Nonoscillatory solutions of neutral differential equations

Yūki Naito

(Received April 7, 1989)

1. Introduction

In this paper we are concerned with neutral differential equations of the form

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}[x(t)-h(t) x(\tau(t))]+\sigma p(t) f(x(g(t)))=0, \tag{1.1}
\end{equation*}
$$

where $n \geq 2, \sigma=1$ or -1 , and the following conditions are always assumed to hold:
(1.2) $\tau(t) \in C[a, \infty), \tau$ is nondecreasing on $[a, \infty), \tau(t)<t$ for $t \geq a$ and $\lim _{t \rightarrow \infty} \tau(t)=\infty ;$
(1.3) $h(t) \in C[\tau(a), \infty),|h(t)| \leq h<1$ for $t \geq a$, where h is a constant, and $h(t) h(\tau(t)) \geq 0$ for $t \geq a$;

$$
\begin{equation*}
p(t) \in C[a, \infty) \text { and } p(t)>0 \text { for } t \geq a ; \tag{1.4}
\end{equation*}
$$

$$
f(u) \in C((-\infty, \infty) \backslash\{0\}) \text { and } f(u) u>0 \text { for } u \neq 0 ;
$$

$$
\begin{equation*}
g(t) \in C[a, \infty) \text { and } \lim _{t \rightarrow \infty} g(t)=\infty \tag{1.6}
\end{equation*}
$$

By a solution of (1.1) we mean a continuous function x which is defined and satisfies (1.1) on [T_{x}, ∞) for some $T_{x} \geq a$ (so that $x(t)-h(t) x(\tau(t))$ is n-times continuously differentiable on $\left[T_{x}, \infty\right)$). Such a solution is said to be nonoscillatory if it has no zeros on [T, ∞) for some $T \geq T_{x}$.

Recently there has been an increasing interest in the study of neutral differential equations, and a number of results have been obtained. For typical results we refer in particular to the papers [1-9, 14-18]. In this paper we make an attempt to study in a systematic way the structure of the set of nonoscillatory solutions of equation (1.1). In Section 2 we discuss the relation between two functions $x(t)$ and $x(t)-h(t) x(\tau(t))$. The results obtained in Section 2 will be effectively used in subsequent sections. In Section 3 we classify the nonoscillatory solutions of (1.1) into several classes according to the asymptotic behavior as $t \rightarrow \infty$. In Sections 4 and 5 we establish necessary and sufficient conditions for the existence of nonoscillatory solutions of (1.1) with specific asymptotic properties as $t \rightarrow \infty$.

If $h(t) \equiv 0$, then equation (1.1) becomes

$$
\begin{equation*}
x^{(n)}(t)+\sigma p(t) f(x(g(t)))=0 . \tag{1.7}
\end{equation*}
$$

Our results extend some of the results for equation (1.7). As a result we see that, concerning the characterization of the existence of nonoscillatory solutions, there is not much difference between equation (1.1) and equation (1.7). Further we see that if $h(t)$ and $\tau(t) / t$ are convergent as $t \rightarrow \infty$, then the structure of nonoscillatory solutions of equation (1.1) is similar to that of nonoscillatory solutions of equaton (1.7) or the ordinary differential equation

$$
\begin{equation*}
x^{(n)}(t)+\sigma p(t) f(x(t))=0 . \tag{1.8}
\end{equation*}
$$

Related results are contained in Jaroš and Kusano [8, 9]. In particular, existence theorems of nonoscillatory solutions of (1.1) have been obtained by Jaroš and Kusano [8, Theorem 1; 9, Theorem 3.1]. However, for the EmdenFowler type neutral differential equation

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}[x(t)-h(t) x(\tau(t))]+\sigma p(t)|x(g(t))|^{\gamma} \operatorname{sgn} x(g(t))=0 \tag{1.9}
\end{equation*}
$$

their theorems cannot be applied to the case of $\gamma<0$, because they assume that f in (1.1) is a nondecreasing function. In this paper the existence theorems of nonoscillatory solutions of (1.1) are proved by a different method from [8, 9]. Our theorems can be applied to not only the case of $\gamma \geq 0$ but also the case of $\gamma<0$, provided h and τ are locally Lipschitz continuous.

2. Preliminaries

In this section we study the relation between two continuous functions $x(t)$ and $x(t)-h(t) x(\tau(t))$. As regards $\tau(t)$ and $h(t)$, we assume that conditions (1.2) and (1.3) in Section 1 are satisfied.

Let $T \geq a$. Then we use the notation:

$$
\begin{gather*}
T_{0}(T)=T, \quad T_{i}(T)=\sup \left\{t \geq a ; \tau(t)=T_{i-1}(T)\right\}, \quad i=1,2, \ldots ; \tag{2.1}\\
\tau^{0}(t)=t, \quad \tau^{i}(t)=\tau\left(\tau^{i-1}(t)\right), \quad i=1,2, \ldots \tag{2.2}
\end{gather*}
$$

Note that $\tau^{1}(t)=\tau(t)$ and that $\tau^{i}(t)$ is defined on $\left[T_{i}(a), \infty\right), i=1,2, \ldots$ It is easily verified that

$$
\begin{gathered}
\tau(T)<T<T_{1}(T)<\cdots<T_{m-1}(T)<T_{m}(T)<\cdots, \\
\lim _{m \rightarrow \infty} T_{m}(T)=\infty
\end{gathered}
$$

and
(2.3) $\tau(T)<\tau^{m+1}(t) \leq T \quad$ for $\quad T_{m}(T)<t \leq T_{m+1}(T), \quad m=0,1,2, \ldots$.

We define the functions $H_{m}(t)$ on $\left[T_{m-1}(a), \infty\right)$ as follows:

$$
\begin{equation*}
H_{0}(t)=1 ; \quad H_{m}(t)=\prod_{i=0}^{m-1} h\left(\tau^{i}(t)\right), \quad m=1,2, \ldots \tag{2.4}
\end{equation*}
$$

For an $x \in C[\tau(T), \infty)$, we define $L x \in C[T, \infty)$ by

$$
\begin{equation*}
(L x)(t)=x(t)-h(t) x(\tau(t)), \quad t \geq T \tag{2.5}
\end{equation*}
$$

Lemma 2.1. Let $T \geq a$ and $x \in C[\tau(T), \infty)$. Then

$$
\begin{align*}
& x(t)=\sum_{k=0}^{m} H_{k}(t)(L x)\left(\tau^{k}(t)\right)+H_{m+1}(t) x\left(\tau^{m+1}(t)\right) \tag{2.6}\\
& \\
& \text { for } t>T_{m}(T), \quad m=0,1,2, \ldots .
\end{align*}
$$

Proof. In view of (2.5) we see that

$$
\begin{equation*}
x(t)=(L x)(t)+h(t) x(\tau(t)), \quad t>T_{0}(T) . \tag{2.7}
\end{equation*}
$$

Note by (2.1) that $\tau(t)>T_{0}(T)$ for $t>T_{1}(T)$. Then equality (2.7) implies that

$$
\begin{equation*}
x(t)=(L x)(t)+h(t)(L x)(\tau(t))+h(t) h(\tau(t)) x\left(\tau^{2}(t)\right) \tag{2.8}
\end{equation*}
$$

for $t>T_{1}(T)$. Repeating this argument, we find that (2.6) is satisfied for $t>T_{m}(T)$.

Lemma 2.2. Suppose that $x \in C[\tau(T), \infty), T \geq a$.
(i) If $L x$ is bounded on $[T, \infty)$, then x is also bounded on $[T, \infty)$.
(ii) If

$$
\begin{equation*}
\lim _{t \rightarrow \infty}(L x)(t)=0 \tag{2.9}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=0 \tag{2.10}
\end{equation*}
$$

Proof. (i) There are positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
|(L x)(t)| \leq c_{1}, \quad t \geq T ; \quad|x(t)| \leq c_{2}, \quad \tau(T) \leq t \leq T \tag{2.11}
\end{equation*}
$$

Recall that (2.3) holds and notice that $\left|H_{k}(t)\right| \leq h^{k}$ for $t>T_{m}(T), k=0,1,2, \ldots$, $m+1$. Then it follows from (2.6) and (2.11) that

$$
|x(t)| \leq \sum_{k=0}^{m} h^{k} c_{1}+h^{m+1} c_{2} \leq \frac{c_{1}}{1-h}+c_{2}
$$

for $T_{m}(T)<t \leq T_{m+1}(T), m=1,2, \ldots$, which implies that

$$
|x(t)| \leq \frac{c_{1}}{1-h}+c_{2} \quad \text { for } \quad t \geq T
$$

Thus x is bounded on $[T, \infty)$.
(ii) In view of (i), $x(t)$ is bounded. Therefore there is a positive constant c_{3} such that

$$
|x(t)| \leq c_{3}, \quad t \geq \tau(T)
$$

Let $\varepsilon>0$. By condition (2.9) there is a $\tilde{T} \geq T$ such that

$$
|(L x)(t)|<\frac{1-h}{2} \varepsilon, \quad t \geq \tilde{T}
$$

Since $0 \leq h<1$, there is an integer m_{0} such that

$$
h^{m+1} c_{3}<\frac{\varepsilon}{2}, \quad m=m_{0}, m_{0}+1, \ldots
$$

As in the case of (i), we can obtain the estimate

$$
|x(t)| \leq \sum_{k=0}^{m} h^{k} \frac{1-h}{2} \varepsilon+h^{m+1} c_{3}<\varepsilon
$$

for $t>T_{m}(\tilde{T}), m=m_{0}, m_{0}+1, \ldots$ Therefore we have

$$
|x(t)|<\varepsilon \quad \text { for } \quad t>T_{m_{0}}(\widetilde{T}),
$$

which shows that $x(t) \rightarrow 0$ as $t \rightarrow \infty$.
Lemma 2.3. Suppose that $x \in C[\tau(T), \infty), T \geq a$. If $|(L x)(t)|$ is not identically zero and is nondecreasing on $[T, \infty)$, then there are constants $h^{*}>0$ and $T^{*} \geq T$ such that

$$
\begin{equation*}
|x(t)| \leq h^{*}|(L x)(t)| \quad \text { for } \quad t \geq T^{*} \tag{2.12}
\end{equation*}
$$

Proof. There are positive constants $T^{*} \geq T, d_{1}$ and d_{2} such that
(2.13) $\quad|(L x)(t)| \geq d_{1}, \quad t \geq T^{*} ; \quad|x(t)| \leq d_{2}, \quad \tau\left(T^{*}\right) \leq t \leq T^{*}$.

On account of the nondecreasing property of $|(L x)(t)|$, we can see from (2.6) that

$$
\begin{aligned}
|x(t)| & \leq|(L x)(t)| \sum_{k=0}^{m} h^{k}+h^{m+1} d_{2} \\
& \leq \frac{1}{1-h}|(L x)(t)|+d_{2}
\end{aligned}
$$

for $T_{m}\left(T^{*}\right)<t \leq T_{m+1}\left(T^{*}\right), m=1,2, \ldots$. Since the first half of (2.13) implies that $1 \leq|(L x)(t)| / d_{1}$ for $t \geq T^{*}$, we obtain

$$
|x(t)| \leq\left(\frac{1}{1-h}+\frac{d_{2}}{d_{1}}\right)|(L x)(t)|, \quad t \geq T^{*} .
$$

This completes the proof of Lemma 2.3.

Lemma 2.4. Let $x \in C[\tau(T), \infty), T \geq a$. Suppose that x is of constant sign on $[\tau(T), \infty)$ and $x(t)(L x)(t) \geq 0$ for $t \geq T$. If either

$$
\begin{align*}
& |(L x)(t)| \text { is nondecreasing on }[T, \infty), \text { or } \tag{2.14}\\
& \lim _{t \rightarrow \infty}(L x)(t)=l, \quad 0<|l|<\infty, \tag{2.15}
\end{align*}
$$

then there are constants $h_{*}>0$ and $T_{*} \geq T$ such that

$$
\begin{equation*}
|x(t)| \geq h_{*}|(L x)(t)| \quad \text { for } \quad t \geq T_{*} \tag{2.16}
\end{equation*}
$$

Proof. We may assume that $x(t)>0$ and $(L x)(t) \geq 0$ for $t \geq T$, since a parallel argument holds if $x(t)<0$ and $(L x)(t) \leq 0$ for $t \geq T$. We have (2.8) for $t \geq T_{1}(T)$. From the underlying condition (1.3) and the positivity of x it follows that

$$
\begin{equation*}
x(t) \geq(L x)(t)+h(t)(L x)(\tau(t)) \geq(L x)(t)-h(L x)(\tau(t)) \tag{2.17}
\end{equation*}
$$

for $t \geq T_{1}(T)$. Suppose first that $L x$ satisfies (2.14). Then we obtain

$$
x(t) \geq(L x)(t)-h(L x)(t)=(1-h)(L x)(t), \quad t \geq T_{1}(T)
$$

Suppose next that $L x$ satisfies (2.15). We choose a positive constant η such that $h<\eta<1$. By (2.15), there is a $T_{*} \geq T_{1}(T)$ such that

$$
\begin{equation*}
\sqrt{\eta} l \leq(L x)(\tau(t)) \leq \frac{l}{\sqrt{\eta}}, \quad \sqrt{\eta} l \leq(L x)(t) \leq \frac{l}{\sqrt{\eta}} \quad \text { for } \quad t \geq T_{*} \tag{2.18}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
1 \leq \frac{(L x)(t)}{\sqrt{\eta} l} \quad \text { for } \quad t \geq T_{*} \tag{2.19}
\end{equation*}
$$

From (2.18) and (2.19) it follows that

$$
(L x)(\tau(t)) \leq \frac{l}{\sqrt{\eta}} \leq \frac{l}{\sqrt{\eta}} \frac{(L x)(t)}{\sqrt{\eta} l} \leq \frac{1}{\eta}(L x)(t), \quad t \geq T_{*} .
$$

From (2.17) we have

$$
x(t) \geq(L x)(t)-\frac{h}{\eta}(L x)(t)=\left(1-\frac{h}{\eta}\right)(L x)(t), \quad t \geq T_{*} .
$$

This completes the proof of Lemma 2.4.
Lemma 2.5. Let $x \in C[\tau(T), \infty), T \geq a$. Suppose that x is of constant sign on $[\tau(T), \infty)$ and

$$
\lim _{t \rightarrow \infty}(L x)(t)=l, \quad-\infty \leq l \leq \infty,
$$

then

$$
0 \leq l \cdot \operatorname{sgn} x(t) \leq \infty .
$$

Proof. We may suppose with no loss of generality that $x(t)>0$ for $t \geq \tau(T)$. We claim that $0 \leq l \leq \infty$. Assume to the contrary that $-\infty \leq l<0$. There is a $\tilde{T} \geq T$ such that

$$
(L x)(t) \equiv x(t)-h(t) x(\tau(t))<0, \quad t \geq \tilde{T} .
$$

We obtain

$$
x(t)<h(t) x(\tau(t)) \leq h x(\tau(t)), \quad t \geq \widetilde{T} .
$$

By induction it can be shown that

$$
x(t) \leq h^{m} x\left(\tau^{m}(t)\right), \quad t>T_{m-1}(\tilde{T}), \quad m=1,2, \ldots
$$

Set $\gamma=\max \{x(s): \tau(\tilde{T}) \leq s \leq \tilde{T}\}$ and recall (2.3) with $T=\tilde{T}$. Then we have

$$
x(t) \leq h^{m} \gamma, \quad T_{m-1}(\tilde{T})<t \leq T_{m}(\tilde{T}), \quad m=1,2, \ldots,
$$

which implies that $\lim _{t \rightarrow \infty} x(t)=0$. By (2.5) we have $\lim _{t \rightarrow \infty}(L x)(t)=0$. However this contradicts the assumption that $\lim _{t \rightarrow \infty}(L x)(t)=l \in[-\infty, 0)$. Thus we conclude that $0 \leq l \leq \infty$.

Remark 2.1. Assume that

$$
\left\{\begin{array}{l}
x(t)>0, \quad t \geq \tau(T), \quad \text { and } \tag{2.20}\\
(L x)(t) \equiv x(t)-h(t) x(\tau(t))<0, \quad t \geq T
\end{array}\right.
$$

Then in view of the proof of Lemma 2.5 we see that $\lim _{t \rightarrow \infty} x(t)=0$. Notice that (2.20) can occur only when $h(t)$ is positive on $[T, \infty)$.

From Lemmas 2.2, 2.4 and 2.5 we obtain the next lemma.
Lemma 2.6. Suppose that $x \in C[\tau(T), \infty), T \geq a$. Let x be of constant sign on $[\tau(T), \infty)$.
(i) If $|(L x)(t)|$ is nondecreasing on $[T, \infty)$ and

$$
\lim _{t \rightarrow \infty}|(L x)(t)|=\infty,
$$

then

$$
\lim _{t \rightarrow \infty}|x(t)|=\infty
$$

(ii) If

$$
\lim _{t \rightarrow \infty}(L x)(t)=l, \quad 0<|l|<\infty,
$$

then

$$
0<\liminf _{t \rightarrow \infty}|x(t)| \leq \underset{t \rightarrow \infty}{\lim \sup }|x(t)|<\infty
$$

Proof. We may suppose with no loss of generality that $x(t)>0$ for $t \geq \tau(T)$.
(i) From Lemma 2.5 we see that $\lim _{t \rightarrow \infty}(L x)(t)=\infty$. By Lemma 2.4 we have

$$
\begin{equation*}
x(t) \geq h_{*}(L x)(t), \quad t \geq T_{*} \tag{2.21}
\end{equation*}
$$

where $h_{*}>0$ and $T_{*} \geq T$ are constants. Then it is clear that $\lim _{t \rightarrow \infty} x(t)=\infty$.
(ii) From Lemma 2.5 we obtain $l>0$; and so $(L x)(t)>0$ for all large t. By Lemma 2.4 we have (2.21) for some constants $h_{*}>0$ and $T_{*} \geq T$. Then (2.21) gives $\lim \inf _{t \rightarrow \infty} x(t)>0$. From (i) of Lemma 2.2 we see that $\lim \sup _{t \rightarrow \infty} x(t)<\infty$. The proof of Lemma 2.6 is complete.

Lemma 2.7. Let $x \in C[\tau(T), \infty), T \geq a$, and i be a nonnegative integer.
(i) If $\lim _{t \rightarrow \infty}(L x)(t) / t^{i}=0$, then $\lim _{t \rightarrow \infty} x(t) / t^{i}=0$.
(ii) Suppose in addition that x is of constant sign on $[\tau(T), \infty)$. If $|(L x)(t)| / t^{i}$ is nondecreasing on $[T, \infty)$ and $\lim _{t \rightarrow \infty}|(L x)(t)| / t^{i}=\infty$, then $\lim _{t \rightarrow \infty}|x(t)| / t^{i}=\infty$.
(iii) Suppose in addition that x is of constant sign on $[\tau(T), \infty)$. If $\lim _{t \rightarrow \infty}(L x)(t) / t^{i}$ exists and is a nonzero finite value, then

$$
0<\liminf _{t \rightarrow \infty} \frac{|x(t)|}{t^{i}} \leq \limsup _{t \rightarrow \infty} \frac{|x(t)|}{t^{i}}<\infty
$$

Proof. Observe that

$$
\begin{equation*}
\frac{(L x)(t)}{t^{i}}=\frac{x(t)}{t^{i}}-h(t)\left[\frac{\tau(t)}{t}\right]^{i} \frac{x(\tau(t))}{[\tau(t)]^{i}}, \tag{2.22}
\end{equation*}
$$

and apply (ii) of Lemma 2.2 and Lemma 2.6 with $x(t)$ and $h(t)$ replaced by $x(t) / t^{i}$ and $h(t)[\tau(t) / t]^{i}$, respectively.

We can assert that, in (iii) of Lemma 2.7, the limit of $|x(t)| / t^{i}$ as $t \rightarrow \infty$ exists if the following condition is satisfied:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} h(t)[\tau(t) / t]^{i} \quad \text { exists and is finite } . \tag{2.23}
\end{equation*}
$$

To see this we first prove the next lemma.
Lemma 2.8. Suppose that $x \in C[\tau(T), \infty)$ and that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} h(t)=\lambda, \quad|\lambda| \leq h<1 . \tag{2.24}
\end{equation*}
$$

If

$$
\begin{equation*}
\lim _{t \rightarrow \infty}(L x)(t)=l, \quad|l|<\infty, \tag{2.25}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=\frac{l}{1-\lambda} . \tag{2.26}
\end{equation*}
$$

Proof. Set $\hat{x}(t)=x(t)-l(1-\lambda)^{-1}$. We have

$$
\begin{aligned}
(L \hat{x})(t) & =\hat{x}(t)-h(t) \hat{x}(\tau(t)) \\
& =(L x)(t)-l+\frac{l}{1-\lambda}(h(t)-\lambda) .
\end{aligned}
$$

From (2.24) and (2.25) it follows that $\lim _{t \rightarrow \infty}(L \hat{x})(t)=0$. In view of (ii) of Lemma 2.2 we have $\lim _{t \rightarrow \infty} \hat{x}(t)=0$, which implies (2.26). The proof of Lemma 2.8 is complete.

Lemma 2.9. Let $x \in C[\tau(T), \infty), T \geq a$, and i be a positive integer. Suppose that (2.23) is satisfied. If $\lim _{t \rightarrow \infty}(L x)(t) / t^{i} \equiv \lim _{t \rightarrow \infty}[x(t)-h(t) x(\tau(t))] / t^{i}$ exists and is a nonzero finite value, then $\lim _{t \rightarrow \infty} x(t) / t^{i}$ exists and is a nonzero finite value.

Proof. Note that (2.22) holds, and employ Lemma 2.8 with $x(t)$ and $h(t)$ replaced by $x(t) / t^{i}$ and $h(t)[\tau(t) / t]^{i}$.

3. Classification of nonoscillatory solutions

In this section we classify nonoscillatory solutions x of (1.1) according to the asymptotic behavior of $(L x)(t) \equiv x(t)-h(t) x(\tau(t))$ as $t \rightarrow \infty$. Some of the results in this section have been obtained by Jarǒs and Kusano [9]. However we write the full proofs since a part of the proof is different from [9]. We make use of the following well-known lemma of Kiguradze.

Lemma 3.1 (Kiguradze [10]). Let $n \geq 2$ and $\sigma=1$ or -1 and let $u \in C[T, \infty)$ satisfy

$$
\sigma u(t) u^{(n)}(t)<0, \quad t \geq T
$$

Then there exist an integer $j \in\{0,1,2, \ldots, n\}$ and a number $t_{0} \geq T$ such that $(-1)^{n-j-1} \sigma=1$ and

$$
\left\{\begin{array}{lll}
u(t) u^{(i)}(t)>0, & t \geq t_{0}, & 0 \leq i \leq j, \\
(-1)^{i-j} u(t) u^{(i)}(t)>0, & t \geq t_{0}, & j \leq i \leq n .
\end{array}\right.
$$

Theorem 3.1. Let x be a nonoscillatory solution of (1.1). Then one of the following two cases holds:
(I) There are an integer j with $0 \leq j \leq n,(-1)^{n-j-1} \sigma=1$ and a number $t_{0} \geq a$ such that

$$
\begin{array}{cl}
x(t)(L x)(t)>0, & t \geq t_{0}, \\
\left\{\begin{array}{lll}
(L x)(t)(L x)^{(i)}(t)>0, & t \geq t_{0}, & 0 \leq i \leq j, \\
(-1)^{i-j}(L x)(t)(L x)^{(i)}(t)>0, & t \geq t_{0}, & j \leq i \leq n ;
\end{array}\right. \tag{3.2}
\end{array}
$$

(II) There is a number $t_{0} \geq a$ such that

$$
\begin{equation*}
x(t)(L x)(t)<0, \quad t \geq t_{0} \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{i}(L x)(t)(L x)^{(i)}(t)>0, \quad t \geq t_{0}, \quad 0 \leq i \leq n \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow \infty}(L x)(t)=0, \quad \lim _{t \rightarrow \infty} x(t)=0 \tag{3.5}
\end{equation*}
$$

Furthermore the case (II) can hold only when $(-1)^{n} \sigma=1$ and $h(t)$ is eventually positive.

Proof. We may assume that $x(t)>0$ and $x(g(t))>0$ for $t \geq T_{0}(\geq a)$. By equation (1.1) we see that $(L x)^{(n)}(t)=-\sigma p(t) f(x(g(t)))$ is either positive or negative for $t \geq T_{0}$. Therefore $L x$ is either decreasing or increasing on [T_{1}, ∞) for some large $T_{1} \geq T_{0}$. We have the following two possibilities:

$$
\begin{array}{lll}
\text { (I) } & (L x)(t)>0 & \text { for } \\
\text { (II) } \quad & (L x)(t)<0 & \text { for } \\
t \geq T_{2} ;
\end{array}
$$

where $T_{2}\left(\geq T_{1}\right)$ is sufficiently large.
In the case of (I) we have $\sigma(L x)(t)(L x)^{(n)}(t)<0$ for $t \geq T_{2}$. Applying Lemma 3.1 to the case of $T=T_{2}$ and $u(t)=(L x)(t)$, we conclude that there are $j \in\{0,1,2, \ldots, n\}$ and $t_{0} \geq T_{2}$ satisfying $(-1)^{n-j-1} \sigma=1$ and (3.2).

In the case of (II) we have $(-\sigma)(L x)(t)(L x)^{(n)}(t)<0$ for $t \geq T_{2}$. Lemma 3.1 with σ, T and $u(t)$ replaced by $-\sigma, T_{2}$ and $(L x)(t)$, respectively, shows that there are $j \in\{0,1,2, \ldots, n\}$ and $t_{0} \geq T_{2}$ such that $(-1)^{n-j} \sigma=1$ and

$$
\left\{\begin{array}{lll}
(L x)(t)(L x)^{(i)}(t)>0, & t \geq t_{0}, & 0 \leq i \leq j \\
(-1)^{i-j}(L x)(t)(L x)^{(i)}(t)>0, & t \geq t_{0}, & j \leq i \leq n
\end{array}\right.
$$

We claim that $j=0$. Otherwise, we have $(L x)(t)<0$ and $(L x)^{\prime}(t)<0$ for $t \geq t_{0}$. Then $\lim _{t \rightarrow \infty}(L x)(t)=l$ exists and l satisfies $-\infty \leq l<0$. On the other hand, Lemma 2.5 implies that $0 \leq l \leq \infty$. This contradiction asserts that the case $0<j \leq n$ is impossible. Since $j=0$ in the above, we have $(-1)^{n} \sigma=1$. Further, since $x(t)>0$ and $(L x)(t)<0$ for $t \geq t_{0}$, Remark 2.1 implies that $\lim _{t \rightarrow \infty} x(t)=0$ and that the case (II) can occur only when $h(t)$ is eventually positive. The proof of Theorem 3.1 is complete.

Definition 3.1. Let \mathcal{N} denote the set of all nonoscillatory solutions of (1.1). For an integer j with $0 \leq j \leq n$ and $(-1)^{n-j-1} \sigma=1$, we denote by \mathscr{N}_{j} the set of all nonoscillatory solutions x of (1.1) which satisfy (3.1) and (3.2). In addition, we denote by \mathscr{N}_{0}^{-}the set of all nonoscillatory solutions x of (1.1) which satisfy (3.3)-(3.5).

Theorem 3.1 means that every nonoscillatory solution $x \in \mathcal{N}$ falls into one and only one of the classes $\mathscr{N}_{j}\left(0 \leq j \leq n,(-1)^{n-j-1} \sigma=1\right)$ and \mathscr{N}_{0}^{-}. More precisely, \mathscr{N} has the following decomposition:

$$
\begin{array}{ll}
\mathscr{N}=\mathscr{N}_{n-1} \cup \mathscr{N}_{n-3} \cup \cdots \cup \mathscr{N}_{1} \cup \mathscr{N}_{0}^{-} & \text {for } \sigma=1 \text { and } n \text { is even } ; \\
\mathscr{N}=\mathscr{N}_{n-1} \cup \mathscr{N}_{n-3} \cup \cdots \cup \mathscr{N}_{2} \cup \mathscr{N}_{0} & \text { for } \sigma=1 \text { and } n \text { is odd } \\
\mathscr{N}=\mathscr{N}_{n} \cup \mathscr{N}_{n-2} \cup \cdots \cup \mathscr{N}_{2} \cup \mathscr{N}_{0} & \text { for } \sigma=-1 \text { and } n \text { is even } ; \\
\mathscr{N}=\mathscr{N}_{n} \cup \mathscr{N}_{n-2} \cup \cdots \cup \mathscr{N}_{1} \cup \mathscr{N}_{0}^{-} & \text {for } \sigma=-1 \text { and } n \text { is odd }
\end{array}
$$

where \mathscr{N}_{0}^{-}can appear only when $h(t)$ is eventually positive.
Let $x \in \mathscr{N}_{j}$. Then we see by (3.2) that the asymptotic behavior of $(L x)(t)$ as $t \rightarrow \infty$ is as follows:
(i) If $j=0$, then either

$$
\begin{align*}
& \lim _{t \rightarrow \infty}(L x)(t)=\text { const } \neq 0 \quad \text { or } \tag{i-1}\\
& \lim _{t \rightarrow \infty}(L x)(t)=0
\end{align*}
$$

(ii) If $1 \leq j \leq n-1$, then one of the following three cases holds:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{(L x)(t)}{t^{j}}=\text { const } \neq 0 ; \tag{ii-1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{(L x)(t)}{t^{j-1}}=\text { const } \neq 0 ; \tag{ii-2}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{(L x)(t)}{t^{j}}=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{|(L x)(t)|}{t^{j-1}}=\infty . \tag{ii-3}
\end{equation*}
$$

(iii) If $j=n$, then either

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \frac{(L x)(t)}{t^{n-1}}=\text { const } \neq 0 \quad \text { or } \tag{iii-1}\\
& \lim _{t \rightarrow \infty} \frac{|(L x)(t)|}{t^{n-1}}=\infty \tag{iii-2}
\end{align*}
$$

Notice that the function $|(L x)(t)| / t^{j-1}$ in (ii-3) is eventually nondecreasing (see Kusano and Natio [13, Lemma, p. 365]). Arguing as in [13], we can prove that $|(L x)(t)| / t^{n-1}$ in (iii-2) is also eventually nondecreasing. From (i)-(iii) of Lemma 2.7 we find that the asymptotic behavior of x as $t \rightarrow \infty$ is as follows:
(i) If $x \in \mathscr{N}_{0}$, then either

$$
\begin{gather*}
0<\underset{t \rightarrow \infty}{\liminf \inf }|x(t)| \leq \underset{t \rightarrow \infty}{\lim \sup }|x(t)|<\infty \quad \text { or } \tag{i-1}\\
\lim _{t \rightarrow \infty} x(t)=0 . \tag{i-2}
\end{gather*}
$$

(ii) If $x \in \mathscr{N}_{j}, 1 \leq j \leq n-1$, then one of the following three cases holds:

$$
\begin{equation*}
0<\liminf _{t \rightarrow \infty} \frac{|x(t)|}{t^{j}} \leq \limsup _{t \rightarrow \infty} \frac{|x(t)|}{t^{j}}<\infty \tag{ii-1}
\end{equation*}
$$

$$
\begin{equation*}
0<\liminf _{t \rightarrow \infty} \frac{|x(t)|}{t^{j-1}} \leq \limsup _{t \rightarrow \infty} \frac{|x(t)|}{t^{j-1}}<\infty ; \tag{ii-2}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{x(t)}{t^{j}}=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{|x(t)|}{t^{j-1}}=\infty \tag{ii-3}
\end{equation*}
$$

(iii) If $x \in \mathscr{N}_{n}$, then either

$$
\begin{gather*}
0<\liminf _{t \rightarrow \infty} \frac{|x(t)|}{t^{n-1}} \leq \underset{t \rightarrow \infty}{\limsup } \frac{|x(t)|}{t^{n-1}}<\infty \quad \text { or } \tag{iii-1}\\
\lim _{t \rightarrow \infty} \frac{|x(t)|}{t^{n-1}}=\infty \tag{iii-2}
\end{gather*}
$$

Now consider the case where the next condition holds:
(3.6) $\quad \lim _{t \rightarrow \infty} h(t)[\tau(t) / t]^{i}$ exist and are finite for all $i=0,1,2, \ldots, n-1$.

Condition (3.6) is certainly satisfied if $\lim _{t \rightarrow \infty} h(t)=0$, or if both $\lim _{t \rightarrow \infty} h(t)$ and $\lim _{t \rightarrow \infty} \tau(t) / t$ exist and are finite. If (3.6) holds, then we can ultilize Lemma 2.8 and Lemma 2.9 instead of (iii) of Lemma 2.7. Then we conclude that, under condition (3.6), the asymptotic behavior of a solution x belonging to \mathscr{N}_{j} is as follows:
(i) If $j=0$, then either

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=\text { const } \neq 0 \quad \text { or } \tag{i-1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} x(t)=0 \tag{i-2}
\end{equation*}
$$

(ii) If $1 \leq j \leq n-1$, then one of the following three cases holds:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{x(t)}{t^{j}}=\text { const } \neq 0 \tag{ii-1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{x(t)}{t^{j-1}}=\text { const } \neq 0 \tag{ii-2}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{x(t)}{t^{j}}=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{|x(t)|}{t^{j-1}}=\infty \tag{ii-3}
\end{equation*}
$$

(iii) If $j=n$, then either

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{x(t)}{t^{n-1}}=\text { const } \neq 0 \quad \text { or } \tag{iii-1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{|x(t)|}{t^{n-1}}=\infty \tag{iii-2}
\end{equation*}
$$

It is worth while to note that, if (3.6) is satisfied, the structure of the nonoscillatory solutions of the neutral equation (1.1) is exactly the same as that of the nonoscillatory solutions of the non-neutral equation (1.7) or (1.8) with the exception of the \mathcal{N}_{0}^{-}for (1.1). For the structure of the nonoscillatory solutions of (1.8), see, for example, [13].

4. Nonoscillatory solutions asymptotic to $\boldsymbol{t}^{\boldsymbol{k}}$

The aim of this section is to find, for each $k=0,1,2, \ldots, n-1$, a necessary and sufficient condition for the existence of a nonoscillatory solution x of (1.1) which behaves like t^{k} as $t \rightarrow \infty$, i.e., a solution x of (1.1) satisfying

$$
0<\liminf _{t \rightarrow \infty} \frac{|x(t)|}{t^{k}} \leq \limsup _{t \rightarrow \infty} \frac{|x(t)|}{t^{k}}<\propto .
$$

Hereafter, in addition to conditions (1.2)-(1.6), we assume the next conditions (4.1) and (4.2):

$$
\begin{gather*}
\tau \text { is locally Lipschitz continuous on }[a, \infty) \tag{4.1}\\
h \text { is locally Lipschitz continuous on }[\tau(a), \infty) \tag{4.2}
\end{gather*}
$$

First we consider the case of $k=0$.
Theorem 4.1. Assume that (1.2)-(1.6), (4.1) and (4.2) are satisfied. Then equation (1.1) has a nonoscillatory solution x such that

$$
\begin{equation*}
0<\liminf _{t \rightarrow \infty}|x(t)| \leq \limsup _{t \rightarrow \infty}|x(t)|<\infty \tag{4.3}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\int^{\infty} t^{n-1} p(t) d t<\infty \tag{4.4}
\end{equation*}
$$

Proof. (The "only if" part.) Let x be a nonoscillatory solution of (1.1) having the property (4.3). We may assume that $x(t)$ and $x(g(t))$ are positive on $[T, \infty)$ for some $T \geq a$. We easily find that

$$
\lim _{t \rightarrow \infty}(L x)^{(i)}(t)=0 \quad \text { for } \quad i=1,2, \ldots, n-1
$$

Therefore, integrating (1.1) repeatedly from t to ∞, we have

$$
\begin{equation*}
(L x)^{(i)}(t)=(-1)^{n-i-1} \sigma \int_{t}^{\infty} \frac{(s-t)^{n-i-1}}{(n-i-1)!} p(s) f(x(g(s))) d s, \quad t \geq T \tag{4.5}
\end{equation*}
$$

for $i=1,2, \ldots, n-1$. Noting that $\lim _{t \rightarrow \infty}(L x)(t)$ exists and is finite and integrating (4.5) with $i=1$ from t to ∞, we obtain

$$
(L x)(t)=(L x)(\infty)+(-1)^{n-1} \sigma \int_{t}^{\infty} \frac{(s-t)^{n-1}}{(n-1)!} p(s) f(x(g(s))) d s, \quad t \geq T
$$

where $(L x)(\infty)=\lim _{t \rightarrow \infty}(L x)(t)$. Then we see that

$$
\begin{equation*}
\int_{T}^{\infty}(s-T)^{n-1} p(s) f(x(g(s))) d s<\infty \tag{4.6}
\end{equation*}
$$

In view of (4.3) there are positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
c_{1} \leq x(g(t)) \leq c_{2} \quad \text { for } \quad t \geq T \tag{4.7}
\end{equation*}
$$

From (4.6) and (4.7) it follows that

$$
f_{*} \int_{T}^{\infty}(s-T)^{n-1} p(s) d s<\infty
$$

where $f_{*}=\min \left\{f(u): c_{1} \leq u \leq c_{2}\right\}>0$. Thus we get (4.4).
(The "if" part.) Let $c>0$ be an arbitrary positive number. Put $\mu=$ $(1-h) / 3$, where h is a constant appearing in assumption (1.3) and put $f^{*}=$ $\max \{f(u): \mu c \leq u \leq c /(3 \mu)\}$. Choose $T \geq 1$ so large that

$$
\begin{equation*}
\tilde{T} \equiv \min \left\{\tau(T), \inf _{t \geq T} g(t)\right\} \geq \max \{a, 0\} \quad \text { and } \tag{4.8}
\end{equation*}
$$

$$
\begin{equation*}
\int_{T}^{\infty} t^{n-1} p(t) d t<\frac{(n-1)!\mu c}{f^{*}} \tag{4.9}
\end{equation*}
$$

For this T, let $T_{i}(T), i=0,1,2, \ldots$, be real numbers defined by (2.1). The solution x of (1.1) satisfying (4.3) will be obtained as a solution x of the integral equation

$$
\begin{align*}
x(t)= & h(t) x(\tau(t))+(1-\mu) c \tag{4.10}\\
& +(-1)^{n-1} \sigma \int_{t}^{\infty} \frac{(s-t)^{n-1}}{(n-1)!} p(s) f(x(g(s))) d s, \quad t \geq T_{1}(T)
\end{align*}
$$

Since we are going to get a function x which satisfies (4.10) for $t \geq T_{1}(T)$, there is no loss of generality in supposing that $h(t)$ satisfies, besides assumption (1.3),

$$
\begin{equation*}
h(t)=0 \quad \text { for } \quad \tilde{T} \leq t \leq T \tag{4.11}
\end{equation*}
$$

In fact, if $h(t)$ does not satisfy (4.11), then we may replace $h(t)$ in (4.10) by $\tilde{h}(t)$ defined as follows:

$$
\tilde{h}(t)= \begin{cases}0, & \tilde{T} \leq t \leq T \tag{4.12}\\ h(t)(t-T) /\left(T_{1}(T)-T\right), & T \leq t \leq T_{1}(T) \\ h(t), & t \geq T_{1}(T)\end{cases}
$$

We define the auxiliary function $n(t)$ on $[\widetilde{T}, \infty)$ by
(4.13) $n(t)= \begin{cases}1 & \text { if } \quad \tilde{T} \leq t \leq T, \\ 1 & \text { if } \quad h(t)<0 \quad \text { and } \quad t>T, \\ \sum_{i=0}^{l} H_{i}(t) & \text { if } \quad h(t) \geq 0 \quad \text { and } \quad T_{l-1}(T)<t \leq T_{l}(T), \quad l=1,2, \ldots,\end{cases}$
where $H_{i}(t), i=0,1,2, \ldots$, are given by (2.4). Since $n(t) \leq \sum_{i=0}^{l} h^{i}$ for
$T_{l-1}(T)<t \leq T_{l}(T), l=1,2, \ldots$, we have

$$
\begin{equation*}
n(t) \leq 1 /(1-h)=1 /(3 \mu), \quad t \geq \tilde{T} . \tag{4.14}
\end{equation*}
$$

Furthermore, using the condition $h(t) h(\tau(t)) \geq 0, t \geq T$, in assumption (1.3), we have

$$
\begin{equation*}
n(t) \geq 1, \quad t \geq \tilde{T} \tag{4.15}
\end{equation*}
$$

It is also verified that if t satisfies $h(t) \geq 0$ and $t \geq T$, then

$$
\begin{equation*}
h(t) n(\tau(t))=n(t)-1 \tag{4.16}
\end{equation*}
$$

For the proof of (4.16) we note that $h(t) H_{i}(\tau(t))=H_{i+1}(t), i=0,1,2, \ldots, t \geq T$. If t satisfies $h(t)<0$ and $t \geq T$, then

$$
\begin{equation*}
h(t) n(\tau(t))=h(t) \geq-h=3 \mu-1 \tag{4.17}
\end{equation*}
$$

Let L_{l}^{τ} and $L_{l}^{h}, l=1,2, \cdots$, be Lipschitz constants for $\tau(t)$ and $h(t)$ on $\left[T, T_{l}(T)\right]$, respectively, i.e.,

$$
\begin{array}{lll}
|\tau(t)-\tau(s)| \leq L_{l}^{\tau}|t-s| & \text { for } & T \leq s, t \leq T_{l}(T) \\
|h(t)-h(s)| \leq L_{l}^{h}|t-s| & \text { for } & T \leq s, t \leq T_{l}(T) \tag{4.19}
\end{array}
$$

We may suppose that $L_{l}^{\tau} \geq 1, l=1,2, \ldots$ Define $m(t)$ on $[\tilde{T}, \infty)$ by
(4.20) $m(t)= \begin{cases}0 & \text { for } \tilde{T} \leq t \leq T, \\ L_{l}^{\tau} m(\tau(t))+\frac{L_{l}^{h}}{3 \mu}+(n-1) \mu & \text { for } T_{l-1}(T)<t \leq T_{l}(T), l=1,2, \ldots\end{cases}$

Observe that m can be inductively determined as follows: If $t \in\left(T, T_{1}(T)\right]$, then, since $\tau(t) \in(\tau(T), T], m(\tau(t))$ is known; and so $m(t)$ is known on $\left(T, T_{1}(T)\right]$. Let $m(t)$ be known on $\left(T_{l-1}(T), T_{l}(T)\right]$ for some l, then, since $\tau(t) \in\left(T_{l-1}(T), T_{l}(T)\right]$, $m(\tau(t))$ is known; and so $m(t)$ is known on $\left(T_{l}(T), T_{l+1}(T)\right]$. Thus $m(t)$ is known for all $t \geq \tilde{T}$. We can easily show that m is a nonnegative nondecreasing step function on $[\tilde{T}, \infty)$. Let $C[\tilde{T}, \infty)$ denote the Fréchet space of all continuous functions on $[\widetilde{T}, \infty)$ with the topology of uniform convergence on any compact subintervals of $[\widetilde{T}, \infty)$. Consider the set X of all $x \in C[\widetilde{T}, \infty)$ satisfying

$$
\mu c \leq x(t) \leq c n(t) \quad \text { for } \quad t \geq \tilde{T}
$$

and

$$
\left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \leq c m\left(t_{2}\right)\left|t_{2}-t_{1}\right| \quad \text { for } \quad t_{2}>t_{1} \geq \tilde{T}
$$

Clearly X is a nonempty, convex and compact subset of $C[\widetilde{T}, \infty)$. We define the operator \mathscr{F} on X in the following manner:
$(\mathscr{F} x)(t)$
$=\left\{\begin{array}{cl}h(t) x(\tau(t))+(1-\mu) c+(-1)^{n-1} \sigma \int_{t}^{\infty} \frac{(s-t)^{n-1}}{(n-1)!} p(s) f(x(g(s))) d s & \text { for } t \geq T, \\ (1-\mu) c+(-1)^{n-1} \sigma \int_{T}^{\infty} \frac{(s-T)^{n-1}}{(n-1)!} p(s) f(x(g(s))) d s & \text { for } \tilde{T} \leq t \leq T .\end{array}\right.$
It is easy to see that $\mathscr{F} x$ is well defined on $[\tilde{T}, \infty)$ for each $x \in X$. We seek a fixed point of \mathscr{F} in X with the aid of the Schauder-Tychonoff fixed point theorem.

First we show that \mathscr{F} maps X into X. Assume that $x \in X$. Since we suppose that (4.11) holds, $\mathscr{F} x$ is clearly continuous on $[\tilde{T}, \infty)$. We have to verify that

$$
\begin{equation*}
\mu c \leq(\mathscr{F} x)(t) \leq c n(t) \quad \text { for } \quad t \geq \tilde{T} \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|(\mathscr{F} x)\left(t_{2}\right)-(\mathscr{F} x)\left(t_{1}\right)\right| \leq c m\left(t_{2}\right)\left|t_{2}-t_{1}\right| \quad \text { for } \quad t_{2}>t_{1} \geq \tilde{T} \tag{4.22}
\end{equation*}
$$

Note by (4.8) and (4.14) that $\mu c \leq x(t) \leq c /(3 \mu)$ for $t \geq \widetilde{T}$ and so $\mu c \leq x(g(t)) \leq$ $c /(3 \mu)$ for $t \geq T$. Let

$$
\begin{equation*}
G(t)=\int_{t}^{\infty} \frac{(s-t)^{n-1}}{(n-1)!} p(s) f(x(g(s))) d s \quad \text { for } \quad t \geq T \tag{4.23}
\end{equation*}
$$

Then, by (4.9), G satisfies

$$
|G(t)| \leq \frac{f^{*}}{(n-1)!} \int_{T}^{\infty} s^{n-1} p(s) d s \leq \mu c \quad \text { for } \quad t \geq T
$$

Notice that $\mathscr{F} x$ is written as

$$
(\mathscr{F} x)(t)= \begin{cases}h(t) x(\tau(t))+(1-\mu) c+(-1)^{n-1} \sigma G(t) & \text { for } t \geq T \\ (1-\mu) c+(-1)^{n-1} \sigma G(T) & \text { for } \tilde{T} \leq t \leq T\end{cases}
$$

If t satisfies $t \geq T$ and $h(t) \geq 0$, then, in view of (4.16),

$$
\begin{aligned}
(\mathscr{F} x)(t) & \leq \operatorname{ch}(t) n(\tau(t))+(1-\mu) c+\mu c \\
& =c[n(t)-1]+c=c n(t)
\end{aligned}
$$

and

$$
(\mathscr{F} x)(t) \geq(1-\mu) c-\mu c \geq \mu c
$$

If t satisfies $t \geq T$ and $h(t)<0$, then, in view of (4.17),

$$
(\mathscr{F} x)(t) \leq(1-\mu) c+\mu c=c=c n(t)
$$

and

$$
\begin{aligned}
(\mathscr{F} x)(t) & \geq \operatorname{ch}(t) n(\tau(t))+(1-\mu) c-\mu c \\
& \geq c(3 \mu-1)+(1-\mu) c-\mu c=\mu c
\end{aligned}
$$

Then we get

$$
\begin{equation*}
\mu c \leq(\mathscr{F} x)(t) \leq c n(t) \quad \text { for } \quad t \geq T, \tag{4.24}
\end{equation*}
$$

and in particular $\mu c \leq(\mathscr{F} x)(T) \leq c n(T)$. Since $(\mathscr{F} x)(t)=(\mathscr{F} x)(T)$ and $n(t)=$ $n(T)$ for $\tilde{T} \leq t \leq T$ we have

$$
\begin{equation*}
\mu c \leq(\mathscr{F} x)(t) \leq c n(t) \quad \text { for } \quad \tilde{T} \leq t \leq T \tag{4.25}
\end{equation*}
$$

Then inequalities (4.24) and (4.25) together yield (4.21).
Let G be the function defined by (4.23). Since

$$
\begin{aligned}
\left|G^{\prime}(t)\right| & =\int_{t}^{\infty} \frac{(s-t)^{n-2}}{(n-2)!} p(s) f(x(g(s))) d s \\
& \leq \frac{f^{*}}{(n-2)!} \int_{T}^{\infty} s^{n-2} p(s) d s \leq(n-1) \mu c \quad \text { for } \quad t \geq T
\end{aligned}
$$

the mean value theorem gives

$$
\begin{equation*}
\left|G\left(t_{2}\right)-G\left(t_{1}\right)\right| \leq(n-1) \mu c\left|t_{2}-t_{1}\right| \quad \text { for } \quad t_{2}>t_{1} \geq T . \tag{4.26}
\end{equation*}
$$

If $\tilde{T} \leq t_{1}<t_{2} \leq T$, then

$$
\left|(\mathscr{F} x)\left(t_{2}\right)-(\mathscr{F} x)\left(t_{1}\right)\right|=0 .
$$

If $T \leq t_{1}<t_{2}$ and $T_{l-1}(T)<t_{2} \leq T_{l}(T), l=1,2, \ldots$, then, in view of (4.18)(4.20) and (4.26),

$$
\begin{aligned}
\left|(\mathscr{F} x)\left(t_{2}\right)-(\mathscr{F} x)\left(t_{1}\right)\right| \leq & \left|h\left(t_{1}\right)\right|\left|x\left(\tau\left(t_{2}\right)\right)-x\left(\tau\left(t_{1}\right)\right)\right|+\left|x\left(\tau\left(t_{2}\right)\right)\right|\left|h\left(t_{2}\right)-h\left(t_{1}\right)\right| \\
& +\left|G\left(t_{2}\right)-G\left(t_{1}\right)\right| \\
\leq & c m\left(\tau\left(t_{2}\right)\right)\left|\tau\left(t_{2}\right)-\tau\left(t_{1}\right)\right|+\frac{c}{3 \mu}\left|h\left(t_{2}\right)-h\left(t_{1}\right)\right| \\
& +\left|G\left(t_{2}\right)-G\left(t_{1}\right)\right| \\
\leq & c\left[L_{l}^{\tau} m\left(\tau\left(t_{2}\right)\right)+\frac{L_{l}^{h}}{3 \mu}+(n-1) \mu\right]\left|t_{2}-t_{1}\right| \\
= & c m\left(t_{2}\right)\left|t_{2}-t_{1}\right| .
\end{aligned}
$$

Therefore we see that (4.22) is satisfied.

Furthermore it can be shown without difficulty that \mathscr{F} is continuous on X. By the Schauder-Tychonoff fixed point theorem there exists an $x \in X$ such that $x=\mathscr{F} x$. This function x satisfies (4.10). It is clear that

$$
\lim _{t \rightarrow \infty}(L x)(t)=\lim _{t \rightarrow \infty}[x(t)-h(t) x(\tau(t))]=(1-\mu) c .
$$

From (ii) of Lemma 2.6 we see that x satisfies (4.3). The proof of Theorem 4.1 is complete.

The solution x of (1.1) which is obtained in the proof of the "if" part of Theorem 4.1 satisfies $\lim _{t \rightarrow \infty}(L x)(t)=(1-\mu) c \neq 0$. Therefore by Lemma 2.8 we get the next corollary.

Corollary 4.1. In addition to (1.2)-(1.6), (4.1) and (4.2), assume that $\lim _{t \rightarrow \infty} h(t)$ exists and is finite. Then equation (1.1) has a nonoscillatory solution x such that

$$
\lim _{t \rightarrow \infty} x(t)=\text { const } \neq 0
$$

if and only if (4.4) holds.
Next we consider the case of $1 \leq k \leq n-1$. In this case equation (1.1) is required to be either sublinear or superlinear. Here the sublinearity and superlinearity of (1.1) are defined by the following:

Definition 4.1. Equation (1.1) is called sublinear if f in (1.1) satisfies

$$
\frac{\left|f\left(u_{1}\right)\right|}{\left|u_{1}\right|} \geq \frac{\left|f\left(u_{2}\right)\right|}{\left|u_{2}\right|} \quad \text { for } \quad\left|u_{2}\right|>\left|u_{1}\right|, \quad u_{1} u_{2}>0
$$

and equation (1.1) is called superlinear if f satisfies

$$
\frac{\left|f\left(u_{1}\right)\right|}{\left|u_{1}\right|} \leq \frac{\left|f\left(u_{2}\right)\right|}{\left|u_{2}\right|} \quad \text { for } \quad\left|u_{2}\right|>\left|u_{1}\right|, \quad u_{1} u_{2}>0
$$

Clearly equation (1.9) is sublinear if $-\infty<\gamma \leq 1$ and is superlinear if $1 \leq \gamma<\infty$.

Theorem 4.2. Assume that (1.2)-(1.6), (4.1) and (4.2) are satisfied. Let (1.1) be either sublinear or superlinear and let k be an integer with $1 \leq k \leq n-1$. Then equation (1.1) has a nonoscillatory solution x such that

$$
\begin{equation*}
0<\liminf _{t \rightarrow \infty} \frac{|x(t)|}{t^{k}} \leq \limsup _{t \rightarrow \infty} \frac{|x(t)|}{t^{k}}<\infty \tag{4.27}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\int^{\infty} t^{n-k-1} p(t)\left|f\left(c[g(t)]^{k}\right)\right| d t<\infty \quad \text { for some } \quad c \neq 0 \tag{4.28}
\end{equation*}
$$

Proof. (The "only if" part.) Let x be a solution of (1.1) satisfying (4.27). Without loss of generaity we may assume that x is eventually positive. Then we can take a number $T \geq a$ such that $x(t)>0, x(g(t))>0$ and $g(t)>0$ for $t \geq T$. We note that $\lim _{t \rightarrow \infty}(L x)^{(i)}(t)=0, i=k+1, k+2, \ldots, n-1$ and $\lim _{t \rightarrow \infty}(L x)^{(k)}(t)$ exists and is a finite value. Integrating (1.1) repeatedly from t to ∞, we obtain

$$
(L x)^{(k)}(t)=(L x)^{(k)}(\infty)+(-1)^{n-k-1} \sigma \int_{t}^{\infty} \frac{(s-t)^{n-k-1}}{(n-k-1)!} p(s) f(x(g(s))) d s
$$

for $t \geq T$, where $(L x)^{(k)}(\infty)=\lim _{t \rightarrow \infty}(L x)^{(k)}(t)$. Thus we have

$$
\begin{equation*}
\int_{T}^{\infty}(s-t)^{n-k-1} p(s) f(x(g(s))) d s<\infty \tag{4.29}
\end{equation*}
$$

In view of (4.27) there are positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
c_{1}[g(t)]^{k} \leq x(g(t)) \leq c_{2}[g(t)]^{k} \quad \text { for } \quad t \geq T \tag{4.30}
\end{equation*}
$$

From (4.29) and (4.30) it follows that (4.28) is satisfied for $c=c_{2}$ if (1.1) is sublinear and for $c=c_{1}$ if (1.1) is superlinear.
(The "if" part.) Without loss of generality we may assume that c in (4.28) is positive. Let $\mu=(1-h) / 3$. Set $c^{*}=c / \mu$ if (1.1) is sublinear and $c^{*}=3 \mu c$ if (1.1) is superlinear. Choose T so large that (4.8) and

$$
\begin{equation*}
\int_{T}^{\infty} t^{n-k-1} p(t) f\left(c[g(t)]^{k}\right) d t<3 k!(n-k-1)!\mu^{2} c \tag{4.31}
\end{equation*}
$$

hold. We shall obtain a solution x of (1.1) satisfying (4.27) as a solution x of the integral equation

$$
\begin{equation*}
x(t)=h(t) x(\tau(t))+(1-\mu) c^{*} t^{k} \tag{4.32}
\end{equation*}
$$

$$
+(-1)^{n-k-1} \sigma \int_{T}^{t} \frac{(t-s)^{k-1}}{(k-1)!} \int_{s}^{\infty} \frac{(u-s)^{n-k-1}}{(n-k-1)!} p(u) f(x(g(u))) d u d s, \quad t \geq T_{1}(T)
$$

Arguing as in the proof of Theorem 4.1, we may suppose that (4.11) is satisfied. Let $n(t)$ be the function on $[\widetilde{T}, \infty)$ defined by (4.13), where \widetilde{T} is a constant in (4.8). Let L_{l}^{τ} and $L_{l}^{h}(l=1,2, \ldots)$ be the real numbers satisfying (4.18), (4.19) and $L_{l}^{\tau} \geq 1, l=1,2, \ldots$ We define $m(t)$ on $[\tilde{T}, \infty)$ as follows:

$$
m(t)= \begin{cases}k t^{k-1} & \text { for } \tilde{T} \leq t \leq T \tag{4.33}\\ L_{l}^{\tau} m(\tau(t))+\frac{L_{l}^{h}}{3 \mu}[\tau(t)]^{k}+k t^{k-1} & \text { for } T_{l-1}(T)<t \leq T_{l}(T), \quad l=1,2, \ldots\end{cases}
$$

Notice that $m(t)$ can be inductively determined on [\widetilde{T}, ∞) and that $m(t)$ is a positive nondecreasing piecewise continuous function on $[\tilde{T}, \infty)$. Let $C[\widetilde{T}, \infty)$ be the Fréchet space as mentioned in the proof of Theorem 4.1. We denote by X the set of all $x \in C[\widetilde{T}, \infty)$ satisfying

$$
\mu c^{*} t^{k} \leq x(t) \leq c^{*} n(t) t^{k} \quad \text { for } \quad t \geq \tilde{T}
$$

and

$$
\left|x\left(t_{2}\right)-x\left(t_{1}\right)\right| \leq c^{*} m\left(t_{2}\right)\left|t_{2}-t_{1}\right| \quad \text { for } \quad t_{2}>t_{1} \geq \tilde{T}
$$

The set X is a nonempty, convex and compact subset of $C[\widetilde{T}, \infty)$. We define the operator \mathscr{F} on X in the following manner:
$(\mathscr{F} x)(t)$
$=\left\{\begin{array}{l}h(t) x(\tau(t))+(1-\mu) c^{*} t^{k} \\ \quad+(-1)^{n-k-1} \sigma \int_{T}^{t} \frac{(t-s)^{k-1}}{(k-1)!} \int_{s}^{\infty} \frac{(u-s)^{n-k-1}}{(n-k-1)!} p(u) f(x(g(u))) d u d s \quad \text { for } t \geq T, \\ (1-\mu) c^{*} t^{k} \quad \text { for } \tilde{T} \leq t \leq T .\end{array}\right.$
We show that \mathscr{F} maps X into itself. Assume that $x \in X$. By (4.11), $\mathscr{F} x$ belongs to $C[\widetilde{T}, \infty)$. Noting (4.14), we find that $\mu c^{*} t^{k} \leq x(t) \leq c^{*} t^{k} /(3 \mu)$ for $t \geq T$; that is, if (1.1) is sublinear then $c t^{k} \leq x(t) \leq c t^{k} /\left(3 \mu^{2}\right)$ for $t \geq T$, and if (1.1) is superlinear then $3 \mu^{2} c t^{k} \leq x(t) \leq c t^{k}$ for $t \geq T$. Set

$$
\begin{equation*}
G(t)=\int_{T}^{t} \frac{(t-s)^{k-1}}{(k-1)!} \int_{s}^{\infty} \frac{(u-s)^{n-k-1}}{(n-k-1)!} p(u) f(x(g(u))) d u d s, \quad t \geq T . \tag{4.34}
\end{equation*}
$$

Then

$$
\begin{aligned}
|G(t)| & \leq \int_{T}^{t} \frac{(t-s)^{k-1}}{(k-1)!} d s \int_{T}^{\infty} \frac{(u-T)^{n-k-1}}{(n-k-1)!} p(u) f(x(g(u))) d u \\
& \leq \frac{t^{k}}{k!(n-k-1)!} \int_{T}^{\infty} s^{n-k-1} p(s) f(x(g(s))) d s
\end{aligned}
$$

for $t \geq T$. Therefore, condition (4.31) gives

$$
\begin{aligned}
|G(t)| & \leq \frac{t^{k}}{k!(n-k-1)!3 \mu^{2}} \int_{T}^{\infty} s^{n-k-1} p(s) f\left(c[g(s)]^{k}\right) d s \\
& \leq c t^{k}=\mu c^{*} t^{k}, \quad t \geq T
\end{aligned}
$$

in the case where (1.1) is sublinear, and

$$
\begin{aligned}
|G(t)| & \leq \frac{t^{k}}{k!(n-k-1)!} \int_{T}^{\infty} s^{n-k-1} p(s) f\left(c[g(s)]^{k}\right) d s \\
& \leq 3 \mu^{2} c t^{k}=\mu c^{*} t^{k}, \quad t \geq T
\end{aligned}
$$

in the case where (1.1) is superlinear. In either case, we have

$$
\begin{equation*}
|G(t)| \leq \mu c^{*} t^{k} \quad \text { for } \quad t \geq T \tag{4.35}
\end{equation*}
$$

Then it can be shown that

$$
\begin{equation*}
\mu c^{*} t^{k} \leq(\mathscr{F} x)(t) \leq c^{*} n(t) t^{k} \quad \text { for } \quad t \geq \tilde{T} \tag{4.36}
\end{equation*}
$$

by using (4.35) and the same argument as in the proof of Theorem 4.1.
If $\tilde{T} \leq t_{1}<t_{2} \leq T$, then

$$
\begin{align*}
\left|(\mathscr{F} x)\left(t_{2}\right)-(\mathscr{F} x)\left(t_{1}\right)\right| & =(1-\mu) c^{*}\left|t_{2}^{k}-t_{1}^{k}\right| \tag{4.37}\\
& \leq(1-\mu) c^{*} k t_{2}^{k-1}\left|t_{2}-t_{1}\right| \\
& \leq c^{*} m\left(t_{2}\right)\left|t_{2}-t_{1}\right|,
\end{align*}
$$

where we have used the mean value theorem for t^{k}. The derivative of G defined by (4.34) is given by the following:

$$
G^{\prime}(t)=\int_{t}^{\infty} \frac{(s-t)^{n-2}}{(n-2)!} p(s) f(x(g(s))) d s, \quad t \geq T
$$

for the case of $k=1$, and

$$
G^{\prime}(t)=\int_{T}^{t} \frac{(t-s)^{k-2}}{(k-2)!} \int_{s}^{\infty} \frac{(u-s)^{n-k-1}}{(n-k-1)!} p(u) f(x(g(u))) d u d s, \quad t \geq T
$$

for the case of $2 \leq k \leq n-1$. Therefore we have

$$
\begin{aligned}
\left|G^{\prime}(t)\right| & \leq \frac{1}{(n-2)!} \int_{t}^{\infty} s^{n-2} p(s) f(x(g(s))) d s \\
& \leq \mu c^{*}, \quad t \geq T
\end{aligned}
$$

for the case of $k=1$, and

$$
\begin{aligned}
\left|G^{\prime}(t)\right| & \leq \frac{t^{k-1}}{(k-1)!(n-k-1)!} \int_{t}^{\infty} s^{n-k-1} p(s) f(x(g(s))) d s \\
& \leq \mu c^{*} k t^{k-1}, \quad t \geq T
\end{aligned}
$$

for the case of $2 \leq k \leq n-1$. From the above, we get

$$
\left|G^{\prime}(t)\right| \leq \mu c^{*} k t^{k-1} \quad \text { for } \quad t \geq T \quad \text { and } \quad 1 \leq k \leq n-1
$$

By the mean value theorem we obtain

$$
\begin{align*}
& \left|G\left(t_{2}\right)-G\left(t_{1}\right)\right| \leq \mu c^{*} k t_{2}^{k-1}\left|t_{2}-t_{1}\right| \tag{4.38}\\
& \quad \text { for } \quad t_{2}>t_{1} \geq T \quad \text { and } \quad 1 \leq k \leq n-1
\end{align*}
$$

Let $t_{2}>t_{1} \geq T$ and $T_{l-1}(T)<t_{2} \leq T_{l}(T), l=1,2, \ldots$. Then we see by (4.18), (4.19), (4.33) and (4.38) that

$$
\begin{align*}
&\left|(\mathscr{F} x)\left(t_{2}\right)-(\mathscr{F} x)\left(t_{1}\right)\right| \tag{4.39}\\
& \leq\left|h\left(t_{1}\right)\right|\left|x\left(\tau\left(t_{2}\right)\right)-x\left(\tau\left(t_{1}\right)\right)\right|+\left|x\left(\tau\left(t_{2}\right)\right)\right|\left|h\left(t_{2}\right)-h\left(t_{1}\right)\right| \\
&+(1-\mu) c^{*}\left|t_{2}^{k}-t_{1}^{k}\right|+\left|G\left(t_{2}\right)-G\left(t_{1}\right)\right| \\
& \leq c^{*} m\left(\tau\left(t_{2}\right)\right)\left|\tau\left(t_{2}\right)-\tau\left(t_{1}\right)\right|+\frac{c^{*}}{3 \mu}\left[\tau\left(t_{2}\right)\right]^{k}\left|h\left(t_{2}\right)-h\left(t_{1}\right)\right| \\
&+(1-\mu) c^{*}\left|t_{2}^{k}-t_{1}^{k}\right|+\left|G\left(t_{2}\right)-G\left(t_{1}\right)\right| \\
& \leq c^{*} L_{l}^{\tau} m\left(\tau\left(t_{2}\right)\right)\left|t_{2}-t_{1}\right|+\frac{c^{*}}{3 \mu}\left[\tau\left(t_{2}\right)\right]^{k} L_{l}^{h}\left|t_{2}-t_{1}\right| \\
&+(1-\mu) c^{*} k t_{2}^{k-1}\left|t_{2}-t_{1}\right|+\mu c^{*} k t_{2}^{k-1}\left|t_{2}-t_{1}\right| \\
& \leq c^{*}\left[L_{l}^{\tau} m\left(\tau\left(t_{2}\right)\right)+\frac{L_{l}^{h}}{3 \mu}\left[\tau\left(t_{2}\right)\right]^{k}+k t_{2}^{k-1}\right]\left|t_{2}-t_{1}\right| \\
&= c^{*} m\left(t_{2}\right)\left|t_{2}-t_{1}\right| .
\end{align*}
$$

From (4.37) and (4.39) we obtain

$$
\begin{equation*}
\left|(\mathscr{F} x)\left(t_{2}\right)-(\mathscr{F} x)\left(t_{1}\right)\right| \leq c^{*} m\left(t_{2}\right)\left|t_{2}-t_{1}\right| \quad \text { for } \quad t_{2}>t_{1} \geq \tilde{T} \tag{4.40}
\end{equation*}
$$

Then, inequalities (4.36) and (4.40) mean that \mathscr{F} maps X into X.
Furthermore it is easily verified that \mathscr{F} is continuous on X. By the Schauder-Tychonoff fixed point theorem we can conclude that there exists an $x \in X$ such that $x=\mathscr{F} x$. This x satisfies

$$
\begin{aligned}
& \frac{d^{k}}{d t^{k}}[x(t)-h(t) x(\tau(t))] \\
& \quad=(1-\mu) c^{*} k!+(-1)^{n-k-1} \sigma \int_{t}^{\infty} \frac{(s-t)^{n-k-1}}{(n-k-1)!} p(s) f(x(g(s))) d s
\end{aligned}
$$

for $t \geq T_{1}(T)$ and is a positive solution of equation (1.1). From the above equality it follows that

$$
\lim _{t \rightarrow \infty}(L x)(t) / t^{k}=\lim _{t \rightarrow \infty}[x(t)-h(t) x(\tau(t))] / t^{k}=(1-\mu) c^{*}>0
$$

Then, by (iii) of Lemma 2.7 we find that x satisfies (4.27). The proof of Theorem 4.2 is complete.

Corollary 4.2. Let (1.1) be either sublinear or superlinear, and let k be an integer with $1 \leq k \leq n-1$. In addition to (1.2)-(1.6), (4.1) and (4.2), assume that $\lim _{t \rightarrow \infty} h(t)[\tau(t) / t]^{k}$ exists and is finite. Then equation (1.1) has a nonoscillatory solution x such that

$$
\lim _{t \rightarrow \infty} \frac{x(t)}{t^{k}}=\text { const } \neq 0
$$

if and only if (4.28) holds.
Remark 4.1. It is easy to verify that if x is a nonoscillatory solution of (1.1) satisfying (4.27), then $x \in \mathscr{N}_{k}$ for the case of $(-1)^{n-k} \sigma=-1$ and $x \in \mathscr{N}_{k+1}$ for the case of $(-1)^{n-k} \sigma=1$. This observation is also true in the case of $k=0$.

Example 4.1. Consider the equation

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}[x(t)-h \sin t \cdot x(t-2 \pi)]+\sigma p(t)|x(t-\tau)|^{\gamma} \operatorname{sgn} x(t-\tau)=0 \tag{4.41}
\end{equation*}
$$

where $n \geq 2, \sigma=1$ or $-1, p \in C[0, \infty), p(t)>0$ on $[0, \infty)$, and h, τ, γ are constant such that $|h|<1,|\tau|<\infty,|\gamma|<\infty$. Let k be an integer with $0 \leq k \leq n-1$. Theorems 4.1 and 4.2 show that the condition

$$
\begin{equation*}
\int^{\infty} t^{n-k-1+\gamma k} p(t) d t<\infty \tag{4.42}
\end{equation*}
$$

is a necessary and sufficient condition for (4.41) to have a nonoscillatory solution x satisfying

$$
0<\liminf _{t \rightarrow \infty} \frac{|x(t)|}{t^{k}} \leq \limsup _{t \rightarrow \infty} \frac{|x(t)|}{t^{k}}<\infty
$$

Example 4.2. Consider the equation

$$
\begin{equation*}
\frac{d^{n}}{d t^{n}}[x(t)-h x(t-2 \pi)]+\sigma p(t)|x(t-\tau)|^{\gamma} \operatorname{sgn} x(t-\tau)=0 \tag{4.43}
\end{equation*}
$$

where $n, \sigma, p, h, \tau, \gamma$ are as in Example 4.1. Then it follows from Corollaries 4.1 and 4.2 that, for an integer k with $0 \leq k \leq n-1$, condition (4.42) is necessary and sufficient for (4.43) to have a nonoscillatory solution x such that

$$
\lim _{t \rightarrow \infty} \frac{|x(t)|}{t^{k}}=\text { const } \neq 0
$$

5. Nonoscillatory solutions in $\mathscr{N}_{\boldsymbol{j}}, \mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}-\mathbf{1}$

In this section we establish conditions under which equation (1.1) has nonoscillatory solutions of the classes \mathscr{N}_{j}, where $1 \leq j \leq n-1$ and $(-1)^{n-j-1} \sigma=1$. These results are based upon the following lemmas which are concerned with

$$
\begin{equation*}
\left\{\sigma y^{(n)}(t)+p(t) f(y(g(t)))\right\} \operatorname{sgn} y(g(t)) \leq 0 . \tag{5.1}
\end{equation*}
$$

Here we assume that $n \geq 2, \sigma=1$ or -1 , and p, f and g satisfy (1.4), (1.5) and (1.6), respectively. We say that a nonoscillatory solution y of (5.1) is of class \mathscr{N}_{j} if y satisfies

$$
\begin{cases}y(t) y^{(i)}(t)>0, & 0 \leq i \leq j \\ (-1)^{i-j} y(t) y^{(i)}(t)>0, & j+1 \leq i \leq n\end{cases}
$$

for all sufficiently large t. We use the notation

$$
g_{*}(t)=\min \{g(t), t\} .
$$

Definition 5.1. Equation (1.1) or inequality (5.1) is called strictly sublinear if there is a number α such that $0<\alpha<1$ and

$$
\frac{\left|f\left(u_{1}\right)\right|}{\left|u_{1}\right|^{\alpha}} \geq \frac{\left|f\left(u_{2}\right)\right|}{\left|u_{2}\right|^{\alpha}} \quad \text { for } \quad\left|u_{1}\right| \leq\left|u_{2}\right|, \quad u_{1} u_{2}>0
$$

Equation (1.1) or inequality (5.1) is called strictly superlinear if there is a number $\beta>1$ such that

$$
\frac{\left|f\left(u_{1}\right)\right|}{\left|u_{1}\right|^{\beta}} \leq \frac{\left|f\left(u_{2}\right)\right|}{\left|u_{2}\right|^{\beta}} \quad \text { for } \quad\left|u_{1}\right| \leq\left|u_{2}\right|, \quad u_{1} u_{2}>0
$$

Clearly equation (1.9) is strictly sublinear if $-\infty<\gamma<1$ and is strictly superlinear if $1<\gamma<\infty$.

Lemma 5.1. Let (5.1) be strictly sublinear and $1 \leq j \leq n-1,(-1)^{n-j-1} \sigma=1$. If (5.1) has a solution of class \mathscr{N}_{j}, then

$$
\begin{equation*}
\int^{\infty}\left(\frac{g_{*}(t)}{g(t)}\right)^{\alpha j} t^{n-j-1} p(t)\left|f\left(c[g(t)]^{j}\right)\right| d t<\infty \quad \text { for some } \quad c \neq 0 \tag{5.2}
\end{equation*}
$$

where α is the strict sublinearity constant for (5.1).

For the proof of Lemma 5.1, see Kitamura [11, Theorem 2]. A close look at the proofs of Theorem 1 of Kitamura [11] and Theorem B of Kitamura and Kusano [12] enables us to obtain the next result.

Lemma 5.2. Let (5.1) be strictly superlinear and $1 \leq j \leq n-1,(-1)^{n-j-1} \sigma=$ 1. If (5.1) has a solution of class \mathscr{N}_{j}, then

$$
\begin{equation*}
\int^{\infty}\left[g_{*}(t)\right]^{n-j} p(t)\left|f\left(c[g(t)]^{j-1}\right)\right| d t<\infty \quad \text { for some } \quad c \neq 0 \tag{5.3}
\end{equation*}
$$

First we find a necessary condition for the existence of a solution x of (1.1) which belongs to \mathscr{N}_{j}.

Theorem 5.1. Let (1.1) be strictly sublinear and $1 \leq j \leq n-1,(-1)^{n-j-1} \sigma=$ 1. If (1.1) has a nonoscillatory solution x in the class \mathscr{N}_{j}, then (5.2) holds.

Proof. Let x be a solution of (1.1) in the class \mathscr{N}_{j}. Without loss of generality we may assume that x is eventually positive. Then $(L x)(t)$ is eventually positive and increasing. By Lemmas 2.3 and 2.4 there are $c^{*}>0, c_{*}>0$ and $T \geq a$ such that

$$
\begin{equation*}
c_{*}(L x)(g(t)) \leq x(g(t)) \leq c^{*}(L x)(g(t)) \quad \text { for } \quad t \geq T \tag{5.4}
\end{equation*}
$$

Then from the definition of the strict sublinearity for (1.1) it follows that

$$
\begin{align*}
f(x(g(t))) & \geq f\left(c^{*}(L x)(g(t))\right)\left(\frac{x(g(t))}{c^{*}(L x)(g(t))}\right)^{\alpha} \tag{5.5}\\
& \geq\left(c_{*} / c^{*}\right)^{\alpha} f\left(c^{*}(L x)(g(t))\right)
\end{align*}
$$

for $t \geq T$. From equation (1.1) and (5.5) we obtain

$$
\sigma(L x)^{(n)}(t)+\left(c_{*} / c^{*}\right)^{\alpha} p(t) f\left(c^{*}(L x)(g(t))\right) \leq 0, \quad t \geq T
$$

and so the inequality

$$
\left\{\sigma y^{(n)}(t)+\left(c_{*} / c^{*}\right)^{\alpha} p(t) f\left(c^{*} y(g(t))\right)\right\} \operatorname{sgn} y(g(t)) \leq 0
$$

has a positive solution $L x$ of class \mathscr{N}_{j}. Then we conclude by Lemma 5.1 that (5.2) holds. This completes the proof of Theorem 5.1.

Theorem 5.2. Let (1.1) be strictly superlinear and $1 \leq j \leq n-1$, $(-1)^{n-j-1} \sigma=1$. If (1.1) has a nonoscillatory solution x in the class \mathscr{N}_{j}, then (5.3) holds.

Proof. Let x be an eventually positive solution of (1.1) in the class \mathscr{N}_{j}. As in the proof of Theorem 5.1, $L x$ is eventually positive and (5.4) is satisfied for some $c^{*}>0, c_{*}>0$ and $T \geq a$. By equation (1.1) and (5.4) we have

$$
\sigma(L x)^{(n)}(t)+p(t) f\left(c_{*}(L x)(g(t))\right) \leq 0, \quad t \geq T
$$

which means that the inequality

$$
\left\{\sigma y^{(n)}(t)+p(t) f\left(c_{*} y(g(t))\right)\right\} \operatorname{sgn} y(g(t)) \leq 0
$$

has a positive solution $L x$ of class \mathscr{N}_{j}. Then, by Lemma 5.2 we see that (5.3) holds. The proof of Theorem 5.2 is complete.

Theorem 5.3. Let (1.2)-(1.6), (4.1) and (4.2) be satisfied. Assume that (1.1) is strictly sublinear and $1 \leq j \leq n-1,(-1)^{n-j-1} \sigma=1$. Assume in addition that $g_{*}(t)=\min \{g(t), t\}$ satisfies

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\liminf } \frac{g_{*}(t)}{g(t)}>0 \tag{5.6}
\end{equation*}
$$

Then, a necessary and sufficient condition for (1.1) to have a nonoscillatory solution of class \mathscr{N}_{j} is that

$$
\begin{equation*}
\int^{\infty} t^{n-j-1} p(t)\left|f\left(c[g(t)]^{j}\right)\right| d t<\infty \quad \text { for some } \quad c \neq 0 \tag{5.7}
\end{equation*}
$$

Proof. Note that, under condition (5.6), (5.2) is equivalent to (5.7). Then the necessity part follows from Theorem 5.1, and the sufficient part follows from Theorems 4.1, 4.2 and Remark 4.1.

Likewise, from Theorems 5.2, 4.1, 4.2 and Remark 4.1 we have the following result.

Theorem 5.4. Let (1.2)-(1.6), (4.1) and (4.2) be satisfied. Assume that (1.1) is strictly superlinear and $1 \leq j \leq n-1,(-1)^{n-j-1} \sigma=1$. Assume in addition that $g_{*}(t)=\min \{g(t), t\}$ satisfies

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \frac{g_{*}(t)}{t}>0 \tag{5.8}
\end{equation*}
$$

Then, a necessary and sufficient condition for (1.1) to have a nonoscillatory solution of class \mathscr{N}_{j} is that

$$
\begin{equation*}
\int^{\infty} t^{n-j} p(t)\left|f\left(c[g(t)]^{j-1}\right)\right| d t<\infty \quad \text { for some } \quad c \neq 0 \tag{5.9}
\end{equation*}
$$

Example 5.1. Let us reconsider equation (4.41). First notice that the case (II) in Theorem 3.1 does not occur (that is, the class \mathscr{N}_{0}^{-}for (4.41) is always empty) since the function $h(t)=h \sin t$ takes a nonpositive value on [T, ∞) for all T. Let j be an integer satisfying $1 \leq j \leq n-1$ and $(-1)^{n-j-1} \sigma=1$. Theorem 5.3 shows that equation (4.41) with $-\infty<\gamma<1$ has a nonoscillatory
solution of class $\mathscr{N}_{\boldsymbol{j}}$ if and only if

$$
\int^{\infty} t^{n-j-1+\gamma j} p(t) d t<\infty,
$$

while Theorem 5.4 shows that (4.41) with $1<\gamma<\infty$ has a nonoscillatory solution of class \mathscr{N}_{j} if and only if

$$
\int^{\infty} t^{n-j+\gamma(j-1)} p(t) d t<\infty
$$

Consider the special case that n is even and $\sigma=1$ in (4.41). We see that if $\gamma<1$ and the condition

$$
\begin{equation*}
\int^{\infty} t^{\gamma(n-1)} p(t) d t=\infty \tag{5.10}
\end{equation*}
$$

is satisfied, then all the classes $\mathscr{N}_{j}, j=1,3, \ldots, n-1$, for (4.41) are empty. Since \mathscr{N}_{0}^{-}is also empty, we can conclude the following: Let n be even, $\sigma=1$ and $\gamma<1$. Then equation (4.41) has no nonoscillatory solutions if and only if (5.10) holds. Similarly we have the following result: Let n be even, $\sigma=1$ and $\gamma>1$. Then equation (4.41) has no nonoscillatory solutions if and only if

$$
\int^{\infty} t^{n-1} p(t) d t=\infty
$$

Acknowledgment. The author would like to thank Professor Manabu Naito for his interest in this work and for many helpful suggestions.

References

[1] D. D. Bainov, A. D. Myshkis and A. I. Zahariev, Asymptotic and oscillatory properties of a class of operator differential inequalities, Ann. Mat. Pura Appl. 143 (1986), 197-205.
[2] K. Gopalsamy, Oscillation and nonoscillation in neutral differential equations with variable parameters, J. Math. Phys. Sci. 21 (1987), 593-611.
[3] S. R. Grace and B. S. Lalli, Oscillations of nonlinear second order neutral delay differential equations, Rad. Mat. 3 (1987), 77-84.
[4] M. K. Grammatikopoulos, G. Ladas and A. Meimaridou, Oscillation of second order neutral delay differential equations, Rad. Mat. 1 (1985), 267-274.
[5] M. K. Grammatikopoulos, G. Ladas and A. Meimaridou, Oscillation and asymptotic behavior of second order neutral differential equations, Ann. Mat. Pura Appl. 148 (1987), 29-40.
[6] M. K. Grammatikopoulos, G. Ladas and A. Meimaridou, Oscillation and asymptotic behavior of higher order neutral equations with variable coefficients, Chinese Ann. Math. Ser. B 9 (1988), 322-338.
[7] J. R. Graef, M. K. Grammatikopoulos and P. W. Spikes, Asymptotic properties of solutions
of nonlinear neutral delay differential equations of the second order, Rad Mat. 4 (1988), 133-149.
[8] J. Jaroš and T. Kusano, Asymptotic behavior of nonoscillatory solutions of nonlinear functional differential equations of neutral type, Funkcial. Ekvac. 32 (1989), 251-263.
[9] J. Jaroš and T. Kusano, Oscillation theory of higher order linear functional differential equations of neutral type, Hiroshima. Math. J. 18 (1988), 509-531.
[10] I. T. Kiguradze, On the oscillation of solutions of the equation $d^{m} u / d t^{m}+a(t)|u|^{n} \operatorname{sign} u=0$, Mat. Sb. 65 (1964), 172-187. (Russian)
[11] Y. Kitamura, On nonoscillatory solutions of functional differential equations with a general deviating argument, Hiroshima. Math. J. 8 (1978), 49-62.
[12] Y. Kitamura and T. Kusano, An oscillation theorem for a superlinear functional differential equation with general deviating arguments, Bull. Austral. Math. Soc. 18 (1978), 395-402.
[13] T. Kusano and M. Naito, Unbounded nonoscillatory solutions of nonlinear ordinary differential equations of arbitrary order, Hiroshima Math. J. 18 (1988), 361-372.
[14] G. Ladas and Y. G. Sficas, Oscillations of higher-order neutral equations, J. Austral. Math. Soc. Ser. B 27 (1986), 502-511.
[15] J. Ruan, Types and criteria of nonoscillatory solutions for second order linear neutral differential equations, Chinese Ann. Math. Ser. A 8 (1987), 114-124. (Chinese)
[16] J. Ruan, Types and criteria of nonoscillatory solutions of second order NFDE and RFDE with nonpositive coefficients, Chinese Ann. Math. Ser. A 9 (1988), 151-159. (Chinese)
[17] A. I. Zahariev and D. D. Bainov, Oscillating properties of the solutions of a class of neutral type functional differential equations, Bull. Austral. Math. Soc. 22 (1980), 365-372.
[18] A. I. Zahariev and D. D. Bainov, On some oscillation criteria for a class of neutral type functional differential equations, J. Austral. Math. Soc. Ser. B 28 (1986), 229-239.

Department of Mathematics, Faculty of Science, Hiroshima University

