A distortion theorem for conformal mappings with an application to subharmonic functions

Dedicated to Professor T. Fuji'i'e on his 60th birthday

Makoto Masumoto

(Received June 27, 1989)

1. Introduction

Let f be a conformal mapping of a domain D_{0} of \mathbf{C} bounded by a finitely many analytic curves. Our first purpose of this paper is to establish the following relation between $\left|f^{\prime}(z)\right|$ and the Poincaré metric $\lambda_{D_{0}}(z)$ for D_{0}.

Theorem I. If $f\left(D_{0}\right)$ satisfies an exterior θ-wedge condition, then there exists $m>0$ such that

$$
\frac{1}{\left|f^{\prime}(z)\right|} \leq m \lambda_{D_{0}}(z)^{1-\theta}
$$

for $z \in D_{0}$.
Here, a finitely connected domain D is said to satisfy an exterior θ-wedge condition if it is bounded and there exist $\rho>0$ and $\theta \in(0,1)$ such that, for every $\omega \in \partial D$, a closed sector of radius ρ and opening $\pi \theta$ with vertex at ω lies in $\mathbf{C}-\mathrm{D}$.

Recently, N. Suzuki has obtained the following theorem:
Theorem (Suzuki [5, Theorem 2]). Let D be a bounded $C^{1,1}$-domain of \mathbf{C}, and denote by $\delta_{D}(z)$ the distance between $z \in D$ and ∂D. Set $\alpha(p)=1+$ $\max \{1-p, 0\}$ for $0<p<\infty$. If a nonnegative subharmonic function s on D satisfies

$$
\iint_{D} \delta_{D}(z)^{-\alpha(p)} s(z)^{p} d x d y<+\infty, \quad z=x+i y
$$

then s must vanish identically.
We apply Theorem I to generalize Suzuki's theorem:
Theorem II. Suppose that D satisfies an exterior θ-wedge condition. Set $\beta(p, \theta)=2-\min \{1, p\} /(2-\theta)$. If a nonnegative subharmonic function s on D satisfies

$$
\iint_{D} \delta_{D}(z)^{-\beta(p, \theta)} s(z)^{p} d x d y<+\infty
$$

then $s \equiv 0$ on D.
After summarizing elementary properties of the Poincaré metric in §2, we will give a proof of Theorem I in $\S 3$. Theorem II will be proved in $\S 4$, where examples are also given.

2. The Poincaré metric

Let $\Delta(a ; r)$ denote the open disk of radius r with center at a. We set $\Delta=\Delta(0 ; 1)$.

Let D be a domain of the Riemann sphere $\hat{\mathbf{C}}=\mathbf{C} \cup\{\infty\}$ whose complement $\hat{\mathbf{C}}-D$ consists of more than two points. The universal covering surface of D is conformally equivalent to Δ. Let $\pi: \Delta \rightarrow D$ be a universal covering map. The Poincaré metric $\lambda_{D}(z)|d z|$ for D is defined by

$$
\lambda_{D}(\pi(\zeta))\left|\pi^{\prime}(\zeta)\right|=\frac{1}{1-|\zeta|^{2}}, \quad \zeta \in \Delta
$$

Note that λ_{D} is a continuous function on D and does not depend on the choice of π.

The following properties of the Poincare metric are well known (see, for example, Kra [3, Proposition 1.1 in Chapter II]).

Lemma 1. (i) If f is a conformal mapping, then

$$
\lambda_{f(D)}(f(z))\left|f^{\prime}(z)\right|=\lambda_{D}(z), \quad z \in D .
$$

(ii) If $D_{1} \subset D_{2}$, then $\lambda_{D_{2}}(z) \leq \lambda_{D_{1}}(z)$ for $z \in D_{1}$.
(iii) Let $\delta_{D}(z)=\inf \{\mid z-\zeta \| \zeta \in \partial D\}$. Then

$$
\lambda_{D}(z) \delta_{D}(z) \leq 1, \quad z \in D
$$

(iv) If D is simply connected and $\infty \notin D$, then

$$
\lambda_{D}(z) \delta_{D}(z) \geq \frac{1}{4}, \quad z \in D
$$

In this paper we are concerned with finitely connected subdomains D of \mathbf{C} such that every component of $\widehat{\mathbf{C}}-D$ contains at least two points. We denote the class of such domains by \mathscr{E}_{0}. We need a generalization of Lemma 1 (iv) to the case $D \in \mathscr{E}_{0}$.

Lemma 2. If $D \in \mathscr{E}_{0}$, then there exists $m>0$ such that

$$
\lambda_{D}(z) \delta_{D}(z) \geq m
$$

for $z \in D$.
Before proving Lemma 2, we remark the following lemma.
Lemma 3. If D is simply connected and contains ∞, then for each $R>0$ there exists $m>0$ such that

$$
\lambda_{D}(z) \delta_{D}(z) \geq m
$$

for $z \in D \cap \Delta(0 ; R)$.
Proof. Let $a \in \mathbf{C}-D$, and set $f(z)=1 /(z-a)$. If $z \in D-\{\infty\}$ and $w=f(z)$, then $f^{-1}(\Delta(w ; r))$ contains $\Delta(z ; r /|w|(|w|+r))$. In particular, letting $r=\delta_{f(D)}(w)$, we have

$$
\delta_{D}(z) \geq \frac{\delta_{f(D)}(w)}{|w|\left(|w|+\delta_{f(D)}(w)\right)} .
$$

We now apply Lemma 1 (i) and (iv) to obtain

$$
\lambda_{D}(z) \delta_{D}(z)=\lambda_{f(D)}(w)|w|^{2} \delta_{D}(z) \geq \frac{|w|}{4\left(|w|+\delta_{f(D)}(w)\right)} .
$$

Since $\delta_{f(D)}(w)=O(|w|)$ as $w \rightarrow \infty$ because of the fact that $\delta_{f(D)}(w) \leq|w-\omega|$ for $w \in f(D)$ and $\omega \in \mathbf{C}-f(D)$ and since $|w| \geq(R+|a|)^{-1}$ if $|z| \leq R$, we have the lemma.

Proof of Lemma 2. Let C_{1}, \ldots, C_{n} be the components of $\hat{\mathbf{C}}-D$, and set $D_{j}=\widehat{\mathbf{C}}-C_{j}$ for $j=1, \ldots, n$. We assume that $\infty \in C_{1}$. Since $\lambda_{D}(z) \geq \lambda_{D_{j}}(z)$ by Lemma 1 (ii), it follows from Lemma 1 (iv) and Lemma 3 that

$$
\inf _{z \in D \cap \Delta(0 ; R)} \lambda_{D}(z) \delta_{D}(z)>0
$$

for each $R>0$. Thus, if D is bounded, then we have done.
Assume now that D is unbounded. We can find $R_{0}>0$ such that $\delta_{D_{1}}(z) \leq$ $2 \delta_{D_{j}}(z), 2 \leq j \leq n$, for $z \in D-\Delta\left(0 ; R_{0}\right)$. Then $\delta_{D}(z)=\min \left\{\delta_{D_{1}}(z), \ldots, \delta_{D_{n}}(z)\right\} \geq$ $\delta_{D_{1}}(z) / 2$, and hence by Lemma 1 (ii) and (iv)

$$
\lambda_{D}(z) \delta_{D}(z) \geq \frac{1}{2} \lambda_{D_{1}}(z) \delta_{D_{1}}(z) \geq \frac{1}{8}
$$

for $z \in D-\Delta\left(0 ; R_{0}\right)$. This completes the proof.
Remark. If a is an isolated point of $\mathbf{C}-D$, then $\lambda_{D}(z) \delta_{D}(z)\left|\log \delta_{D}(z)\right|$ is bounded above and bounded away from zero for z sufficiently near a. For
general D it is known that

$$
\inf _{z \in D \cap \Delta(0 ; R)} \lambda_{D}(z) \delta_{D}(z)\left(1+\left|\log \delta_{D}(z)\right|\right)>0
$$

for each $R>0$ (cf. Kra [3, Lemma 2.3 in Chapter V]).

3. Distortion theorem for conformal mappings

First we introduce subclasses $\mathscr{E}_{\theta}, 0<\theta \leq 1$, of \mathscr{E}_{0}. Let $D \in \mathscr{E}_{0}$ be a bounded domain. If there exist $\rho>0$ and $\theta \in(0,1)$ such that for every $\omega \in \partial D$ a closed circular sector with vertex at ω which is congruent to

$$
S(\rho, \theta)=\{w \in \mathbf{C}|0 \leq|w| \leq \rho, 0 \leq \arg w \leq \pi \theta\}
$$

lies in $\mathbf{C}-D$, then D is said to satisfy an exterior θ-wedge condition, and we denote the set of such domains D by \mathscr{E}_{θ}. If there exists $\rho>0$ such that for every $\omega \in \partial D$ a closed disk of radius ρ containing ω lies in $\mathbf{C}-D$, then D is said to satisfy an exterior disk condition, and we denote the set of such domains D by \mathscr{E}_{1}. If each component of ∂D is a simple analytic curve, then D is called regular.

It is trivial that $\mathscr{E}_{\theta_{1}} \supset \mathscr{E}_{\theta_{2}}$ if $0 \leq \theta_{1} \leq \theta_{2} \leq 1$. A bounded Lipschitz domain belongs to \mathscr{E}_{θ} for some $\theta \in(0,1)$. Also, a bounded $C^{1,1}$-domain belongs to \mathscr{E}_{1}; in particular, regular domains are contained in \mathscr{E}_{1}. If a component C of the boundary of $D \in \mathscr{E}_{\theta}, \theta>0$, is a Jordan curve, then C is rectifiable (cf. FitzGerald-Lesley [1], [2]). Note, however, that components of the boundary of $D \in \mathscr{E}_{\theta}, 0 \leq \theta \leq 1$, are not necessarily Jordan curves.

Theorem I stated in the introduction is contained in the following theorem.
Theorem 1. Let f be a conformal mapping of a regular domain D_{0} onto a domain D of \mathbf{C}. If $D \in \mathscr{E}_{\theta}, 0 \leq \theta \leq 1$, then there exists $m>0$ such that

$$
\frac{1}{\left|f^{\prime}(z)\right|} \leq m \lambda_{D_{0}}(z)^{1-\theta}
$$

for $z \in D_{0}$.
Proof. The conformal mapping f induces a bijection between the set of components of ∂D_{0} and the set of components of $\hat{\mathbf{C}}-D$. Let C_{0} be a component of ∂D_{0}, and let C be the component of $\hat{\mathbf{C}}-D$ that corresponds to C_{0} under the bijection. (In this case we will simply say that C_{0} corresponds to C under f.) Let f_{1} be a conformal mapping of the unit disk Δ onto $D_{1}=\widehat{\mathbf{C}}-C$. We consider three cases.

Case 1: $\theta=0$. Assume first that $\infty \in C$. By Koebe's distortion theorem we can choose $m_{1}>0$ such that $\left|f_{1}^{\prime}(\zeta)\right| \lambda_{\Delta}(\zeta) \geq m_{1}$ for $\zeta \in \Delta$. Set $\varphi=f_{1}^{-1} \circ f$
and $\Delta_{0}=f_{1}^{-1}(D) \subset \Delta$. Then φ is a conformal mapping of D_{0} onto Δ_{0}. Since φ is extended to a homeomorphism of $D_{0} \cup C_{0}$ onto $\Delta_{0} \cup \partial \Delta$ and both C_{0} and $\partial \Delta$ are analytic, we can continue φ conformally beyond C_{0} by the reflection principle. In particular, $\left|\varphi^{\prime}(z)\right| \geq m_{2}>0$ in a neighborhood of C_{0}. Hence, for $z \in D_{0}$ sufficiently near C_{0}, we have by Lemma 1 (i) and (ii)

$$
\begin{aligned}
\left|f^{\prime}(z)\right| \lambda_{D_{0}}(z) & =\left|f_{1}^{\prime}(\varphi(z))\right|\left|\varphi^{\prime}(z)\right| \lambda_{D_{0}}(z) \\
& =\left|f_{1}^{\prime}(\varphi(z))\right|\left|\varphi^{\prime}(z)\right|^{2} \lambda_{\Delta_{0}}(\varphi(z)) \\
& \geq m_{2}^{2}\left|f_{1}^{\prime}(\varphi(z))\right| \lambda_{\Delta}(\varphi(z)) \\
& \geq m_{1} m_{2}^{2}>0 .
\end{aligned}
$$

Next assume that C is bounded. Let $a \in C$, and set $h(w)=1 /(w-a)$ and $D_{2}=h(D)$. Then $f_{2}=h \circ f: D_{0} \rightarrow D_{2}$ is conformal, and C_{0} corresponds to the unbounded component of $\hat{\mathbf{C}}-D_{2}$ under f_{2}. Thus, as was shown in the preceding paragraph, there exists $m_{3}>0$ such that $\left|f_{2}^{\prime}(z)\right| \lambda_{D_{0}}(z) \geq m_{3}$ for $z \in D$ near C_{0}, and hence

$$
\left|f^{\prime}(z)\right| \lambda_{D_{0}}(z) \geq m_{3}|f(z)-a|^{2}
$$

Taking distinct points $a, b \in C$, we see that

$$
\left|f^{\prime}(z)\right| \lambda_{D_{0}}(z) \geq m_{4} \max \left\{|f(z)-a|^{2},|f(z)-b|^{2}\right\} \geq m_{4} \frac{|a-b|^{2}}{4}>0
$$

near C_{0}.
We have shown that $\left|f^{\prime}(z)\right| \lambda_{D_{0}}(z)$ is bounded away from 0 near ∂D_{0}. Since $\left|f^{\prime}(z)\right| \lambda_{D_{0}}(z)$ is positive and continuous in D_{0}, we obtain the desired estimate.

Case 2: $0<\theta<1$. We suppose that for each $\omega \in \partial D$ a closed circular sector S_{ω} with vertex at ω which is congruent to $S(\rho, \theta)$ lies in $\mathbf{C}-D$. Fix a conformal mapping $g: \Delta \rightarrow \widehat{\mathbf{C}}-S(\rho, \theta)$, which is extended homeomorphically to the closed disk, such that $g(1)=0$. Since there exists a conformal mapping \tilde{g} of a neighborhood of 1 such that $g(\zeta)=\tilde{g}(\zeta)^{2-\theta}$, we see that for some $m_{5}>0$

$$
\begin{equation*}
g(\Delta(0 ; r)) \cap \Delta\left(0 ; m_{5}(1-r)^{2-\theta}\right)=\varnothing, \quad 0 \leq r<1 \tag{1}
\end{equation*}
$$

Now take $z \in D_{0}$ sufficiently near C_{0} so that a point $\omega \in C$ lies on the circle $\partial \Delta\left(w ; \delta_{D}(w)\right)$, where $w=f(z)$. For an appropriate $\eta \in \partial \Delta$ the function $g_{\omega}=\eta g+\omega$ maps Δ conformally onto $\hat{\mathbf{C}}-S_{\omega}$, and $g_{\omega}(1)=\omega$. Since $g_{\omega}^{-1} \circ f_{1}(\Delta) \subset \Delta$, it follows from Schwarz's lemma that

$$
f_{1}(\Delta(0 ; r)) \subset g_{\omega} \circ h_{\omega}(\Delta(0 ; r)),
$$

where h_{ω} is a Möbius transformation of Δ which maps 0 to $c_{\omega}=g_{\omega}^{-1} \circ f_{1}(0)=$ $g^{-1}\left(\bar{\eta}\left(f_{1}(0)-\omega\right)\right)$. Observe that $c_{\omega}, \omega \in C$, stay in a compact subset of Δ.

Therefore, in view of (1) we have for some $m_{6}>0$

$$
f_{1}(\Delta(0 ; r)) \cap \Delta\left(\omega ; m_{6}(1-r)^{2-\theta}\right)=\varnothing, \quad 0 \leq r<1
$$

for all $\omega \in C$. In particular, letting $r=|\zeta|, \zeta=f_{1}^{-1}(w)$, we obtain

$$
\delta_{D_{1}}(w)=\delta_{D}(w) \geq m_{6}(1-r)^{2-\theta} \geq m_{7} \lambda_{4}(\zeta)^{-(2-\theta)}
$$

for all w near C. Consequently, by Lemma 1 (i) and (iii)

$$
\frac{1}{\left|f_{1}^{\prime}(\zeta)\right|}=\frac{\lambda_{D_{1}}(w)}{\lambda_{\Delta}(\zeta)} \leq \frac{1}{\lambda_{\Delta}(\zeta) \delta_{D_{1}}(w)} \leq m_{8} \lambda_{\Delta}(\zeta)^{1-\theta}
$$

for all ζ near $\partial \Delta$. Since $\varphi\left(D_{0}\right) \subset \Delta$ and $\varphi=f_{1}^{-1} \circ f$ is continued conformally across C_{0}, we have by Lemma 1

$$
\begin{aligned}
\frac{1}{\left|f^{\prime}(z)\right|} & =\frac{1}{\left|f_{1}^{\prime}(\zeta)\right|\left|\varphi^{\prime}(z)\right|} \leq m_{8} \frac{\lambda_{1}(\zeta)^{1-\theta}}{\left|\varphi^{\prime}(z)\right|} \\
& \leq m_{8} \frac{\lambda_{\varphi\left(D_{0}\right)}(\zeta)^{1-\theta}}{\left|\varphi^{\prime}(z)\right|}=m_{8} \frac{\lambda_{D_{0}}(z)^{1-\theta}}{\left|\varphi^{\prime}(z)\right|^{2-\theta}} \leq m_{9} \lambda_{D_{0}}(z)^{1-\theta}
\end{aligned}
$$

for all $z \in D_{0}$ near C_{0}. Now our assertion easily follows.
Case 3: $\theta=1$. The proof is quite similar to the preceding case, and may be omitted.

Remark. Let D be a Jordan domain satisfying an exterior θ-wedge condition, and let $f: \Delta \rightarrow D$ be conformal. Lesley [4] proved that the inverse mapping f^{-1} is then Hölder continuous on \bar{D} with exponent $1 /(2-\theta)$. Also, FitzGerald-Lesley [2] showed that $1 / f^{\prime}$ belongs to the Hardy space H^{p} for all $p<1 / 2(1-\theta)$.

4. Application

Let a set $X(D)$ of measurable functions on D be assigned to each subdomain D of \mathbf{C}, and assume that X is conformally invariant; that is, if $f: D \rightarrow D^{\prime}$ is conformal, then $X(D)=\left\{s^{\prime} \circ f \mid s^{\prime} \in X\left(D^{\prime}\right)\right\}$. Our problem is to find an exponent γ for which

$$
\begin{equation*}
\iint_{D} \delta_{D}(z)^{-\gamma}|s(z)| d x d y=+\infty \quad \text { for all } \quad s \in X(D)-\{0\} \tag{2}
\end{equation*}
$$

Theorem 2. Suppose that, for all regular domains D, condition (2) holds for $\gamma=\gamma_{0} \leq 2$, where γ_{0} does not depend on D. Then, for all domains D in \mathscr{E}_{θ}, $0 \leq \theta \leq 1$, condition (2) holds for $\gamma=\left(\gamma_{0}-2 \theta+2\right) /(2-\theta)$.

Proof. Let $D \in \mathscr{E}_{\theta}$. Note that, by Lemma 1 (iii) and Lemma 2,

$$
\iint_{D} \delta_{D}(z)^{-\gamma}|s(z)| d x d y=+\infty
$$

if and only if

$$
\iint_{D} \lambda_{D}(z)^{\gamma}|s(z)| d x d y=+\infty
$$

Now D is conformally equivalent to some regular region D_{0}; let $f: D_{0} \rightarrow D$ be conformal. Then Theorem 1 together with Lemma 1 (i) implies that, for each $\gamma \leq 2$,

$$
\begin{aligned}
& \iint_{D} \lambda_{D}(z)^{\gamma}|s(z)| d x d y \\
= & \iint_{D_{0}} \lambda_{D_{0}}(z)^{\gamma}|s(f(z))|\left|f^{\prime}(z)\right|^{2-\gamma} d x d y \\
\geq & m_{\gamma} \iint_{D_{0}} \lambda_{D_{0}}(z)^{\gamma+(2-\gamma)(\theta-1)}|s(f(z))| d x d y
\end{aligned}
$$

for some $m_{\gamma}>0$. Thus, if $\gamma=\left(\gamma_{0}-2 \theta+2\right) /(2-\theta)(\leq 2)$, then the last integral diverges for $s \in X(D)-\{0\}$, and we obtain the theorem.

Let $S(D)$ denote the set of subharmonic functions on D, and set $S^{+}(D)=$ $\{s \in S(D) \mid s \geq 0\}$. Theorem 2 and Suzuki's theorem stated in the introduction yield the following corollary, which contains Theorem II. Recall that $\beta(p, \theta)=$ $2-\min \{1, p\} /(2-\theta)$.

Corollary 1. Let $D \in \mathscr{E}_{\theta}, 0 \leq \theta \leq 1$. If $s \in S^{+}(D)$ satisfies

$$
\iint_{D} \delta_{D}(z)^{-\beta(p, \theta)} s(z)^{p} d x d y<+\infty
$$

for some $p \in(0, \infty)$, then $s \equiv 0$.
Also, we obtain the following result (cf. Suzuki [5, Theorem 2]).
Corollary 2. Let $D \in \mathscr{E}_{\theta}, 0 \leq \theta \leq 1$. If $s \in S(D)$ satisfies

$$
\iint_{D} \delta_{D}(z)^{-\beta(p, \theta)}|s(z)|^{p} d x d y<+\infty
$$

for some $p \in(0,1 / 2)$, then $s \equiv 0$.
Example 1. Let $D=\Delta(0 ; 2)-\{0\}$ and $s(z)=\max \{-\log |z|, 0\}$. Then
$s \in S^{+}(D)-\{0\}$ and

$$
\iint_{D} \delta_{D}(z)^{-\gamma} S(z)^{p} d x d y<+\infty
$$

for $\gamma<2$. This example shows that in the above corollaries the assumption that every component of $\hat{\mathbf{C}}-D$ is a continuum is essential.

Remark. In [6] Suzuki has shown that for any proper subdomain D of \mathbf{C}

$$
\iint_{D} \delta_{D}(z)^{-2}|s(z)|^{p} d x d y=+\infty
$$

for all $s \in S(D)-\{0\}$ and $0<p \leq 1$.
Example 2. For each $\theta \in[0,1]$ we construct a Jordan domain D_{θ} as follows. We set $D_{1}=\Delta$. For $\theta \in[0,1)$, the exponential function maps the circular arc $|z+\pi \tan (\pi \theta / 2)-\pi i|=\pi \sec (\pi \theta / 2)$, $\operatorname{Re} z \geq 0$, onto a Jordan curve through 1. We let D_{θ} be the domain bounded by the Jordan curve. Clearly, D_{θ} belongs to \mathscr{E}_{θ}. Let $f_{\theta}: \Delta \rightarrow D_{\theta}$ be a conformal mapping such that $f_{\theta}(1)=1$. It is easy to see that there exists $m_{1}=m_{1}(\theta)>0$ such that

$$
\begin{equation*}
\left|f_{\theta}^{\prime}(\zeta)\right| \leq m_{1}|\zeta-1|^{1-\theta} \tag{3}
\end{equation*}
$$

for $\zeta \in \Delta$.
Consider the domains $U_{\psi}=\Delta\left(c_{\psi} ; r_{\psi}\right) \cap \Delta\left(\overline{c_{\psi}} ; r_{\psi}\right)$, where $c_{\psi}=(1+i \cot \pi \psi) / 2$, $r_{\psi}=(\csc \pi \psi) / 2$ and $0<\psi<1 / 2$. The inner angle of U_{ψ} at 1 is $2 \pi \psi$. The function $g_{\psi}(\zeta)=(1-\omega) /(1+\omega), \omega^{2 \psi}=(1-\zeta) / \zeta$, maps U_{ψ} conformally onto 4. Let $P_{\psi}=P \circ g_{\psi}$, where $P(w)=\left(1-|w|^{2}\right) /|w-1|^{2}$. Then P_{ψ} is a positive harmonic function of U_{ψ} vanishing continuously on $\partial U_{\psi}-\{1\}$. We set $P_{\psi}(\zeta)=0$ for $\zeta \in \Delta-U_{\psi}$ to obtain a nonnegative subharmonic function on Δ. Thus $P_{\psi} \circ f_{\theta}^{-1} \in S^{+}\left(D_{\theta}\right)$. Note that

$$
\begin{equation*}
P_{\psi}(\zeta) \leq m_{2}|\zeta-1|^{-1 / 2 \psi} \tag{4}
\end{equation*}
$$

for $\zeta \in \Delta$.
Let $0<p \leq 1$ and $\gamma=2-(1-\psi) p / \psi(2-\theta)$. Then $\gamma<\beta(p, \theta)$ and $\lim _{\psi \rightarrow 1 / 2} \gamma=\beta(p, \theta)$. Making use of (3) and (4), we have

$$
\begin{aligned}
& \iint_{D_{\theta}} \lambda_{D_{\theta}}(z)^{\gamma}\left[\left(P_{\psi} \circ f_{\theta}^{-1}\right)(z)\right]^{p} d x d y \\
= & \iint_{\Delta} \lambda_{\Delta}(\zeta)^{\gamma} P_{\psi}(\zeta)^{p}\left|f_{\theta}^{\prime}(\zeta)\right|^{2-\gamma} d \xi d \eta \\
\leq & m_{3} \iint_{U_{\psi}} \lambda_{\Delta}(\zeta)^{\gamma}|\zeta-1|^{(2-\gamma)(1-\theta)-p / 2 \psi} d \xi d \eta
\end{aligned}
$$

$$
\begin{aligned}
& \leq m_{4} \iint_{\Delta}|\zeta-1|^{-\gamma+(2-\gamma)(1-\theta)-p / 2 \psi} d \xi d \eta \\
& =m_{4} \iint_{\Delta}|\zeta-1|^{-2+(1-2 \psi) p / 2 \psi} d \xi d \eta<+\infty .
\end{aligned}
$$

This example shows that in Corollary 1 we cannot replace $\beta(p, \theta)$ by any smaller number when $0<p \leq 1$.

Finally, we consider nonnegative harmonic functions. Let $H^{+}(D)$ denote the set of nonnegative harmonic functions on D. The following result is a corollary to Theorem 2 and Suzuki [5, Remark 2].

Corollary 3. Let $D \in \mathscr{E}_{\theta}, 0 \leq \theta \leq 1$, and set

$$
\gamma(p, \theta)=2-\frac{\min \{1, \max \{p, 1-p\}\}}{2-\theta} .
$$

If $s \in H^{+}(D)$ satisfies

$$
\iint_{D} \delta_{D}(z)^{-\gamma(p, \theta)} s(z)^{p} d x d y<+\infty
$$

for some $p \in(0, \infty)$, then $s \equiv 0$.
The next example shows that in the above corollary we cannot replace $\gamma(p, \theta)$ by any smaller number when $(2-\theta) /(3-\theta)<p \leq 1$.

Example 3. Let D_{θ}, f_{θ} and P be as in Example 2. Then $P \circ f_{\theta}^{-1} \in H^{+}\left(D_{\theta}\right)$, and

$$
\begin{aligned}
& \iint_{D_{\theta}} \lambda_{D_{\theta}}(z)^{\gamma}\left[\left(P \circ f_{\theta}^{-1}\right)(z)\right]^{p} d x d y \\
= & \iint_{\Delta} \lambda_{\Delta}(\zeta)^{\gamma} P(\zeta)^{p}\left|f_{\theta}^{\prime}(\zeta)\right|^{2-\gamma} d \xi d \eta \\
\leq & m_{1} \iint_{\Delta} \lambda_{\Delta}(\zeta)^{\gamma-p}|\zeta-1|^{-2 p+(2-\gamma)(1-\theta)} d \xi d \eta .
\end{aligned}
$$

Now it is easy to verify that, for each $q<-1$,

$$
\int_{0}^{2 \pi}\left|r e^{i t}-1\right|^{q} d t=O\left((1-r)^{q+1}\right)
$$

as $r \uparrow 1$. If $(2-\theta) /(3-\theta)<p \leq 1$ and $2-(2 p-1) /(1-\theta)<\gamma<\gamma(p, \theta)=$ $2-p /(2-\theta)$, then $-2 p+(2-\gamma)(1-\theta)<-1$ so that

$$
\begin{aligned}
& \iint_{D_{\theta}} \lambda_{D_{\theta}}(z)^{\gamma}\left[\left(P \circ f_{\theta}^{-1}\right)(z)\right]^{p} d x d y \\
\leq & m_{2} \int_{0}^{1}(1-r)^{p-\gamma-2 p+(2-\gamma)(1-\theta)+1} d r \\
= & m_{2} \int_{0}^{1}(1-r)^{(2-\theta)(\gamma(p, \theta)-\gamma)-1} d r<+\infty .
\end{aligned}
$$

References

[1] C. H. FitzGerald and F. D. Lesley, Boundary regularity of domains satisfying a wedge condition, Complex Variables Theory Appl., 5 (1986), 141-154.
[2] C. H. FitzGerald and F. D. Lesley, Integrability of the derivative of the Riemann mapping function for wedge domains, J. Analyse Math., 49 (1987), 271-292.
[3] I. Kra, Automorphic Forms and Kleinian Groups, Benjamin, Reading, Massachusetts, 1972.
[4] F. D. Lesley, Conformal mappings of domains satisfying a wedge condition, Proc. Amer. Math. Soc., 93 (1985), 483-488.
[5] N. Suzuki, Nonintegrability of harmonic functions in a domain, to appear in Japan. J. Math.
[6] N. Suzuki, Nonintegrability of superharmonic functions, manuscript.

Department of Mathematics,
 Faculty of Science,
 Hiroshima University

