

I
N(k1a9x,y)B(c,y)dy

(2.15)

u2(a,x)= Γ
Jo

- I ds \ N(k1(a - s), x, y)λ(s, s + c, y\P, Q, v)u2(s, y) dy .
Jo Jo

Concerning the integral equations (2.13) and (2.15) we now state

LEMMA 2.3. Let X = {/ e C(R+ x [0, ί])|/(ί, x) > 0}. The following
assertions hold:

(i) For any c e R+ and (P, β, v) e X3, there exists a unique solution u1 e X
of (2.13). We denote such a solution by u1 = Φ(ί, c,x\P, β, v) in order to indi-
cate its dependence on c, P, β and v. Then, for any fixed (P, β, v) e X3,
Φ e C(/?+ x R+ x [0, /]) and Φx e C((0, oo) x R+ x [0, /]). Furthermore,

(2.16) 0<Φ(ί,c,x|P,β,ι;)<K(c, OL ,

and /or any T > 0 and r > 0, there is some constant M3 > 0 such that, if ||P||Γ,
\\v\\τ <r, then
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\Φ(t9c9x\P9Q9υ)-Φ(t9c9x\P9Q9v)\

(2.17) <M3|t/0(c, )
o

+ |6(5, •) - β(s, )loo + \V(S9 •) - 0(S, )U ΛS

/zo/ds for (t, c, x) e [0, Γ] x /?+ x [0, /].

(ii) For any c e R+ and (B, P, β, t>) e Jf4 there exists a unique solution

u2 e X of (2.15). We denote such a solution by u2 = Ψ(a, c, x \ B, P, β, i?) in

order ίo indicate its dependence on c, β, P, β and v. Then, for any fixed

(B, P, β, v) e AT4, ΨεC(R+ x R+ x [0, /]) and ^x 6 C((0, oo) x R+ x [0, /]).

Furthermore,

(2.18) 0 < Ψ(a9 c, x|B, P, β, υ) < \B(c9 OL

for any T > 0 and r > 0, fnere is some constant M4 > 0 swc/i that, if \\B\\ τ,

\\P\\τ, \\v\\τ <r, then

I Ψ(a9 c, x|B, P, β, i;) - !P(α, c, x\B9 P, β, 0)1

c, )-B(c, )lco

+ Iβfe •) - δfe )loo + \v(s9 •) - fffe )L}

holds for a, c > 0, a + c < Γ, x e [0, /].

The proof of Lemma 2.3 is easy, so we omit it.

From the definitions of u1 and u2, we obtain the following expression for

the solution u:

(220) u ί α t x ) -(2.20) u(a, t, x) - { _ α> χ|Bj p Q

Here we have chosen c as c = α — ί and c = ί — a when α > ί and when

a < t, respectively. By the substitution of (2.20) into the first equation of (2.2),

(2.5) and (2.6), we have

, x) = Γ β(a, P(ί, .
Jo

I β(a + t9P(t9.
Jo

(2.22) P(ί, x) = i Ψ(a9 1 - a, x\B9 P, β, v) da + f °° Φ(ί, a, x|P, β, ϋ)
Jo Jo

B(t, x) = I β(a, P(t, x))Ψ(a, t-a,x\B,P,Q, v) da

(2.21)

+ 1 β(a + t, P(t, x))Φ(t, a, x\P, Q, v) da ,

dα
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Q(t, x) = f μ(a)h(a)Ψ(a, t - a, χ\B, P, Q, v) da
J o

(* °̂

+ μ(a + t)h(a + t)Φ(t, a,x\P, β, v) da .
Jo

Our next step is to regard

(2.24) η(t, x) = * ί°° c(a)μ(a)u(a9 ί, x) da
1 ~r \Kl> x) Jo

as a known function and to solve the problem:

{ vt -f (ε1 + ε 2y — τ/(ί, x))u = ̂ x* (ί > 0, 0 < x < /)

Mi, o) = Mi,/) = o (ί>θ)

u(0, x) = t?0(x) (0 < x < / ) .

Let rj e C(/?+ x [0, /]). If t; is a solution of (2.25), then v(t, x) = w(ί, x\ξ), where

(2.26) ξ = ξ(t, x\v) = η(t, x)-εl- ε2v(t, x)

and w( , -\ξ) is defined in Lemma 2.2 with k and w0(x) replaced by k2 and by
ΌO(X), respectively. We define the mapping L: C(R+ x [0, /]) -> C(R+ x [0, /]) by

(Lv)(t, x) = w(ί, x \ ξ ( m , \v)). Then, any solution of (2.25) must be a fixed point
of the mapping L. Conversely, we assume, in addition, that η(t, x) is locally
Holder continuous on (0, oo) x [0, /] with respect to x. Then, by Lemma 2.2
(iii), we see that any fixed point of L is really a solution of (2.25). Concerning
fixed points of L we have

LEMMA 2.4. L has a unique fixed point in C(R+ x [0, /]), w/iic/i we denote
by v = v(t, x\η). Then, the following estimates hold: For any T > 0 and r > 0

there are some constants M5, M6 > 0 such that if \\η\\τ, \\ή\\τ < r, then

(2.27) 0<t?( t ,x | i f )<M 5

(2.28) |ϋ(ί, x\η) - v(t, x\ή)\ < M6 \η(s9 •) - ή(s9 OL ds

hold for (ί, x) e [0, T] x [0, /].

PROOF. We have

(2.29) (Lυ)(t, x) > 0 ,

which, together with (2.8) and (2.26), implies that for any T > 0, there is some
constant K1 > 0 with

(2.30) (LtOfex)^!
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for (ί, x) e [0, Γ] x [0, /] and for any non-negative function v(t, x). Also, for
any T > 0 and r > 0, there is some constant K2 > 0 such that if ||t;||τ, ||t;||Γ < r,
then

(2.31) |(Lι;)(ί, x) - (Lv)(t, *)l < K2 P \υ(s, •) - S(s,
Jo

for (ί, x) E [0, Γ] x [0, /]. Define the sequence of functions {vn(t, x)}n>0 by

v0(t, x) = υ0(x)

vn(t, x) = (LtViXί, x) n = 1, 2, ....

Then, by the use of standard arguments we prove that the limit υ*(t, x) =
λim^^v^t, x) exists and that v* is a fixed point of L in C(R+ x [0, /]). (2.31)
also implies the uniqueness of fixed points of L. The remainder of the lemma
is easily proved by (2.9) and (2.10), so we omit the details.

Thus, if (u,v) is a solution of (2.1)-(2.3), then (B, P, β, υ) e X* satisfies
(2.21)-(2.23) and

(2.32) v(t,x) = v(t, x\η)

with
1 / f<

• Φ
I •+- I l\ T Ύ\ \ I Λ

(2.33)
*' x) = ι -L nr. J ί' cWμW^ία, ί - fl, x|^, Λ β,i -h y^r, x) \J 0

Γ00 \
+ φ + ί)μ(fl -h ί)Φ(ί, α, x|P, β, ϋ) dα ) .

Jo /

Conversely, let (B, P, Q, υ) e X* satisfy (2.21), (2.22), (2.23), (2.32) and (2.33),
then, by Lemma 2.3, Px, Qx and ηx belong to C((0, oo) x [0, /]). If we define
u(a, ί, x) as in (2.20), then, by Lemma 2.2 (iii), (w, v) is a solution of (2.1)-
(2.3). Thus, to establish Theorem 2.1, it is sufficient to show

LEMMA 2.5. There exists a unique solution (£, P, Q, υ) 6 X4 of (2.21), (2.22),
(2.23), (2.32) and (2.33).

PROOF. First let (P, Q, υ) e X3 be fixed and define & : X -> X by

ί, x) = i /?(fl, P(ί, x)mα, ί - fl,x|B, P, β, ϋ) rfα
Jo

j»(fl + ί, P(ί, x))Φ(ί, α, x|P, β, i?) ώ .
o

Then, it follows that for any T > 0 there is some constant X3 > 0 with

I
Jo
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, x) - (JF3)(t, x)| < K3 Γ \B(s, •) - δ(s,
Jo

for (ί, x) e [0, T] x [0, /], from which we obtain that for each (P, β, ι;) e X3

there is a unique solution B e X of (2.21). We denote such a solution by
B(t, x|P, β, v) in order to indicate its dependence on P, β and v. Then, by the
use of GronwalΓs inequality the following estimates hold:

(i) For any T > 0, there is some constant K4 > 0 with

(2.34) 0<β(ί,x|P,β,ι;)<K4

for (ί, x) e [0, Γ] x [0, /]
(ii) For any T > 0 and r > 0, there is some constant K5 > 0 such that if

\B(t9x\P9Q9υ)-B(t9x\P9Q9ΰ)\

n ~, < K5(\p(t9 •) - P(r, )L + P (l^fe •) - ffe )loo
l"->) \ Jo

+ IQ(S> •) - 6(s» )loo + IΦ» •) - v(s, )loo}

for (ί, x) 6 [0, T] x [0, /].
Denote by F ί̂, x|P, ρ, t?), F2(t, x|P, Q, t;) and F3(t, x|P, β, ϋ) the right-hand

side of (2.22), of (2.23) and of (2.32), respectively, with B replaced by
B(v|P,Q,ϋ). Then, F.eX (i = 1,2,3) and, by (2.16H2.19), (2.27), (2.28), (2.34)
and (2.35), the following estimates hold:

(i) For any T > 0, there is some constant K6 > 0 with

(2.36) Σ?=ι ^ifc*Ip & 0)^*6

for (ί, x) 6 [0, T] x [0, /].
(ii) For any T > 0 and r > 0, there is some constant X7 > 0 such that if

Σlι\Fi(t9x\P9Q9v)-Fi(t9x\P9Q9v)\

(2.37) < KΊ Γ {|P(5, •) - P(S, oico + lefe •) - Q(s9 Ola,
Jo

+ \v(s9 ')-v(s, )lαo}^

for (ί, x) 6 [0, Γ] x [0, /].
Using these estimates we see that there exists a unique solution (P, β, v) e

X3 of P(ί,x) = F 1 ( t 9 x \ P 9 Q 9 υ ) 9 β(ί, x) = F 2 ( t 9 x \ P 9 Q 9 υ ) and υ(t9x) =
F3(ί, x|P, β, ι;). This completes the proof of Lemma 2.5.
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3. Stability analysis of stationary solutions

In this section we consider the case when the birth function β(a, P)
is independent of P and study spatially homogeneous stationary solutions
of (2.1)-(2.3) which correspond to the extinction of the predator. We write
β(a, P) = β(a). Note that such a solution is of the form (ΰ(α), 0) with ΰ e
C(R+) n C^O, oo), ΰ(ά) > 0 and

(3.1)

dΰ
— + (λ, + λ2P)ΰ = 0 (a > 0)
da

w(0)= Γ β(a)ΰ(a)da
Jo

-ΓJo

where

(3.2) P = I U(a) da .

It is obvious that (0, 0) is always a stationary solution. The following
proposition, which is a special case of [5] Theorem 6, gives a necessary and
sufficient condition for the existence of stationary solutions of the form (ΰ(a\ 0)
with ΰ(a) φ 0.

PROPOSITION 3.1. // (3.1)-(3.2) has a non-trivial solution, then

Γ00

(3.3) β(a)e~λ>a da > 1

holds. Conversely, if (3.3) holds, then there exists a unique solution u(a) (φO) of
(3.1)-(3.2) and it is given by

(3.4) ΰ(a) = Be-(λl+p*»

with

(3.5) B = λjV(λι+P*),

where p* is a unique positive root of

Γ°°
(3.6) β(a)e-(λ>+p*)a da = 1.

Jo

We first consider the case when

Γ00

(3.7) β(a)e-λ>a da < 1 .

The following proposition claims that in the case of (3.7) both of the species will
become extinct for large time.
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PROPOSITION 3.2. Let (3.7) hold and let (u, v) be the solution of (2.1)-(2.3),
then

(3.8) lim, _>«, P(ί, x) = lirn^ v(t, x) = 0 .

PROOF. Define u(a, ί, x) = eλίtu(a, ί, x). Then, ίϊ satisfies

(On < kiUxx (α, t > 0, 0 < x < 0

J wx(a, ί, 0) = fi,(α, ί, /) = 0 (α, ί > 0)

[w(β, 0, x) = w0(α, x) (α > 0, 0 < x < /) .

Using the comparison theorem, we have

(39) u(atx)<h(a-^)l-e~λίt ( a ^ t }

1 } l ^' } ^W-α, )l^-Alβ («<0,

where J3(ί, x) = w(0, ί, x). By the first equation of (2.2) and (3.9) we have

B(t, x) < * β(a)e-λ>a\B(t - α, •)!„ da + £KIILκΓλl ί ,

with β = sup {β(a)\a e /?+} and ||MO | |LI = Jo lwo(^ ')L ^β> and the assumption
(3.7) implies

(3.10) B(t,x)<Ce~pt

with some constants C > 0 and pe(0, A J . (3.10) implies

:f -Jo
P(ί, x) < ^λlΊB(ί - α, )L ώ + KllL'*~A l ί < C'e-»

Jo

with some constant C > 0. This means lim,^ P(ί, x) = 0, and so, for
sufficiently large ί,

vt + (εJ2)v < k2vxx .

Then, the comparison theorem implies that lim,^ v(t, x) = 0. This completes
the proof.

We next consider the case of (3.3). Moreover, the following condition is
imposed on the birth function β(ά):

(A.6) βeCl(Q9 oo) and β'eLl(Q, oo).

If we take uQ(a, x) = uQ(a) and v0(x) = 0, then v(t, x) = 0, u(a, ί, x) is indepen-
dent of x and is governed by
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t)da (ί>0)
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- Γ
? ί Jo

P(ί) = ί°° 11(0, ί) dt
Jo

w(α, 0) = u0(a).

(ί>0)

(3.3) implies that w = 0 is an unstable equilibrium of (3.11), that is, the
trivial solution (0, 0) is unstable in our full system. (It is proved in Marcati [9]
that under the assumption that the age-interval is finite and u0(a) φ 0, the
solution of (3.11) tends to the unique non-trivial stationary solution ΰ(a) as

f-> oo.)
In what follows we investigate the local stability of the stationary solution

(ΰ(a\ 0) with ΰ(a) defined in (3.4), (3.5). Set vφ, ί, x) = u(a, ί, x) - ΰ(a) and
consider the linearized version of (2.1)-(2.3):

(3.12)

λ2P)w + λ2ΰ(a)p

w(0,

w,(fl, ί, 0) =

i, ί, x) =
Jo

, ί, 0) = w;

(*.-— ΓV i + Q Jo
, 0) = υ,(t, 0 = 0,

/?(α)w(α, t, x) dα

α, t, /) = 0

where

and

, x) = Γ
Jo

'-ΓJo

fJo
= μ(a)h(a)u(a) da .

Jo

If (3.12) has no eigenvalues in the right half-plane Re y > 0, then (ΰ(a\ 0) is
stable in our full nonlinear system, while if (3.12) has at least one eigenvalue
with a positive real part, then (ΰ(a\ 0) is unstable. This is proved in Gurtin
and MacCamy [5] for the case of the absence of spatial movement, and it is
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easily seen that their methods can be applied to our diffusion model. So, in

order to find eigenvalues of the linearized problem (3.12), we set w(α, ί, x) =

w(α, x)eyt and v(t, x) — v(x)eγt with γ e C. Then, (w, v) satisfies

(3.13)

with

(3.14)

and

with

p* + y)w
1 +

w(0, x) = I β(a)w(a, x) <

(*, 0) =

3, x) = Γ
Jo

ΓJo

1 f α

= εi =
1 + β J o

(3.16) 5 = fil - = c(a)μ(a)ΰ(a) da .
J o

We first find solutions w(α, x) of (3.13), (3.14) for any fixed ί (x).

LEMMA 3.3. There exists some constant y0 (0 < y0 < p*) such that (3.13)-

(3.14) has a unique solution vv(α, x) for Re y > —y0 and for any fixed v e C2[0, /]

with ΰx(0) = vx(l) = 0.

The proof of this lemma will be given at the end of this section. On the

other hand, we see that (3.15)-(3.16) has non-trivial solutions if and only if

y= -S-(k2/l2)n2π2 (n = 0, 1, 2,...).

Combining these results we obtain the following:

(i) If S > 0, then each eigenvalue y of (3.13)-(3.16), if it exists, satisfies

Key < -min(yθ9S).

(ii) If S < 0, then (3.13)-(3.16) has at least one real positive eigenvalue.

Thus, we have

THEOREM 3.4. Assume (3.3) and (A.6). Then, we have the following:

(i) // S > 0, then the stationary solution (ΰ(a\ 0) is exponentially asymptoti-

cally stable in Ll(R+, C[0, /]) x C[0, /].

(ii) // S < 0, then it is unstable.
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PROOF OF LEMMA 3.3. The proof is similar to the proof of Marcati and
Serafini [10] where linear age-dependent diffusion models are treated. Let
Y = C[0, /] and define the linear operator A in Y by

d2u
(3.17) Au = k*dχϊ

for u e Q)(A) = {ue C2[0, /]|w'(0) = u'(l) = 0}. Then, A generates an analytic
semi-group {T(ί)}ί>0 which satisfies

(3.18) l |T(ί) | |<l for teR+,

where || || denotes the operator norm in Y. By means of these operators, the
first equation and the last one of (3.13) are rewritten as an ordinary differential
equation in Y:

f + (ll+p*+ y)* + λ2ΰ(a)P
da 1 + β

or equivalently,

Γα

Jo

(3.19)
— λ2Be

where

(3.20) b = w(0)

B Ca

(3.21) fy(a) = =e-(*.ι+p*» μ(a _ s)e~ysT(s) ds .
1 + β Jo

Substituting (3.19) into the second equation of (3.13) and (3.14), we obtain

(3.22) - λ2B Γ r (α) le-<;ι'+p> da e~γsT(s) ds p

Define the matrix-valued function Jf(a) by

u(a) X12(4
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with

and

The boundedness of β and (3.18) yield the estimate

l| < constant - έr<*ι+i'

which implies that the Laplace transform Jf *(y) = [<K* (y)] of Jf (α) exists for
Re y > -(λ1 + /?*). Then, (3.22) takes the simpler form

(3.23) [1 - JT*(y)]x - Fyv (Re y > -(λ, + /?*))

with

(,24, ,
Conversely, if c e Y2 satisfies (3.23), then w(α) in (3.19) is a solution of (3.13)-
(3.14). Thus, our problem has been reduced to solving the equation (3.23)
in Y2.

Our next step is to discuss about the distribution of the values of y for
which 1 — JΓ*(y) is invertible. For this purpose we denote by D(y) the "deter-

minant" of 1 - Jf*(y)9 that is,

(3.25) D(γ) = (1 - K

From the fact that the components of 1 — JΓ*(y) are commutative with each
other, it follows that if D(y) has a bounded inverse, so does 1 — JΓ*(y). In fact,
the inverse of 1 — JΓ*(y) is given by

(y.ZOJ \_L - ~~ v / / j — w / I Γ^ji. / \ ^ r- .̂1. / \

L -^*ι(y) i -^ιι(y)
An easy calculation shows that

(3.27) D(y) = 1 - e~ysφ(s)T(s) ds,

where

ί
oo

β(a)e~(λl+p*)a da.
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Since D(γ) has a bounded inverse in Y if and only if 1 e p(\ — D(y)), it is
sufficient to study the spectrum of

= Γ *-ys<>
Jo

1 -D(y)= I e-ysφ(s)T(s)ds.

Set

Γ00

(3.29) Φy(z) = e(z~y}sφ(s) ds (Rez<Rey + λ1 + p*)
Jo

then Φy(A) = 1 - D(y). In view of the spectral mapping theorem (see, Hille
[6], for instance), we obtain

(3.30) σ(l - D(γ)) = σ(Φ7(A)) = Φ7(σ(A)) u {0} .

We next study the scalar function Φy(z). (3.28) and (3.29) imply that

(3.31) Φy(z)=\

Γ00

- P* aβ(a
Jo

1 - p* \ aβ(a)e-(λ*+p*)a da (z = γ)

1 + -?—} Γ β(a)e-(λ>+p*+?-z)a da - -?— (z * y) .

Therefore, z is a root of Φγ(z) = 1 if and only if either of the following
conditions holds:

(i) z = y + p*.

Γ°°
(ii) z / y and β(a)e~(λ^^+y-z}a da = 1 .

Jo

From the theory of analytic functions it follows that there is some constant p
(0 < p < p*) with

Γ^
(3.32) β(a)e~(λί+p)a da ̂  1

Jo

for Re p > p and p φ p*. Consequently,

(3.33) Φy(z) Φ\ for Re z < Re y + p* - p .

Now, let Re y > — (p* — p). Since σ(A) lies in the left half-plane Re y < 0,
it follows from (3.30) and (3.33) that D(γ) has a bounded inverse, and therefore,
(3.23) has a unique solution in Y2 given by

(3.34) lf = (l - JΓ*(7)Γ1Fyί;.

This completes the proof.
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