A distortion theorem for conformal mappings with an application to subharmonic functions

Dedicated to Professor T. Fuji'i'e on his 60th birthday

Makoto MASUMOTO

(Received June 27, 1989)

1. Introduction

Let f be a conformal mapping of a domain D_0 of C bounded by a finitely many analytic curves. Our first purpose of this paper is to establish the following relation between |f'(z)| and the Poincaré metric $\lambda_{D_0}(z)$ for D_0 .

THEOREM I. If $f(D_0)$ satisfies an exterior θ -wedge condition, then there exists m > 0 such that

$$\frac{1}{|f'(z)|} \le m\lambda_{D_0}(z)^{1-\theta}$$

for $z \in D_0$.

Here, a finitely connected domain D is said to satisfy an exterior θ -wedge condition if it is bounded and there exist $\rho > 0$ and $\theta \in (0, 1)$ such that, for every $\omega \in \partial D$, a closed sector of radius ρ and opening $\pi \theta$ with vertex at ω lies in $\mathbf{C} - D$.

Recently, N. Suzuki has obtained the following theorem:

THEOREM (Suzuki [5, Theorem 2]). Let D be a bounded $C^{1,1}$ -domain of C, and denote by $\delta_D(z)$ the distance between $z \in D$ and ∂D . Set $\alpha(p) = 1 + \max\{1-p,0\}$ for 0 . If a nonnegative subharmonic function s on Dsatisfies

$$\iint_D \delta_D(z)^{-\alpha(p)} s(z)^p \, dx \, dy < +\infty , \qquad z = x + iy ,$$

then s must vanish identically.

We apply Theorem I to generalize Suzuki's theorem:

THEOREM II. Suppose that D satisfies an exterior θ -wedge condition. Set $\beta(p, \theta) = 2 - \min \{1, p\}/(2 - \theta)$. If a nonnegative subharmonic function s on D satisfies

Makoto MASUMOTO

$$\iint_D \delta_D(z)^{-\beta(p,\theta)} s(z)^p \, dx \, dy < +\infty \; ,$$

then $s \equiv 0$ on D.

After summarizing elementary properties of the Poincaré metric in \$2, we will give a proof of Theorem I in \$3. Theorem II will be proved in \$4, where examples are also given.

2. The Poincaré metric

Let $\Delta(a; r)$ denote the open disk of radius r with center at a. We set $\Delta = \Delta(0; 1)$.

Let *D* be a domain of the Riemann sphere $\hat{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$ whose complement $\hat{\mathbf{C}} - D$ consists of more than two points. The universal covering surface of *D* is conformally equivalent to Δ . Let $\pi: \Delta \to D$ be a universal covering map. The Poincaré metric $\lambda_D(z)|dz|$ for *D* is defined by

$$\lambda_D(\pi(\zeta))|\pi'(\zeta)| = rac{1}{1-|\zeta|^2}, \qquad \zeta \in \varDelta.$$

Note that λ_D is a continuous function on D and does not depend on the choice of π .

The following properties of the Poincaré metric are well known (see, for example, Kra [3, Proposition 1.1 in Chapter II]).

LEMMA 1. (i) If f is a conformal mapping, then

$$\lambda_{f(D)}(f(z))|f'(z)| = \lambda_D(z), \qquad z \in D.$$

- (ii) If $D_1 \subset D_2$, then $\lambda_{D_2}(z) \leq \lambda_{D_1}(z)$ for $z \in D_1$.
- (iii) Let $\delta_D(z) = \inf \{ |z \zeta| | \zeta \in \partial D \}$. Then
 - $\lambda_D(z)\delta_D(z) \le 1$, $z \in D$.
- (iv) If D is simply connected and $\infty \notin D$, then

$$\lambda_D(z)\delta_D(z) \ge \frac{1}{4}, \qquad z \in D$$

In this paper we are concerned with finitely connected subdomains D of C such that every component of $\hat{C} - D$ contains at least two points. We denote the class of such domains by \mathscr{E}_0 . We need a generalization of Lemma 1 (iv) to the case $D \in \mathscr{E}_0$.

LEMMA 2. If $D \in \mathscr{E}_0$, then there exists m > 0 such that

Distortion theorem for conformal mappings

$$\lambda_D(z)\delta_D(z) \ge m$$

for $z \in D$.

Before proving Lemma 2, we remark the following lemma.

LEMMA 3. If D is simply connected and contains ∞ , then for each R > 0 there exists m > 0 such that

$$\lambda_D(z)\delta_D(z) \ge m$$

for $z \in D \cap \Delta(0; R)$.

PROOF. Let $a \in \mathbb{C} - D$, and set f(z) = 1/(z - a). If $z \in D - \{\infty\}$ and w = f(z), then $f^{-1}(\Delta(w; r))$ contains $\Delta(z; r/|w|(|w| + r))$. In particular, letting $r = \delta_{f(D)}(w)$, we have

$$\delta_D(z) \geq \frac{\delta_{f(D)}(w)}{|w|(|w| + \delta_{f(D)}(w))}.$$

We now apply Lemma 1 (i) and (iv) to obtain

$$\lambda_D(z)\delta_D(z) = \lambda_{f(D)}(w)|w|^2\delta_D(z) \ge \frac{|w|}{4(|w| + \delta_{f(D)}(w))}$$

Since $\delta_{f(D)}(w) = O(|w|)$ as $w \to \infty$ because of the fact that $\delta_{f(D)}(w) \le |w - \omega|$ for $w \in f(D)$ and $\omega \in \mathbb{C} - f(D)$ and since $|w| \ge (R + |a|)^{-1}$ if $|z| \le R$, we have the lemma.

PROOF OF LEMMA 2. Let C_1, \ldots, C_n be the components of $\hat{\mathbf{C}} - D$, and set $D_j = \hat{\mathbf{C}} - C_j$ for $j = 1, \ldots, n$. We assume that $\infty \in C_1$. Since $\lambda_D(z) \ge \lambda_{D_j}(z)$ by Lemma 1 (ii), it follows from Lemma 1 (iv) and Lemma 3 that

$$\inf_{\epsilon D \cap \Delta(0;R)} \lambda_D(z) \delta_D(z) > 0$$

for each R > 0. Thus, if D is bounded, then we have done.

z

Assume now that D is unbounded. We can find $R_0 > 0$ such that $\delta_{D_1}(z) \le 2\delta_{D_j}(z), \ 2 \le j \le n$, for $z \in D - \Delta(0; R_0)$. Then $\delta_D(z) = \min \{\delta_{D_1}(z), \ldots, \delta_{D_n}(z)\} \ge \delta_{D_1}(z)/2$, and hence by Lemma 1 (ii) and (iv)

$$\lambda_D(z)\delta_D(z) \ge \frac{1}{2}\lambda_{D_1}(z)\delta_{D_1}(z) \ge \frac{1}{8}$$

for $z \in D - \Delta(0; R_0)$. This completes the proof.

REMARK. If a is an isolated point of $\mathbf{C} - D$, then $\lambda_D(z)\delta_D(z)|\log \delta_D(z)|$ is bounded above and bounded away from zero for z sufficiently near a. For

general D it is known that

$$\inf_{\substack{e \ D \cap \mathcal{A}(0; R)}} \lambda_D(z) \delta_D(z) (1 + |\log \delta_D(z)|) > 0$$

for each R > 0 (cf. Kra [3, Lemma 2.3 in Chapter V]).

3. Distortion theorem for conformal mappings

First we introduce subclasses \mathscr{E}_{θ} , $0 < \theta \leq 1$, of \mathscr{E}_{0} . Let $D \in \mathscr{E}_{0}$ be a bounded domain. If there exist $\rho > 0$ and $\theta \in (0, 1)$ such that for every $\omega \in \partial D$ a closed circular sector with vertex at ω which is congruent to

$$S(\rho, \theta) = \{ w \in \mathbb{C} | 0 \le |w| \le \rho, 0 \le \arg w \le \pi \theta \}$$

lies in $\mathbb{C} - D$, then D is said to satisfy an exterior θ -wedge condition, and we denote the set of such domains D by \mathscr{E}_{θ} . If there exists $\rho > 0$ such that for every $\omega \in \partial D$ a closed disk of radius ρ containing ω lies in $\mathbb{C} - D$, then D is said to satisfy an exterior disk condition, and we denote the set of such domains D by \mathscr{E}_1 . If each component of ∂D is a simple analytic curve, then D is called regular.

It is trivial that $\mathscr{E}_{\theta_1} \supset \mathscr{E}_{\theta_2}$ if $0 \le \theta_1 \le \theta_2 \le 1$. A bounded Lipschitz domain belongs to \mathscr{E}_{θ} for some $\theta \in (0, 1)$. Also, a bounded $C^{1,1}$ -domain belongs to \mathscr{E}_1 ; in particular, regular domains are contained in \mathscr{E}_1 . If a component C of the boundary of $D \in \mathscr{E}_{\theta}$, $\theta > 0$, is a Jordan curve, then C is rectifiable (cf. FitzGerald-Lesley [1], [2]). Note, however, that components of the boundary of $D \in \mathscr{E}_{\theta}$, $0 \le \theta \le 1$, are not necessarily Jordan curves.

Theorem I stated in the introduction is contained in the following theorem.

THEOREM 1. Let f be a conformal mapping of a regular domain D_0 onto a domain D of C. If $D \in \mathscr{E}_{\theta}$, $0 \le \theta \le 1$, then there exists m > 0 such that

$$\frac{1}{|f'(z)|} \le m\lambda_{D_0}(z)^{1-\theta}$$

for $z \in D_0$.

PROOF. The conformal mapping f induces a bijection between the set of components of ∂D_0 and the set of components of $\hat{\mathbf{C}} - D$. Let C_0 be a component of ∂D_0 , and let C be the component of $\hat{\mathbf{C}} - D$ that corresponds to C_0 under the bijection. (In this case we will simply say that C_0 corresponds to C under f.) Let f_1 be a conformal mapping of the unit disk Δ onto $D_1 = \hat{\mathbf{C}} - C$. We consider three cases.

Case 1: $\theta = 0$. Assume first that $\infty \in C$. By Koebe's distortion theorem we can choose $m_1 > 0$ such that $|f'_1(\zeta)|\lambda_d(\zeta) \ge m_1$ for $\zeta \in \Delta$. Set $\varphi = f_1^{-1} \circ f$

and $\Delta_0 = f_1^{-1}(D) \subset \Delta$. Then φ is a conformal mapping of D_0 onto Δ_0 . Since φ is extended to a homeomorphism of $D_0 \cup C_0$ onto $\Delta_0 \cup \partial \Delta$ and both C_0 and $\partial \Delta$ are analytic, we can continue φ conformally beyond C_0 by the reflection principle. In particular, $|\varphi'(z)| \ge m_2 > 0$ in a neighborhood of C_0 . Hence, for $z \in D_0$ sufficiently near C_0 , we have by Lemma 1 (i) and (ii)

$$\begin{split} |f'(z)|\lambda_{D_0}(z) &= |f'_1(\varphi(z))| |\varphi'(z)|\lambda_{D_0}(z) \\ &= |f'_1(\varphi(z))| |\varphi'(z)|^2 \lambda_{d_0}(\varphi(z)) \\ &\geq m_2^2 |f'_1(\varphi(z))| \lambda_d(\varphi(z)) \\ &\geq m_1 m_2^2 > 0 \;. \end{split}$$

Next assume that C is bounded. Let $a \in C$, and set h(w) = 1/(w - a) and $D_2 = h(D)$. Then $f_2 = h \circ f : D_0 \to D_2$ is conformal, and C_0 corresponds to the unbounded component of $\hat{\mathbf{C}} - D_2$ under f_2 . Thus, as was shown in the preceding paragraph, there exists $m_3 > 0$ such that $|f'_2(z)|\lambda_{D_0}(z) \ge m_3$ for $z \in D$ near C_0 , and hence

$$|f'(z)|\lambda_{D_0}(z) \ge m_3|f(z) - a|^2$$
.

Taking distinct points $a, b \in C$, we see that

$$|f'(z)|\lambda_{D_0}(z) \ge m_4 \max\{|f(z) - a|^2, |f(z) - b|^2\} \ge m_4 \frac{|a - b|^2}{4} > 0$$

near C_0 .

We have shown that $|f'(z)|\lambda_{D_0}(z)$ is bounded away from 0 near ∂D_0 . Since $|f'(z)|\lambda_{D_0}(z)$ is positive and continuous in D_0 , we obtain the desired estimate.

Case 2: $0 < \theta < 1$. We suppose that for each $\omega \in \partial D$ a closed circular sector S_{ω} with vertex at ω which is congruent to $S(\rho, \theta)$ lies in $\mathbb{C} - D$. Fix a conformal mapping $g : \Delta \to \hat{\mathbb{C}} - S(\rho, \theta)$, which is extended homeomorphically to the closed disk, such that g(1) = 0. Since there exists a conformal mapping \tilde{g} of a neighborhood of 1 such that $g(\zeta) = \tilde{g}(\zeta)^{2-\theta}$, we see that for some $m_5 > 0$

(1)
$$g(\varDelta(0; r)) \cap \varDelta(0; m_5(1-r)^{2-\theta}) = \emptyset, \quad 0 \le r < 1.$$

Now take $z \in D_0$ sufficiently near C_0 so that a point $\omega \in C$ lies on the circle $\partial \Delta(w; \delta_D(w))$, where w = f(z). For an appropriate $\eta \in \partial \Delta$ the function $g_{\omega} = \eta g + \omega$ maps Δ conformally onto $\hat{\mathbf{C}} - S_{\omega}$, and $g_{\omega}(1) = \omega$. Since $g_{\omega}^{-1} \circ f_1(\Delta) \subset \Delta$, it follows from Schwarz's lemma that

$$f_1(\varDelta(0;r)) \subset g_\omega \circ h_\omega(\varDelta(0;r)),$$

where h_{ω} is a Möbius transformation of Δ which maps 0 to $c_{\omega} = g_{\omega}^{-1} \circ f_1(0) = g^{-1}(\overline{\eta}(f_1(0) - \omega))$. Observe that $c_{\omega}, \omega \in C$, stay in a compact subset of Δ .

Makoto MASUMOTO

Therefore, in view of (1) we have for some $m_6 > 0$

$$f_1(\varDelta(0;r)) \cap \varDelta(\omega; m_6(1-r)^{2-\theta}) = \emptyset \;, \qquad 0 \leq r < 1 \;,$$

for all $\omega \in C$. In particular, letting $r = |\zeta|, \zeta = f_1^{-1}(w)$, we obtain

$$\delta_{D_1}(w) = \delta_D(w) \ge m_6(1-r)^{2-\theta} \ge m_7 \lambda_A(\zeta)^{-(2-\theta)}$$

for all w near C. Consequently, by Lemma 1 (i) and (iii)

$$\frac{1}{|f_1'(\zeta)|} = \frac{\lambda_{D_1}(w)}{\lambda_d(\zeta)} \le \frac{1}{\lambda_d(\zeta)\delta_{D_1}(w)} \le m_8\lambda_d(\zeta)^{1-\theta}$$

for all ζ near $\partial \Delta$. Since $\varphi(D_0) \subset \Delta$ and $\varphi = f_1^{-1} \circ f$ is continued conformally across C_0 , we have by Lemma 1

$$\frac{1}{|f'(z)|} = \frac{1}{|f'_1(\zeta)| |\varphi'(z)|} \le m_8 \frac{\lambda_d(\zeta)^{1-\theta}}{|\varphi'(z)|} \le m_8 \frac{\lambda_{\varphi(D_0)}(\zeta)^{1-\theta}}{|\varphi'(z)|} = m_8 \frac{\lambda_{D_0}(z)^{1-\theta}}{|\varphi'(z)|^{2-\theta}} \le m_9 \lambda_{D_0}(z)^{1-\theta}$$

for all $z \in D_0$ near C_0 . Now our assertion easily follows.

Case 3: $\theta = 1$. The proof is quite similar to the preceding case, and may be omitted.

REMARK. Let D be a Jordan domain satisfying an exterior θ -wedge condition, and let $f: \Delta \to D$ be conformal. Lesley [4] proved that the inverse mapping f^{-1} is then Hölder continuous on \overline{D} with exponent $1/(2 - \theta)$. Also, FitzGerald-Lesley [2] showed that 1/f' belongs to the Hardy space H^p for all $p < 1/2(1 - \theta)$.

4. Application

Let a set X(D) of measurable functions on D be assigned to each subdomain D of C, and assume that X is conformally invariant; that is, if $f: D \to D'$ is conformal, then $X(D) = \{s' \circ f | s' \in X(D')\}$. Our problem is to find an exponent γ for which

(2)
$$\int \int_D \delta_D(z)^{-\gamma} |s(z)| \, dx \, dy = +\infty \quad \text{for all} \quad s \in X(D) - \{0\}.$$

THEOREM 2. Suppose that, for all regular domains D, condition (2) holds for $\gamma = \gamma_0 \leq 2$, where γ_0 does not depend on D. Then, for all domains D in \mathscr{E}_{θ} , $0 \leq \theta \leq 1$, condition (2) holds for $\gamma = (\gamma_0 - 2\theta + 2)/(2 - \theta)$.

PROOF. Let $D \in \mathscr{E}_{\theta}$. Note that, by Lemma 1 (iii) and Lemma 2,

Distortion theorem for conformal mappings

$$\iint_D \delta_D(z)^{-\gamma} |s(z)| \, dx \, dy = +\infty$$

if and only if

$$\int \int_D \lambda_D(z)^{\gamma} |s(z)| \ dx \ dy = +\infty \ .$$

Now D is conformally equivalent to some regular region D_0 ; let $f: D_0 \to D$ be conformal. Then Theorem 1 together with Lemma 1 (i) implies that, for each $\gamma \le 2$,

$$\begin{split} & \iint_{D} \lambda_{D}(z)^{\gamma} |s(z)| \ dx \ dy \\ &= \iint_{D_{0}} \lambda_{D_{0}}(z)^{\gamma} |s(f(z))| |f'(z)|^{2-\gamma} \ dx \ dy \\ &\geq m_{\gamma} \iint_{D_{0}} \lambda_{D_{0}}(z)^{\gamma+(2-\gamma)(\theta-1)} |s(f(z))| \ dx \ dy \end{split}$$

for some $m_{\gamma} > 0$. Thus, if $\gamma = (\gamma_0 - 2\theta + 2)/(2 - \theta) (\leq 2)$, then the last integral diverges for $s \in X(D) - \{0\}$, and we obtain the theorem.

Let S(D) denote the set of subharmonic functions on D, and set $S^+(D) = \{s \in S(D) | s \ge 0\}$. Theorem 2 and Suzuki's theorem stated in the introduction yield the following corollary, which contains Theorem II. Recall that $\beta(p, \theta) = 2 - \min \{1, p\}/(2 - \theta)$.

COROLLARY 1. Let $D \in \mathscr{E}_{\theta}$, $0 \le \theta \le 1$. If $s \in S^{+}(D)$ satisfies $\iint_{D} \delta_{D}(z)^{-\beta(p,\theta)} s(z)^{p} dx dy < +\infty$

for some $p \in (0, \infty)$, then $s \equiv 0$.

Also, we obtain the following result (cf. Suzuki [5, Theorem 2]).

COROLLARY 2. Let
$$D \in \mathscr{E}_{\theta}, 0 \le \theta \le 1$$
. If $s \in S(D)$ satisfies

$$\iint_{D} \delta_{D}(z)^{-\beta(p,\theta)} |s(z)|^{p} dx dy < +\infty$$

for some $p \in (0, 1/2)$, then $s \equiv 0$.

EXAMPLE 1. Let $D = \Delta(0; 2) - \{0\}$ and $s(z) = \max\{-\log |z|, 0\}$. Then

 $s \in S^+(D) - \{0\}$ and

$$\iint_D \delta_D(z)^{-\gamma} s(z)^p \, dx \, dy < +\infty$$

for $\gamma < 2$. This example shows that in the above corollaries the assumption that every component of $\hat{\mathbf{C}} - D$ is a continuum is essential.

REMARK. In [6] Suzuki has shown that for any proper subdomain D of C

$$\iint_D \delta_D(z)^{-2} |s(z)|^p \, dx \, dy = +\infty$$

for all $s \in S(D) - \{0\}$ and 0 .

EXAMPLE 2. For each $\theta \in [0, 1]$ we construct a Jordan domain D_{θ} as follows. We set $D_1 = \Delta$. For $\theta \in [0, 1)$, the exponential function maps the circular arc $|z + \pi \tan(\pi \theta/2) - \pi i| = \pi \sec(\pi \theta/2)$, Re $z \ge 0$, onto a Jordan curve through 1. We let D_{θ} be the domain bounded by the Jordan curve. Clearly, D_{θ} belongs to \mathscr{E}_{θ} . Let $f_{\theta} : \Delta \to D_{\theta}$ be a conformal mapping such that $f_{\theta}(1) = 1$. It is easy to see that there exists $m_1 = m_1(\theta) > 0$ such that

$$|f'_{\theta}(\zeta)| \le m_1 |\zeta - 1|^{1-\theta}$$

for $\zeta \in \Delta$.

Consider the domains $U_{\psi} = \varDelta(c_{\psi}; r_{\psi}) \cap \varDelta(\overline{c_{\psi}}; r_{\psi})$, where $c_{\psi} = (1 + i \cot \pi \psi)/2$, $r_{\psi} = (\csc \pi \psi)/2$ and $0 < \psi < 1/2$. The inner angle of U_{ψ} at 1 is $2\pi\psi$. The function $g_{\psi}(\zeta) = (1 - \omega)/(1 + \omega)$, $\omega^{2\psi} = (1 - \zeta)/\zeta$, maps U_{ψ} conformally onto . \varDelta . Let $P_{\psi} = P \circ g_{\psi}$, where $P(w) = (1 - |w|^2)/|w - 1|^2$. Then P_{ψ} is a positive harmonic function of U_{ψ} vanishing continuously on $\partial U_{\psi} - \{1\}$. We set $P_{\psi}(\zeta) = 0$ for $\zeta \in \varDelta - U_{\psi}$ to obtain a nonnegative subharmonic function on \varDelta . Thus $P_{\psi} \circ f_{\theta}^{-1} \in S^+(D_{\theta})$. Note that

(4)
$$P_{\psi}(\zeta) \le m_2 |\zeta - 1|^{-1/2\psi}$$

for $\zeta \in \Delta$.

Let $0 and <math>\gamma = 2 - (1 - \psi)p/\psi(2 - \theta)$. Then $\gamma < \beta(p, \theta)$ and $\lim_{\psi \to 1/2} \gamma = \beta(p, \theta)$. Making use of (3) and (4), we have

$$\int \int_{D_{\theta}} \lambda_{D_{\theta}}(z)^{\gamma} [(P_{\psi} \circ f_{\theta}^{-1})(z)]^{p} dx dy$$
$$= \int \int_{\Delta} \lambda_{\Delta}(\zeta)^{\gamma} P_{\psi}(\zeta)^{p} |f_{\theta}'(\zeta)|^{2-\gamma} d\zeta d\eta$$
$$\leq m_{3} \int \int_{U_{\psi}} \lambda_{\Delta}(\zeta)^{\gamma} |\zeta - 1|^{(2-\gamma)(1-\theta)-p/2\psi} d\zeta d\eta$$

Distortion theorem for conformal mappings

$$\leq m_4 \iint_{A} |\zeta - 1|^{-\gamma + (2 - \gamma)(1 - \theta) - p/2\psi} d\xi d\eta$$
$$= m_4 \iint_{A} |\zeta - 1|^{-2 + (1 - 2\psi)p/2\psi} d\xi d\eta < +\infty$$

This example shows that in Corollary 1 we cannot replace $\beta(p, \theta)$ by any smaller number when 0 .

Finally, we consider nonnegative harmonic functions. Let $H^+(D)$ denote the set of nonnegative harmonic functions on D. The following result is a corollary to Theorem 2 and Suzuki [5, Remark 2].

COROLLARY 3. Let $D \in \mathscr{E}_{\theta}$, $0 \le \theta \le 1$, and set

$$\gamma(p,\theta) = 2 - \frac{\min\left\{1, \max\left\{p, 1-p\right\}\right\}}{2-\theta}$$

If $s \in H^+(D)$ satisfies

$$\iint_D \delta_D(z)^{-\gamma(p,\theta)} s(z)^p \, dx \, dy < +\infty$$

for some $p \in (0, \infty)$, then $s \equiv 0$.

The next example shows that in the above corollary we cannot replace $\gamma(p, \theta)$ by any smaller number when $(2 - \theta)/(3 - \theta) .$

EXAMPLE 3. Let D_{θ} , f_{θ} and P be as in Example 2. Then $P \circ f_{\theta}^{-1} \in H^+(D_{\theta})$, and

$$\begin{split} & \int \int_{D_{\theta}} \lambda_{D_{\theta}}(z)^{\gamma} [(P \circ f_{\theta}^{-1})(z)]^{p} dx dy \\ &= \int \int_{A} \lambda_{A}(\zeta)^{\gamma} P(\zeta)^{p} |f_{\theta}'(\zeta)|^{2-\gamma} d\zeta d\eta \\ &\leq m_{1} \int \int_{A} \lambda_{A}(\zeta)^{\gamma-p} |\zeta - 1|^{-2p + (2-\gamma)(1-\theta)} d\zeta d\eta \,. \end{split}$$

Now it is easy to verify that, for each q < -1,

$$\int_0^{2\pi} |re^{it} - 1|^q \, dt = O((1 - r)^{q+1})$$

as $r \uparrow 1$. If $(2-\theta)/(3-\theta) and <math>2-(2p-1)/(1-\theta) < \gamma < \gamma(p,\theta) = 2-p/(2-\theta)$, then $-2p + (2-\gamma)(1-\theta) < -1$ so that

Makoto MASUMOTO

$$\begin{split} & \iint_{D_{\theta}} \lambda_{D_{\theta}}(z)^{\gamma} [(P \circ f_{\theta}^{-1})(z)]^{p} \, dx \, dy \\ & \leq m_{2} \int_{0}^{1} (1-r)^{p-\gamma-2p+(2-\gamma)(1-\theta)+1} \, dr \\ & = m_{2} \int_{0}^{1} (1-r)^{(2-\theta)(\gamma(p,\theta)-\gamma)-1} \, dr < +\infty \; . \end{split}$$

References

- C. H. FitzGerald and F. D. Lesley, Boundary regularity of domains satisfying a wedge condition, Complex Variables Theory Appl., 5 (1986), 141-154.
- [2] C. H. FitzGerald and F. D. Lesley, Integrability of the derivative of the Riemann mapping function for wedge domains, J. Analyse Math., 49 (1987), 271-292.
- [3] I. Kra, Automorphic Forms and Kleinian Groups, Benjamin, Reading, Massachusetts, 1972,
- [4] F. D. Lesley, Conformal mappings of domains satisfying a wedge condition, Proc. Amer. Math. Soc., 93 (1985), 483-488.
- [5] N. Suzuki, Nonintegrability of harmonic functions in a domain, to appear in Japan. J. Math.
- [6] N. Suzuki, Nonintegrability of superharmonic functions, manuscript.

Department of Mathematics, Faculty of Science, Hiroshima University