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§1. Introduction

Let M be a compact connected oriented n-dimensional topological manifold

with an integral cohomology class γeHί(M; Z) of infinite order. Then we

have the infinite cyclic covering space M over M associated with γ and the

finitely generated Λ-modules

H*(M) = H*(M; Z) and H*(M, dM) = H J M , dM; Z).

Here A is the integral group ring of the infinite cyclic group generated by ί, and

t acts on these homology groups by the induced isomorphisms of the generator

specified by γ of the covering transformation group.

Now, we recall the result of A. Kawauchi on these Λ-modules, by using the

following notations for any finitely generated Λ-module H:

DH = the unique maximal finite Λ-submodule of H,

toτΛH(τQsp. tor H) = the Λ-(resp. Z-) torsion part of H,

BH = H/toτΛH, Έ}H = Ext'Λ(#, A) = the i-th Ext-group over A.

THEOREM 1 (Kawauchi's second duality theorem [7]). Let p and q be

integers with p + q = n — 2. Then there exist t-anti A-epimorphisms

ΘP:DHP(M) > Έ}BHq+xiti9 dM), θ'q:DHq(M, dM) > &BHP

such that the finite A-submodules Ker θp and Ker θ'q are dual by a t-isometric,
( — i)pq+1-symmetric and non-singular pairing

/:Ker θp x Ker θq > Q/Z (Q:the rational number field).

Moreover, this pairing is a proper oriented homotopy invariant.

In this paper, we study this pairing in a geometric way under the following
assumption (*), and give some applications on knotted surfaces in S4.

(*) For M and γ of above, assume that the Poincare dual of γ in

ifn-iίM, dM) can be represented by a bicollared proper oriented (n — 1)-

dimensional submanifold V of M, which may be regarded as Va M.

Under this assumption, we have the linking pairing
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ίv\ toτHp(V) x toτHq(V, dV) > Q/Z (p + q = n - 2)

of the torsion parts of the integral homology groups HP(V) and Hq(V, δV), and

the inclusion i:(V, dV) a (M, dM) induces the homomorphisms

i+:toτHp(V) > Hp(M), i*:torHq(V, dV) > Hq(M, dM).

Then, Theorem 1 is presented by the following

THEOREM 2. Under the assumption (*), there exist subgroups

Θp cz toτHp(V) and Θ'q c \oxHq{V, δV)

such that i^Θp = Ker0p, i^Θq = Kerθq and the pairing ί in Theorem 1 is

induced from the restriction of the linking pairing ίv via i#.

These theorems are a generalization of the results of Farber [5] and Levine

[11] which treat the case that tor Hp(M) and torHq(M, dM) arc finite and

BHp+ι(M) = BHq + 1(M, dM) = 0. For the case of a link in S\ Kawauchi [8]

gave some applications of Theorem 1.

Now, we consider a knotted surface (S4, 27), that is, a smoothly embedded

closed connected oriented surface Σ in the oriented 4-sphere S4. Let M = S4

— IntN(Σ) be the exterior of a closed tubular neighborfood N(Σ). Then

HX(M) ^ H2{Σ) = Z by the Alexander duality, and we have the infinite cyclic

covering space M over M associated with the dual class γeH1(M) of the

orientation class [Σ]eH2(Σ). Moreover, Kin the assumption (*) is obtained

by a Seifert manifold of (S4, Σ).

Therefore, we have the following

COROLLARY 3. Let (S4, Σ) be a knotted surface. Then Theorems 1 and 2

(w = 4, p = q — 1) are valid for the infinite cyclic covering space M over its

exterior and a Seifert manifold V of (S4, Σ) by regarding Vcz M.

In this case, tor H is finite for H = H1(M) and Hx{M,dM) (cf. [10,

Lemme Π.8]), hence DH = tor H.

COROLLARY 4. In Corollary 3, assume that V is constructed to satisfy

tor H^V) = 0 or tor H^V, dV) = 0. Then θ1 and θ\ in Theorem 1 induce the

t-anti Λ-isomorphisms

^M) s E1BH2{M, dM), ^itorf/^M, dM) s EίBH2(M).

Moreover, we shall prove the following

THEOREM 5. For any odd integer p (\p\ Φ 1) there exists an irreducible

ribbon torus (S4, F) whose group π1(S4 — F) is isomorphic, preserving meridian, to

the group of the knotted sphere called the 2-twist spin of the (2, p) torus knot.
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When (S4, 27) is a ribbon surface, we can apply Corollary 4 because the

assumption is seen by Yanagawa's method [9,21]. So we have tor

H^M) s E1BH2(M, dM). On the other hand, tor HX(M) is calculated from

the group π1(Af) = πi{S4' — Σ) by using Fox's free differential calculus

(cf. [19, 6.7]).

EXAMPLE 6. For any odd integer p there is a ribbon torus (S4, F) such that

( 5 4 F ) < " 1 = a~\ aP = 1>.

In Example 6, π is isomorphic to the group of the knotted sphere stated in

Theorem 5 (cf. [22]), and the A -module Έ1BH2(M9 dM) is ί-anti isomorphic to

torH^M) ^ A/Ip for the ideal Ip of A generated by t + 1 and p. Hence the

ribbon torus in Example 6 gives the example of Theorem 5 because we can

prove the following

COROLLARY 3.9. For any reducible knotted torus, E1BH2(M, dM) = 0.

The irreducibility of some knotted surfaces has been proved by several

authors [1, 3, 12, 13, 14]. But their methods are not applicable to the above

example because they studied only the fundamental groups.

Moreover, by using this example, we can construct knotted surfaces which

have isomorphic groups and peripheral subgroups, but are not stably equivalent

each other (Proposition 4.8). It is known that stably equivalent knotted

surfaces have isomorphic groups and peripheral subgroups (cf. [3, Lemma 11]).

Our example shows that the reverse is not true.

The author would like to express his sincere gratitude to Professor Akio

Kawauchi for guiding him to the second duality theorem and for many helpful

suggestions. The author also thanks to Professors Masahiro Sugawara and

Takao Matumoto for their encouragement.

§2. Proof of Theorem 2

Hereafter, the integral (co)homology group is denoted by omitting its

coefficient group Z.

Assume that there exists Fwith the inclusion ί:(V, dV) a (M, dM) in (*) of

§1, and consider the orientation class and its image

and μ = iΦlV]eHH^1(tt9 dtt).

Then we have the commutative diagrams
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Z)-^-» Hq+1(M,

1-
dM) •

Λτ/\ Π |_K J

^K) >

,(M)

ί'

H"(M;Q/Z) -^-> HP+1(M) - ^ - * Hq(M, dM)

Hp(V;Q/Z) -Ϊ-+ Hp+1(V) ^ 4 Hq(K dV)

(p + q = n — 2), where <5 denotes the Bockstein coboundary homomorphism
associated with the exact sequence 0-• Z-> β-• β/Z->0 of the coefficient
groups.

Here, we recall also the following fact which is verified by A. Kawauchi in
the proof of Theorem 1:

LEMMA 2.1 ([7, p. 650]). The upper compositions

(Γιμ)°δ:Hq(M9 dM Q/Z) • HP(M), HP(M;Q/Z) • Hq(M, dM)

in the above diagrams are t-anti Λ-homomorphisms9 and their images are

Ker0p( cz DHP(M))9 Keτθ'q ( c DHq(M, dM))

in Theorem 1, respectively. Moreover, the pairing £ in Theorem 1 is given by

for any x = δx'Γ\μe KQTΘP and y = δy'Πμe Kerθq9 where x' eHq(M, dM; Q/Z),
y'eHp(M\Q/Z) and xf Uδy'eHn~x(β, dM Q/Z).

On the other hand, in the second row of each diagram, Im δ is the torsion

part of the range group by the definition of δ, and the linking pairing

Sv:torHp(V) x toriί,(K dV) > Q/Z

is defined by Sv(a, b) = (- l ) p + 1 <α', b} for any a = δa?n[Y]etoτHp(V)9 where

a'eHq(V9 dV Q/Z), and betoτHq(V, dV)(cΐ. [16, p.288]). Moreover, we have
the subgroups

6>p = Im[(n[K])°/*o<5] and Θ'q =

of tor HP(V) and tor Hq(V, dV), respectively.

LEMMA 2.2. i+:Hp(V)-*Hp(ϊft)9 Hq(V, dV)^> Hq(M9 dM) induce the
isomorphisms

θp, Θ'q/(Θ'qnKer ij s Ker ffq9
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and f(i*a9 i+b) = (— l)Vκ(α, b) holds for any aeΘp and beΘ'q. Moreover,

Θp Π Ker i^ and Θ'q n Ker i+ are the annihilators of Θq and Θp, respectively, by the

restricted pairing έv\ Θp x Θ'q -• Q/Z of ίv.

PROOF. The first half follows from the commutativity of the above

diagrams, Lemma 2.1 and the definition of £v. In fact, we see that

( - i ) * + V 0 > , i*b) = < χ ' u ί / , μ> = <i*χ\ / % ' n [ η > = ( - i)p+Vκ(α, b)

for α = !*<5x'n[K] and fc = i*<5/n[K], since μ = i J | t[K]. The second half

follows from the first half, since the pairing / is non-singular by Theorem 1.

Therefore, Theorem 2 is proved.

§3. Knotted surfaces in S4

In the rest of this paper, we are concerned with a knotted surface (S4, 27),

that is, a smoothly embedded closed connected oriented surface Σ in S4. As

stated in §1, we have the infinite cyclic covering

pΣ:MΣ > MΣ over its exterior MΣ = S 4 - Int N(Σ)

(N(Σ) is a closed tubular neighborfood of Σ in S4), associated with the

Alexander dual yΣeH1(MΣ) of [27] and the Λ-modules H+(MΣ) and

H*(MΣ, dKίΣ). We study these Λ-modules by denoting

Φ*{Σ) = H*(MΣ) and ^ ( 2 } = H^MΣ, dMΣ).

(We sometimes omit the suffix 27.)

Two knotted surfaces (S4, 27) and (S4, 27') are equivalent if there exists a

diffeomorphism /: (S4, 27) -• (S4, 27) preserving the orientations of S4, 27 and

27'. In this case,/induces the diffeomorphism/:MΣ-+ MΣ' with/*)y = γΣ, and

so the equivalence /: MΣ -• MΣ> of the coverings; hence the ^-modules ΦJ|t(27)

and Ψ*(Σ) are isomorphic to Φ^(27') and ¥^(27'), respectively.

For knotted surfaces (S4, 27) and (54, 27), consider the connected sum

(cf. [3, §3]). Then, it is easy to see that

MΣ%Σ> » MΣϋMΣ', MΣΓ\MΣ> « D2 x S1,

MΣsΣ> « MΣ U M x s M^ Π MΣ> & D2 x R9

dMΣ%Σ> « ( δ M x - Int (D 2 x R))[){dMΣ> - Int ( D 2 x /?)),

where « means a diffeomorphism. Also, for any knotted surface (S4, 27), the

inclusion dMΣ a MΣ induces the zero map on the second homology group by

the existence of V. So we obtain the following
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LEMMA 3.1. The finitely generated Λ-modules Φ*(Σ) and Ψ*{Σ) are

determined by the equivalence class of a knotted surface (S4, Σ). For the

connected sum (S\ Σ#Γ) = (S4, Σ)#(S\ Σ) of knotted surfaces, we have the

following direct sum decomposition of the Λ-modules.

Φi{Σ#F) = Φt(Σ) 0 Φ^Σ) for i > 1,

Ψj(Σ#Γ) = Ψj(Σ) 0 Ψj(Σ) for j = 1 and 2.

Now, we consider the tensor product Γ = A (x) Q over Z and prepare the

following

L E M M A 3.2. Let H be a finitely generated Γ-module, and consider τ:H -> H,

the multiplication by t — 1.

(1) If H is a torsion Γ-module and Ker τ ^ Q, then Coker τ ^ Q.

(2) If τ is epimorphic, then τ is ίsomorphic and H is a torsion Γ-module.

(3) If τ is monomorphic, then Coker τ ^ Qh for some h>0, and BΓH

= H/toτΓH is isomorphic to Γh.

PROOF. Since Γ is a principal ideal domain, H is represented by a direct

sum of some copies of /"-modules

Λ Γ/Γ(n> 1) and Γ/Jf,

where / is the ideal of Γ generated by t — 1 and Jf is the one by some fe Γ

which is coprime to t — 1 (cf. [2]).

By the definition, τ:H -• H is isomorphic when H = Γ/Jf,

Ker τ = 0, Coker τ = Γ/I when H = Γ, and

Ker τ = Coker τ = Γ/I when H = Γ/Γ{n > 1).

Thus we see the lemma since Γ/I = Q as Z-module.

LEMMA 3.3. For a knotted surface (S4, Σ), mnkΛΨ2(Σ) = 2g(g is the genus
of Σ) and rankΛΦX{Σ) = 0.

PROOF. We consider the following Wang exact sequence of the rational

homology groups associated to the covering p = pΣ:(M, dM) -• (M, δM)9 where

M = MΣ and M = MΣ(cϊ. [15]):

; 0

(g) β - ^ H£(M, dM Q)

where ^ ( 2 ) ® β = H f(M, dM β) is a finitely generated Γ-module by the Λ-

module Ψt{Σ) = H^M, dM) and τf is the multiplication by ί - 1.
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In this sequence, Ht(M9 dM; β) ^ //4~f(M; β) is isomorphic to β if i = 3 or
4, Q29 if i = 2, 0 otherwise, by the Alexander duality H^'^M; β) ^ Ht-^Σ; β).
Also, ^4 (27) = //4(M, dM) = 0 since M is an open 4-dimensional manifold.
Therefore, by the exactness and Lemma 3.2, we see that

Ker τ 3 ^ β, hence Coker τ3 ^ β and Ker τ2 = 0,

Coker τx = 0, hence Ker τx = 0 and Coker τ 2 = Q2g,

and these show BΓ(Ψ2(Σ) (g) β) ^ Γ2*. Hence

(^2 ® β) (X)reCO = ^r(^2 <8> β) <8>rG(Γ) S β(Γ)2^ s Q{Λ)2β

for ^ 2 = ^ 2 (2), where Q(Λ) and β(Γ) is the quotient fields of A and Γ,
respectively. Thus we see that ra.nkΛΨ2(Σ) = 2g.

To show the second equality, we consider the Wang exact sequence

of the covering p:M —• M, where Φi(X) = H^M) and τf is the multiplication by
t - 1. Then, Φo(2) ^ Z, τ0 = 0 and HX(M; β) ^ H2(i7; β) ^ β Hence 3 is
isomorphic and τx is epimorphic. Thus BΓ(Φ1(Σ) ® β) = 0 by Lemma 3.2 (2),
which shows rank ΛΦ1(i7) = 0 in the same way as above.

DEFINITION 3.4. A knotted surface (S4, Σ) is denoted frequently by (S4, Σg)
if the genus of Σ is g, and is called a knotted sphere (resp. torws) when # = 0
(resp. 1). An unknotted torus, denoted by (S4, T), is a knotted torus such that
T bounds a solid torus in S4 (cf. [6]).

LEMMA 3.5. Ψ2(T) = H2(MT, dMτ) is isomorphic to A2.

PROOF. Consider (S3, S1) x S1, where (S3, S1) is an unknot. Then the
exterior Mτ is obtained from(53--Int NiS1)) x S1* D2 x 5j x S1 by a surgery
along a curve p x q x S1 with pelnt D2 and ^eSj. Thus Ui{Mτ) = Z and

π i (M Γ ) = 0. Hence Ψ2(T) is Λ-free by [8, Lemma 2.1] and so Ψ2(T) ^ A2 by
Lemma 3.3.

DEFINITION. 3.6. For a finitely generated Λ-module H, we denote by
e(/f) the minimum number of generators of H as Λ-module.

PROPOSITION 3.7. Assume that a knotted surface (S4, Σg) is equivalent to
the connected sum

(S\ Σh)#(S\ T)# - #(S\ T)(g>h>0)

of (S4, Σh) and g -h unknotted tori (S4, T). Then

e(E2EίBΨ2(Σg))<2h.
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Moreover, if h = 0 in addition, then

BΨ2(Σg) s Λ2β and E1BΨ2(Σg) = 0.

(Here, BH = H/toτΛH and EιH = Ext^(if, A), as stated in §1.)

PROOF. BΨ2(T)^Λ2 by Lemma 3.5. Thus, by the assumption and

Lemma 3.1, we have the direct sum decomposition

Therefore EιBΨ2(Σg) s E1BΨ2(ΣJ. On the other hand, by [7, Lemma 3.6],
there is a natural exact sequence

0 > BΨ2(Σh) > E°E°B^2(i:Λ) • E2EιBΨ2(Σh) > 0

and E°BΨ2(Σh) is Λ-free. This implies that eiE^BΨ^ΣJ) <2h, since

E°BΨ2(Σh) £ Λ2Λ by Lemma 3.3. In particular, if ft = 0, then E°BΨ2(Σ0) = 0,

so the above exact sequence shows that BΨ2(Σ0) = 0. Thus we obtain that

BΨ2{Σg) = Λ2<> and E1BΨ2(ΣJ = 0.

DEFINITION 3.8. A knotted surface (54, Σ) is irreducible if it is not

equivalent to the connected sum (S4, Σ')#(S*, T) of any knotted surface (S',27')

and an unknotted torus (S4, T). Otherwise, it is reducible.

COROLLARY 3.9. E ^ ^ Z ) = 0 for a reducible torus (S4, Z).

§4. Theorem 5 and applications.

DEFINITION. 4.1. A knotted surface (S4, Σ) is said to be a ribbon surface if

there is an immersion ϊ.W3 -> S4, of a solid handlebody W3, satisfying the

following three properties (cf. [9,12]);

(1) i\d\V is a diffeomorphism onto Σ.

(2) i has no triple points.

(3) The singular set of i consists of disjoint 2-disks Dl9 -, Dn, Df

ί, ',D^,

where Dt is properly embedded in W, D c Int (W) and Γ^ίiDj)) = ^UZ)j for;

PROPOSITION 4.2. For a ribbon surface (S4, Σg), we have E1BΨ2(Σg) s tor

PROOF. By Yanagawa's method (cf. [21, Th. 2.3], [9, Lemma 4.2]), we

can construct a Seifert manifold V3 of (S4, Σg) such that tor H^V) = 0, where a

Seifert manifold means a smoothly embedded compact connected oriented 3-

dimensional manifold in S4 whose boundary is Σg. According to Corollary 4,

tor Φχ(Σg) and E1BΨ2(Σg) are ί-anti isomorphic.
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On the other hand π^S4 — Σg) has a Wirtinger presentation with n

generators and n — 1 + g relations for some positive integer n, because (S4, Σg)

is a ribbon surface (cf. [9, Cor. 4.13]). Then using a pre-abelian presentation,

Fox's free differential calculus deduces the following exact sequence of Λ-

modules (cf. [19, 6.7]):

n-1 0,

where A is a presentation matrix. Since A has the global dimension 2, Ker A

is Λ-projective and so it is Λ-free (cf. [4, VI, Prop. 2.1], [18]). Therefore we

see that Ker A ^ A9 by taking the tensor products <S>ΛQ{A) of the above exact

sequence, because rankΛΦ1(i7 f f) = 0 by Lemma 3.3. Thus, we have a Λ-free

resolution

0 > A9 • An~1+9 • A"-1 > ΦΛΣg) • 0

of Φx{Σg). Therefore by the definition of E 2 = Ext^( - , Λ)9 we have the A-

epimorphism Aβ ^E 2 Φ 1 ( i7^), which implies e{E20^g)) <g.

REMARK 4.3. Let Ip be an ideal of A generated by t + 1 and p, where p is

an odd prime. Then Φx{Σg) is not isomorphic to A/Γp for all n > g + 1. This

follows from Proposition 4.2, because e(E2(A/Γp)) = n by [17, Lemma 3].

Now, we construct a ribbon torus (S4, F) in Example 6 and prove

Theorem 5.

Let p be an odd integer, and consider the group

π = <x, y x = vxv'1, y = \vxw~1}

where v = ap, w = a(1~p)/2 and a = yx~x. Then, by Yajima's method [20], we

can construct a ribbon torus (S4, F) whose group π x (S 4 — F) is π as follows:

Take the trivial 2-link in S 4 with two components whose meridians are x and

y. Then we obtain (S4, F) by attaching two embedded 1-handles to it

corresponding to the elements v and w. Eliminating y from the above

presentation of π, we obtain

π = <x, α; xαx" 1 = α " 1 , ap = 1>.

This is the group of the 2-twist spin of the (2, p) torus knot (cf. [22]) and note

that x is a meridian element. On the other hand, Fox's free differential

calculus (cf. [19, 6.7]) on the above presentation of π x ( 5 4 — F) = π shows that

Φi(F) = A/Ip, where Ip is an ideal of A generated by t + 1 and p. Therefore

E1BΨ2(F) s tor Φ^F)^ A/Ip by Proposition 4.2; hence (S4, F) is irreducible

for |p | Φ 1 by Corollary 3.9. Thus Theorem 5 is proved by this ribbon torus

(S\ F).

Hereafter, we study the following subgroup of π ^ S 4 — Σ) ^ π ^ M ^ :
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DEFINITION 4.4. We call the image of i#:π1(3M2;)->π1(M2;) induced by

i:dMΣa MΣ the peripheral subgroup of a knotted surface (S4, Σ). If this

subgroup is isomorphic to Z, then we say that it is trivial. For example if

(S4, Σ) is a knotted sphere or an unknotted torus, then the peripheral subgroup

is trivial.

LEMMA 4.5. If knotted surfaces (S4, Σ) and (S4, Σ') have trivial peripheral

subgroups, then so does (S4, Σ#Σr).

PROOF. We see the lemma because n1(MΣ^Σ

f) is the amalgamated product

of π1(MΣ) and π1(MΣ

f) by the infinite cyclic group generated by meridian.

LEMMA 4.6. The peripheral subgroup of the ribbon torus (S4, F) constructed

above is trivial.

PROOF. Consider a closed tubular neighborhood N(F) as a normal bundle

over F9 which is a trivial bundle. Then by [12, Lemma 1], there is a section

s: F -• dN{F) = dMF such that s: F -• <9MF cz MF induces s* = 0: H1 (F)

-^H^Mp), and such 5 is unique up to homotopy.

Now, we take generators α l 9 α2 and α3 of π1(dMF) = Z x Z x Z a s follows:

α£ = s(α/) (ί = 1,2), where a[ is a belt circle (resp. α2 is a loop which goes round

once) on the embedded 1-handle in S4 corresponding to v in the construction of

F, and α3 is a meridian, that is, a fiber of the normal circle bundle dN(F)-> F.

Consider i^ .π1(dMF)-^π1(MF)9 then i^a1 = 1 by definition. Also i#a2 = 1

by the relation υ = ap = 1 in the second presentation of π = πx(MF). Thus

i9π1(dMF) s Z as desired.

DEFINITION 4.7. Knotted surfaces (S4, Σ) and (S4, Γ') are said to be stably

equivalent if (54, Σ)#(#(S\ T)) and (S4, Σ)#(#(S\ T)) are equivalent for some

m and n.

PROPOSITION 4.8. For an arbitrary positive integer n, there exist n knotted

surfaces in S4 which have isomorphic groups and peripheral subgroups, but are not

stably equivalent each other.

PROOF. Let (S4, F) be the same one in Lemma 4.6 and (S4, K) be the 2-

twist spin of the (2, p) torus knot. For ί = 0,•• ,n — 1 , we consider the

connected sum

(5 4,F ί) = # ( 5 4 , F ) # ( Π # \s\K)).

Since E1BΨ2(K) = 0 by Proposition 3.7 and Έ1BΨ2(F) s Λ/J, by the proof of

Theorem 5, we obtain by Lemma 3.1, E1BΨ2(Fi) s (^//p)'. By Lemmas 3.1

and 3.5, E1BΨ2 does not change by the connected sum with an unknotted

torus. Thus these knotted surfaces (S4, Ft) are not stably equivalent each
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other. Moreover, (S4, K) and (S4, F) have isomorphic groups and trivial

peripheral subgroups by Theorem 5 and Lemma 4.6. Therefore the proof is

completed by Lemma 4.5.
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