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1. Introduction

In this paper we are concerned with neutral differential equations of the
form
dn
(1.1) 2 X0 — hOx(x(0))] + op()f(x(9() = 0,
where n > 2, 6 = 1 or —1, and the following conditions are always assumed to
hold:

(1.2) z(t) e C[a, o0), T is nondecreasing on [a, o), 7(t) < t for t > a and
lim,_, t(t) = oo;

(1.3) h(t) e C[z(a), ), |h(t)] < h < 1 for t > a, where h is a constant, and
h(t)h(z(¢)) > O for t > a;

(1.4) p(t)e Cl[a, oo) and p(t) > O for t > a;
(1.5)  f(u) e C((—o0, ©)\{0}) and f(u)u > O for u # 0;
(1.6) g(t)e C[a, o0) and lim,_,, g(t) = oo.

By a solution of (1.1) we mean a continuous function x which is defined
and satisfies (1.1) on [T, o0) for some T, > a (so that x(t) — h(t)x(z(t)) is n-times
continuously differentiable on [T, o0)). Such a solution is said to be non-
oscillatory if it has no zeros on [T, c0) for some T > T,.

Recently there has been an increasing interest in the study of neutral
differential equations, and a number of results have been obtained. For typical
results we refer in particular to the papers [1-9, 14-18]. In this paper we
make an attempt to study in a systematic way the structure of the set of non-
oscillatory solutions of equation (1.1). In Section 2 we discuss the relation be-
tween two functions x(t) and x(t) — h(t)x(z(t)). The results obtained in Section
2 will be effectively used in subsequent sections. In Section 3 we classify the
nonoscillatory solutions of (1.1) into several classes according to the asymptotic
behavior as t — oo. In Sections 4 and 5 we establish necessary and sufficient
conditions for the existence of nonoscillatory solutions of (1.1) with specific
asymptotic properties as t — 0.
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If h(t) = 0, then equation (1.1) becomes
(1.7) x®(t) + ap(t) f(x(g(1))) = 0.

Our results extend some of the results for equation (1.7). As a result we see
that, concerning the characterization of the existence of nonoscillatory solutions,
there is not much difference between equation (1.1) and equation (1.7). Further
we see that if h(t) and 7(f)/t are convergent as t — oo, then the structure of
nonoscillatory solutions of equation (1.1) is similar to that of nonoscillatory
solutions of equaton (1.7) or the ordinary differential equation

(1.8) x®(t) + op(t)f(x(t)) = 0.

Related results are contained in Jaro§ and Kusano [8, 9]. In particular,
existence theorems of nonoscillatory solutions of (1.1) have been obtained by
Jaro$ and Kusano [8, Theorem 1; 9, Theorem 3.1]. However, for the Emden-
Fowler type neutral differential equation

n

d
(1.9) 2 X0 — h(®)x(z(®)] + op(9)|x(g ()" sgn x(g(t)) = 0,

their theorems cannot be applied to the case of y < 0, because they assume that
f in (1.1) is a nondecreasing function. In this paper the existence theorems of
nonoscillatory solutions of (1.1) are proved by a different method from [8,
9]. Our theorems can be applied to not only the case of y > 0 but also the
case of y < 0, provided h and t are locally Lipschitz continuous.

2. Preliminaries

In this section we study the relation between two continuous functions x(t)
and x(t) — h(t)x(z(t)). As regards z(t) and h(t), we assume that conditions (1.2)
and (1.3) in Section 1 are satisfied.

Let T > a. Then we use the notation:

Q1) T(T)=T, T(T) = sup {t > a; 7(t) = T,_(T)}, i=1,2,...;
22) PO =t, @) =16"10), i=12....

Note that t!(t) = 7(f) and that t'(¢) is defined on [T(a), ), i=1, 2, .... Itis
easily verified that

(M<T<TNL(TN<<T,(T)<T,(T) <+,
lim T,,(T) =

m-—aoo

and
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23) «T)<t" @) <T for T(T)<t<Tp(T), m=012....

We define the functions H,,(t) on [T,,_,(a), ) as follows:
m—1

24 Ho®)=1; H, =[] hz'@), m=12 ...
i=0

For an x € C[1(T), o), we define Lx € C[T, o) by
(2.5 (Lx)(2) = x(t) — h(t)x(z(2)), t>T.

LeEmMA 2.1. Let T > a and x € C[1(T), ). Then
6) x(0) = 3 HOLAEO) + Hyra 03" ()
for t> T,(T), m=0,1,2,....

Proor. In view of (2.5) we see that

2.7 x(t) = (Lx)(t) + h(t)x(z(t)), t> To(T).
Note by (2.1) that ©(t) > To(T) for t > T,(T). Then equality (2.7) implies that
2.8) x(t) = (Lx)(£) + h(t)(Lx)(2(2)) + h(O)h(z(t))x(*(2))

for t > T;(T). Repeating this argument, we find that (2.6) is satisfied for

t> T,(T).

LEMMA 2.2. Suppose that x € C[1(T), ), T > a.
(i) If Lx is bounded on [T, c0), then x is also bounded on [T, ).

@@ If

(2.9) lim (Lx)(t) =0,
then
(2.10) lim x() =0.

t—o0
ProoF. (i) There are positive constants ¢, and c, such that

@11)  |Lo®l<c,, t=>T; I|x@®l<c,, ©T)<t<T.

Recall that (2.3) holds and notice that |H,(t)| < h* for t > T,(T), k=0, 1, 2, ...

m + 1. Then it follows from (2.6) and (2.11) that

Ix(O] < T Bre, + k™, < =1 4,
k=0 1—nh

’
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for T(T)<t < T,4(T),m=1, 2, ..., which implies that

€y

1—h

[x(t)] < +c, for t>T.
Thus x is bounded on [T, o).
(i) In view of (i), x(t) is bounded. Therefore there is a positive constant

¢, such that
lx@) <es, t=o(T).

Let ¢ > 0. By condition (2.9) there is a T > T such that

o< e, 127

Since 0 < h < 1, there is an integer m, such that
hm+1 €
c3<§, m=my, my+1,....

As in the case of (i), we can obtain the estimate

1—nh
2

x@0) < Y h* e+ h™lcy <¢
k=0 3

for t > T,(T), m = my, my + 1, .... Therefore we have
Ix(®)l <e  for t>T, (T),

which shows that x(t) - 0 as t - 0.

LEMMA 2.3. Suppose that x € C[t(T), ©), T > a. If |(Lx)(t)| is not iden-
tically zero and is nondecreasing on [T, c0), then there are constants h* > 0 and
T* > T such that

(2.12) [x(8)| < h*|(Lx)()| for t>T*.
Proor. There are positive constants T* > T, d, and d, such that
213) L)@l =dy, t2T*; [x()I<dy, o(T*)<t<T*.

On account of the nondecreasing property of |(Lx)(¢), we can see from (2.6)
that

X(0] < L) 3 B+ ki,

|
<75 @00O +d;
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for T(T*) <t < T, (T*), m=1, 2, .... Since the first half of (2.13) implies
that 1 < |(Lx)(t)|/d, for t = T*, we obtain

1 2
|x(t)] < <1—:—h + %)I(Lx)(t)l , tx>T*.

This completes the proof of Lemma 2.3.

LEMMA 24. Let x € C[t(T), ov), T > a. Suppose that x is of constant sign
on [t(T), o0) and x(t)(Lx)(t) > 0 for t > T. If either

(2.14) |(Lx)(t)| is nondecreasing on [T, o), or
(2.15) lim (Lx)(t) =1, 0<|ll< o0,

t—00
then there are constants h, > 0 and T, > T such that

(2.16) IO = hy|(Lx)(®)]  for t=T,

Proor. We may assume that x(f) > 0 and (Lx)(¢) >0 for t > T, since a
parallel argument holds if x(f) < 0 and (Lx)(t) <0 for t > T. We have (2.8) for
t > T{(T). From the underlying condition (1.3) and the positivity of x it
follows that

@17 x(t) = (Lx)(¢) + h(t)(Lx)(z(t)) = (Lx)(t) — h(Lx)(z(t))
for t > T;(T). Suppose first that Lx satisfies (2.14). Then we obtain
x(t) > (Lx)(t) — h(Lx)(t) = (1 — h)(Lx)(¢), t>T(T).

Suppose next that Lx satisfies (2.15). We choose a positive constant # such
that h <n < 1. By (2.15), there is a T, > T;(T) such that

l l
(2.18) nl < (Lx)(z(t)) < —, nl < (Lx)(t) < — for t>T,
v AV NG
and in particular
(Lx)(2)
il

From (2.18) and (2.19) it follows that

(Lx)(‘r(t))g_l_g (L)@

1
n nﬁl o

(2.19) 1<

From (2.17) we have
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x(t) = (Lx)(t) — S(Lx)(t) = (1 — :-:) (Lx)(@), t>T,.
This completes the proof of Lemma 2.4.

LEmMMA 2.5. Let x € C[t(T), ©), T = a. Suppose that x is of constant sign
on [1(T), o) and

Iim (Lx)(t) =1, —o<Ll< o,

t—o0

then
0<Ilsgnx(t)< 0.

Proor. We may suppose with no loss of generality that x(t) >0 for
t >1(T). We claim that 0 </ < oo. Assume to the contrary that —oo <1< 0.
There is a T > T such that

(Lx)(@®) = x(t) — h(Ox(z()) <0, t>T.

We obtain
x(t) < h(t)x(z(t)) < hx(z(t)), t=>T.

By induction it can be shown that
x(t) < h™x(z™(t)), t> T, (T), m=12,....
Set y = max {x(s): 7(T) < s < T} and recall (2.3) with T = T. Then we have
xO<h™y, T, (D<t<T(F), m=12 ..,

which implies that lim,, x(tf) = 0. By (2.5) we have lim,,, (Lx)(t) =0. How-
ever this contradicts the assumption that lim,,, (Lx)(t) =1l€[—o0,0). Thus
we conclude that 0 </ < oo.
REMARK 2.1. Assume that
xt)>0, t>1(T), and
(2.20)
(Lx)(t) = x(t) — h(t)x(z(t)) <O, t>T.

Then in view of the proof of Lemma 2.5 we see that lim,.,, x(t) = 0. Notice
that (2.20) can occur only when h(t) is positive on [T, o).

From Lemmas 2.2, 2.4 and 2.5 we obtain the next lemma.

LEMMA 2.6. Suppose that x € C[1(T), ©), T > a. Let x be of constant sign
on [t(T), o).
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(i) If |(Lx)(t)| is nondecreasing on [T, o) and
lim |(Lx)(t)| = o0

t—o0

then
lim |x(t)] = oo

() If
im(Lx)@)=1, O0<]||<ow,

then
0 < lim inf |x(f)| < lim sup |x(t)| < oo .
t—o0 t—o0
Proor. We may suppose with no loss of generality that x(t) >0 for
t > 1(T).
(i) From Lemma 2.5 we see that lim,_, (Lx)(t) = co. By Lemma 2.4 we
have

(2.21) x(t) = h, (Lx)(), t>T,,

where h, > 0 and T, > T are constants. Then it is clear that lim,.,, x(t) = oo

(i) From Lemma 2.5 we obtain !> 0; and so (Lx)(t) > 0 for all large
t. By Lemma 2.4 we have (2.21) for some constants h, >0 and T, > T.
Then (2.21) gives liminf,_,  x(f) >0. From (i) of Lemma 2.2 we see that
lim sup,_, x(t) < co. The proof of Lemma 2.6 is complete.

LemMmA 2.7. Let x € C[t(T), o), T > a, and i be a nonnegative integer.

(i) If lim,, (Lx)(t)/t' = O, then lim,_, x(t)/t' = 0.

(ii) Suppose in addition that x is of constant sign on [t(T), c0).
If |(Lx)(®)|/t' is nondecreasing on [T, ©) and lim,., |(Lx)(t)|/t' = oo, then
lim,_, ., |x(t)|/t} = co.

(i) Suppose in addition that x is of constant sign on [t(T), o). If
lim,,, (Lx)(t)/t" exists and is a nonzero finite value, then

0<11m1nf|()I < lim pl—)—c;(—it)—|<

t—o0 t—o0

Proor. Observe that
(LX) _ x(t) h( )[r(t)] x(t(1))
tt R{GI

and apply (ii) of Lemma 2.2 and Lemma 2.6 with x(t) and h(t) replaced by
x(t)/t and h(t)[t(t)/t], respectively.

(2.22)
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We can assert that, in (iii) of Lemma 2.7, the limit of |x(t)|/t! as t - o
exists if the following condition is satisfied:

(2.23) lim h(f)[z(t)/t]’ exists and is finite .
t—o0
To see this we first prove the next lemma.

LEmMMA 2.8. Suppose that x € C[t(T), o) and that

(2.24) lim h(t) = 1, [Al<h<1.
If o
(2.25) lim (Lx)(t) =1, | < o0,
then o
(2.26) lim x(t) = —l—- .

100 1-2

PROOF. Set £(t) = x(t) — I(1 — 2)™'.  We have
(LX)(2) = %(t) — h())X(z(¢))

!
=(Lx)(t) =1 + m(h(t) —A).

From (2.24) and (2.25) it follows that lim,,, (LX)(tf) =0. In view of (ii) of
Lemma 2.2 we have lim,,, %(¢) = 0, which implies (2.26). The proof of Lemma
2.8 is complete.

LEMMA 2.9. Let x € C[t(T), ), T = a, and i be a positive integer. Suppose
that (2.23) is satisfied. If lim,_, (Lx)(t)/t' = lim,, [x(t) — h(t)x(z(t))]/t} exists
and is a nonzero finite value, then lim,. x(t)/t' exists and is a nonzero finite
value.

Proor. Note that (2.22) holds, and employ Lemma 2.8 with x(t) and h(t)
replaced by x(t)/t and h(t)[(t)/t]".

3. C(lassification of nonoscillatory solutions

In this section we classify nonoscillatory solutions x of (1.1) according to
the asymptotic behavior of (Lx)(t) = x(t) — h(t)x(z(t)) as t > o0. Some of the
results in this section have been obtained by Jarés and Kusano [9]. However
we write the full proofs since a part of the proof is different from [9]. We
make use of the following well-known lemma of Kiguradze.
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Lemma 3.1 (Kiguradze [10]). Let n>2 and o=1 or —1 and let
ue C[T, o) satisfy
ou(u™(@) <0, t>T.

Then there exist an integer je{0,1,2,...,n} and a number to, > T such that
(=17 1¢ =1 and

u@®)u(t) >0, t>t,, O0<i<j,
(=) u@u®0 >0, t>t,, j<i<n.

THEOREM 3.1. Let x be a nonoscillatory solution of (1.1). Then one of the
following two cases holds:

(I) There are an integer j with 0< j<n, (—1)"7"'¢ =1 and a number
to > a such that

(3.1 x(t)(Lx)(t) >0, t>t,,
- (Lx)(®)(Lx)®(@t) > 0, t>t,, 0<i<j,
G2 {(—l)i_j(Lx)(t)(Lx)“’(t) >0, t>t,, j<i<n;

(I1) There is a number t, > a such that

(3.3) x(t)(Lx)(t) <0, t>t,,

(3.4 (—D(Lx)OLx)D@) >0, t=>t,, 0<i<n
and

(3.5 3112 (Lx)@®) =0, 3112 x()=0.

Furthermore the case (II) can hold only when (—1)"c = 1 and h(t) is eventually
positive.

ProOF. We may assume that x(t) >0 and x(g(t)) >0 for t > Ty (= a).
By equation (1.1) we see that (Lx)™(t) = —ap(t)f(x(g(z))) is either positive or
negative for t > T,. Therefore Lx is either decreasing or increasing on [T}, o)
for some large T, > T,. We have the following two possibilities:

(I) Lx)®)>0 for t>T,;
I @Lx(® <o for t>T1,,

where T, (= T,) is sufficiently large.

In the case of (I) we have o(Lx)(t)(Lx)™(t) <0 for t > T,. Applying
Lemma 3.1 to the case of T = T, and u(t) = (Lx)(z), we conclude that there are
j€{0,1,2,...,n} and t, > T, satisfying (—1)"7"'¢ = 1 and (3.2).
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In the case of (II) we have (—o)(Lx)(t)(Lx)™(t) < 0 for t > T,. Lemma 3.1
with o, T and u(t) replaced by —a, T, and (Lx)(t), respectively, shows that there
are je{0,1,2,...,n} and t, > T, such that (—1)"7¢ = 1 and

(LX) () (Lx)P() >0, t>t,, 0<i<j,
(=) L)L) >0, t>t,, j<i<n.

We claim that j =0. Otherwise, we have (Lx)(t) <0 and (Lx)(t) <O for
t>ty,. Then lim,,, (Lx)(t)=1 exists and [ satisfies —o0o <I<0. On the
other hand, Lemma 2.5 implies that 0 << co. This contradiction asserts that
the case 0 < j < n is impossible. Since j =0 in the above, we have (—1)"¢=1.
Further, since x(t) >0 and (Lx)(t) <0 for t>1t,, Remark 2.1 implies that
lim,., x(tf) = 0 and that the case (II) can occur only when h(t) is eventually
positive. The proof of Theorem 3.1 is complete.

DerFINITION 3.1. Let A4 denote the set of all nonoscillatory solutions of
(1.1). For an integer j with 0 < j <n and (—1)"7"'o =1, we denote by 4]
the set of all nonoscillatory solutions x of (1.1) which satisfy (3.1) and (3.2). In
addition, we denote by A4 the set of all nonoscillatory solutions x of (1.1)
which satisfy (3.3)-(3.5).

Theorem 3.1 means that every nonoscillatory solution x € 4" falls into one
and only one of the classes A; 0<j<n (—1"7"'¢=1) and A#;. More
precisely, 4" has the following decomposition:

N =Ny UNp 3 U U N U Ny for 6 =1 and nis even;
N =N g N 30 UNU N for c =1 and nis odd ;
N =N O Ny U UNU N forc = —1 and n is even

N =NUN U N UN forc = —1 and nis odd,
where 4 can appear only when h(t) is eventually positive.

Let x € 4. Then we see by (3.2) that the asymptotic behavior of (Lx)(t)
as t — oo is as follows:
(i) If j =0, then either

(i-1) lim (Lx)(t) = const #0 or

t—o0

(-2) lim (Lx)(t) =0.

t—o00

(ii) If 1 < j < n— 1, then one of the following three cases holds:
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(Lx)(2)

(ii-1) lim 7 =const #0;
t—00
L
(ii-2) lim (tj‘# = const #0;
t—o0
L
(ii-3) im0 o ang RO
t—o tJ t—00 t"
(iii) If j = n, then either
(iii-1) (L")( ) _ const £0 or
t—00
(iii-2) lim '(Lt D0 _
t—o0

Notice that the function |(Lx)(¢)|/t/™* in (ii-3) is eventually nondecreasing
(see Kusano and Natio [13, Lemma, p. 365]). Arguing as in [13], we can
prove that |(Lx)(¢)|/t"! in (iii-2) is also eventually nondecreasing. From (i)—(iii)
of Lemma 2.7 we find that the asymptotic behavior of x as t — oo is as follows:

(1) If x e A, then either

(i-1) 0 < lim inf |x(t)| < lim sup |x(¢)] < 0 or
t—o0 t—a0
(i-2) lim x(t) =0
t—0o0

(ii)) If xe A#;, 1 <j <n — 1, then one of the following three cases holds:

|x ( | im sup X

(ii-1) 0 < lim inf sup i < o0;
t—o0 t—00
t t
(ii-2) 0 < lim mfl ( )] < lim sup |;(_3| <00}
t—o0 t—o0
t t
(ii-3) lim ? =0 and lim 'xl(_f |
t—o0 t— oo
(i) If x € A, then either
t
(iii-1) 0 < lim inflx(_)| < lim sup l (H < oo or
t—00 t—00
t
(iii-2) lim ';(_fl =
t—o0

Now consider the case where the next condition holds:
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(3.6) lim h(t) [t(¢)/t]’ exist and are finite for all i =0, 1,2, ...,n— 1.
t—00
Condition (3.6) is certainly satisfied if lim,, h(t) = 0, or if both lim, h(t) and
lim,_,, ©(t)/t exist and are finite. If (3.6) holds, then we can ultilize Lemma 2.8
and Lemma 2.9 instead of (iii) of Lemma 2.7. Then we conclude that, under
condition (3.6), the asymptotic behavior of a solution x belonging to .4; is as
follows:
(i) If j =0, then either

(i-1) lim x(¢f) = const # 0 or
t—o0
(i-2) lim x(¢) =0.
t—o0

(ii) If 1 < j <n — 1, then one of the following three cases holds:

t
(ii-1) lim % = const # 0 ;
t—=00
t
(ii-2) lim ;L_z = const # 0 ;
t—o0
. . x(1) . |x(@)|
(ii-3) }1}2 o= 0 and }I»I: 1=
(iii) If j = n, then either
(iii-1) lim ;(_tz =const#0 or
t—o0
t
(iii-2) fim O _

{00 t"—l

It is worth while to note that, if (3.6) is satisfied, the structure of the
nonoscillatory solutions of the neutral equation (1.1) is exactly the same as that
of the nonoscillatory solutions of the non-neutral equation (1.7) or (1.8) with the
exception of the .44 for (1.1). For the structure of the nonoscillatory solutions
of (1.8), see, for example, [13].

4. Nonoscillatory solutions asymptotic to t*

The aim of this section is to find, for each k=0, 1, 2, ..., n—1, a
necessary and sufficient condition for the existence of a nonoscillatory solution
x of (1.1) which behaves like t* as t — o0, i.e., a solution x of (1.1) satisfying
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0 < lim inflxt(kt)l < lim sup [x(kt)l <

t—c0 t—oC t

Hereafter, in addition to conditions (1.2)-(1.6), we assume the next conditions
(4.1) and (4.2):

4.1) 7 is locally Lipschitz continuous on [a, o) ;
4.2) h is locally Lipschitz continuous on [1(a), ©) .

First we consider the case of k = 0.

THEOREM 4.1. Assume that (1.2)—(1.6), (4.1) and (4.2) are satisfied. Then
equation (1.1) has a nonoscillatory solution x such that

43) 0 < lim inf |x(t)] < lim sup |x(t)] < oo

t—o0 t—

if and only if

4.4 f ) t"p(t)dt < oo .

Proof. (The “only if” part) Let x be a nonoscillatory solution of (1.1)
having the property (4.3). We may assume that x(t) and x(g(t)) are positive on
[T, o) for some T > a. We easily find that

lim,_,, (Lx)?(t) =0 for i=1,2...,n—1.
Therefore, integrating (1.1) repeatedly from ¢ to co, we have

t)n—i—l

@5 (LoOO = (=1~ f o= PO <O ds,  e=T,

for i=1, 2, ..., n—1. Noting that lim,,, (Lx)(t) exists and is finite and
integrating (4.5) with i = 1 from ¢ to oo, we obtain

W0 = @) + (17 [“E = g as, o>,

where (Lx)(o0) = lim,_,, (Lx)(t). Then we see that

(4.6) j:) (s = T)""'p(s)f(x(g(s))) ds < o0 .

In view of (4.3) there are positive constants ¢, and ¢, such that

4.7) ¢, <x(g@t)) <c, for t>T.
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From (4.6) and (4.7) it follows that
fx J (s—T)'p(s)ds < 0,
T

where f, = min {f(u): ¢, <u <c,} >0. Thus we get (4.4).

(The “if” part) Let ¢ >0 be an arbitrary positive number. Put u=
(1 — h)/3, where h is a constant appearing in assumption (1.3) and put f* =
max {f(u): pc <u < c/3n)}. Choose T > 1 so large that

(4.8) T = min {¢(T), inf,» ; g(z)} > max {a,0} and
4.9) f " () di < M—‘f
T f

For this T, let T(T), i=0, 1, 2, ..., be real numbers defined by (2.1). The
solution x of (1.1) satisfying (4.3) will be obtained as a solution x of the integral
equation

4.10)  x(t) = h(@®)x(z(t)) + (1 — wc

- (S )n 1
+ (=) J D1 —— P f(x(g()) ds, = T(T).
Since we are going to get a function x which satisfies (4.10) for t > T,(T), there
is no loss of generality in supposing that h(t) satisfies, besides assumption (1.3),
4.11) h(t)=0 for T<t<T.

In fact, if h(t) does not satisfy (4.11), then we may replace h(t) in (4.10) by h(t)
defined as follows:

0, T<t<T,
4.12) h(t) = { h(®)(t — DT(T)-T), T<t<T(T),
h(z), t> T(T).

We define the auxiliary function n(t) on [T, o) by
1 if T<t<T,

@13) n@ =1 if h(t)<O0 and t>T,

1
Y H(t) if h(®)>0 and T_(T)<t<T(T), I=1,2,...,
i=0

where Hi(t), i=0, 1, 2,..., are given by (24). Since n(t) <! ,h' for
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T_(T)<t<T(T),1=1,2,..., we have
(4.14) nty <11 —h=1QCp, t>T.

Furthermore, using the condition h(¢)h(z(t)) >0, t > T, in assumption (1.3),
we have

(4.15) ny>1, t>T.
It is also verified that if ¢ satisfies () > 0 and ¢t > T, then
(4.16) h(®)n(z(t)) = n(t) — 1.

For the proof of (4.16) we note that h(t)H,(t(t)) = H;,,(t), i=0,1,2, ..., t > T.
If ¢ satisfies h(t) < 0 and t > T, then

4.17) h(On(x(®) = h(t) > —h =3u—1.

Let Lf and L¥, I =1, 2, ---, be Lipschitz constants for 1(f) and h(t) on [T, T(T)],
respectively, i.e.,

(4.18) |T(t) — 7(s)] < Li|t — s| for T<s t<T(T),

4.19) |h(t) — h(s)| < Lt — s| for T<s t<T(T).

We may suppose that L{ > 1,1=1,2,.... Define m(t) on [T, ) by
0 for T<t< T,

(4.20) m(t) =

Lh
‘m(t(t)) + j +(m=Du for T_(T)<t<T(T), 1=1,2,....

Observe that m can be inductively determined as follows: If t € (T, T,(T)], then,
since ©(t) € (z(T), T], m(z(t)) is known; and so m(t) is known on (T, T;(T)]. Let
m(t) be known on (T;,_;(T), T(T)] for some I, then, since (t) € (T;_,(T), T,(T)],
m(z(t)) is known; and so m(t) is known on (T(T), T,,,(T)]. Thus m(t) is known
for all t > T. We can easily show that m is a nonnegative nondecreasing step
function on [T, ). Let C[T, ) denote the Fréchet space of all continuous
functions on [T, co) with the topology of uniform convergence on any compact
subintervals of [T, o). Consider the set X of all x € C[T, oo) satisfying

ue < x(t) < cen(t) for t>T
and
[x(t2) — x(t)] < em(ty)|t, — 4] for t,>t, > T.

Clearly X is a nonempty, convex and compact subset of C[T, co). We define
the operator # on X in the following manner:
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(Fx)(t)
h@®)x(z(t))+ (1 —p)c+(— 1)1 f (= ):)_'1 p(s)f(x(g(s)))ds fort>T,
= (S T)n 1 -
A—pe+(—1"? J 0l —————p(s)f(x(g(s))) ds forT<t<T.

It is easy to see that #x is well defined on [T, oo) for each x € X. We seek
a fixed point of # in X with the aid of the Schauder-Tychonoff fixed point
theorem.

First we show that & maps X into X. Assume that x € X. Since we
suppose that (4.11) holds, #x is clearly continuous on [T, ). We have to
verify that

(4.21) pe < (Fx)(t) <cnt) for t>T
and
(422)  [(Fx)(t,) — (Fx)(,) <cm(ty)|t, —t;| for t,>t, >T.

Note by (4.8) and (4.14) that uc < x(t) < ¢/(3p) for t > T and so uc < x(g(t)) <
¢/Bu)fort > T. Let

4.23) G(t) = J (s = ):)' p(s)f(x(g(s)ds for t>T.

Then, by (4.9), G satisfies
f*
(n—1)!

Notice that & x is written as

1G] <

f s"p(s)ds < uc for t>T.
T

_ fht)x(z@®) + (1 — wec+ (=1)""eG(t) fort>T,
(Fx)@) = {(1 — e + (=1 1eG(T) for T<t<T.

If t satisfies t > T and h(t) > 0, then, in view of (4.16),
(Fx)(t) < ch(®)n(z()) + (1 — wyec + uc
=c[n(t) — 1] + ¢ = cn(t)

and
(Fx)t) =1 — wec— uc > puc.

If ¢t satisfies t > T and h(t) < O, then, in view of (4.17),

(Fx)t) <1 — pc+ uc=c=cn()
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and
(Fx)(1) = ch(®)n(x(1)) + (1 — pc — uc
>cBu—1)+ (11— pc— puc=uc.
Then we get
4.24) e < (Fx)(t) < cen(r) for t>T,

and in particular uc < (Fx)(T) < cn(T). Since (Fx)(t) = (Fx)(T) and n(t) =
n(T) for T <t < T we have

(4.25) pe < (Fx)t)<ent) for T<t<T.

Then inequalities (4.24) and (4.25) together yield (4.21).
Let G be the function defined by (4.23). Since

n—2
160 = J PO (el ds

< (n %) J s"?p(s)ds<(n— )uc  for t>T,
*JT

the mean value theorem gives
(4.26) |G(ty) — G(ty)| < (n — Dyuclt, — t4] for t,>t;>T.
If T<t, <t, <T,then

(Fx)(t2) — (Fx)(t,) =0

If T<t,<t, and T_,(T)<t, <Ty(T), l=1, 2, ..., then, in view of (4.18)
(4.20) and (4.26),

(F%)(t2) — (F2) ()] < [h(t)]1%(x(t2)) — x(x(t))] + [x@E) (L) — hty)]
+1G(t;) — G(t,)|
< em(c(t,))Ie(t,) — ©(t)] + im(tz) — h(t,)|

+1G(t;) — G(y)l
L
< C[L:m(f(tz)) + ﬂ +(n— 1)#] [ty — 4]

=cm(ty)|t, — ty].

Therefore we see that (4.22) is satisfied.
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Furthermore it can be shown without difficulty that % is continuous on X.
By the Schauder-Tychonoff fixed point theorem there exists an x € X such that
x = #x. This function x satisfies (4.10). It is clear that
lim (Lx)(t) = lim [x(t) — h(@®)x(z(1))] = (1 — p)c.
t—o0

t—w

From (ii) of Lemma 2.6 we see that x satisfies (4.3). The proof of Theorem 4.1
is complete.

The solution x of (1.1) which is obtained in the proof of the “if” part of
Theorem 4.1 satisfies lim,_ (Lx)(t) = (1 — p)c #0. Therefore by Lemma 2.8
we get the next corollary.

COROLLARY 4.1. In addition to (1.2)—(1.6), (4.1) and (4.2), assume that
lim,_,, h(t) exists and is finite. Then equation (1.1) has a nonoscillatory solution
X such that

lim x(t) = const # 0

t— o

if and only if (4.4) holds.

Next we consider the case of 1 <k <n—1. In this case equation (1.1)
is required to be either sublinear or superlinear. Here the sublinearity and
superlinearity of (1.1) are defined by the following:

DErFINITION 4.1. Equation (1.1) is called sublinear if f in (1.1) satisfies

Sl _ 1 f(,)]

>
luy | lua|

for |uy| > |uyl, uu; >0;

and equation (1.1) is called superlinear if f satisfies

LSyl _ | f(u,)]

<
il = Jugl

for |u,| > |uyl, uu, >0.

Clearly equation (1.9) is sublinear if —oo <y <1 and is superlinear if
1<y< oo

THEOREM 4.2. Assume that (1.2)—(1.6), (4.1) and (4.2) are satisfied. Let (1.1)
be either sublinear or superlinear and let k be an integer with 1 <k<n — 1.
Then equation (1.1) has a nonoscillatory solution x such that
t t
4.27) 0 < lim inflxt(k)l < lim sup lxt(k)l <

t—oo t—o0




Nonoscillatory solutions of neutral differential equations 249
if and only if

(4.28) jw t" *1p®)| flc[g(®)]*) dt <0  for some c#0.

ProoF. (The “only if” part.) Let x be a solution of (1.1) satisfying (4.27).
Without loss of generaity we may assume that x is eventually positive. Then
we can take a number T > a such that x(t) > 0, x(g(t)) >0 and g(t) > O for
t>T We note that lim,,, (Lx)?(t)=0, i=k+1, k+2, ..., n—1 and
lim,,, (Lx)®(t) exists and is a finite value. Integrating (1.1) repeatedly from ¢
to oo, we obtain

. t)n—k—l

(Lx)®(t) = (Lx)®(c0) + (—1)"* 6 J‘” ((:_k—_l)!P(S)f(x(g(s))) ds

for t > T, where (Lx)®(c0) = lim,_,, (Lx)®(z). Thus we have

(4.29) f: (s — 9" p(s)f(x(g(s))) ds < o0 .

In view of (4.27) there are positive constants ¢; and c, such that
(4.30) c; L9 < x(g9(t)) < c,[g()]F for t>T.

From (4.29) and (4.30) it follows that (4.28) is satisfied for ¢ =c, if (1.1) is
sublinear and for ¢ = ¢, if (1.1) is superlinear.

(The “if” part) Without loss of generality we may assume that ¢ in (4.28)
is positive. Let u=(1 — h)/3. Set ¢* = ¢/u if (1.1) is sublinear and c* = 3uc if
(1.1) is superlinear. Choose T so large that (4.8) and

4.31) Jm " 1p(0)f(c[g(t)]*) dt < 3k!(n — k — 1)!u’c

T

hold. We shall obtain a solution x of (1.1) satisfying (4.27) as a solution x of
the integral equation

(4.32) x(t) = h(t)x(z(t)) + (1 — p)c*t*

tre k-1 o _ k-1
e S PO ((gM) duds, 1> T(T).

+(=1y g

Arguing as in the proof of Theorem 4.1, we may suppose that (4.11) is satisfied.
Let n(f) be the function on [T, o) defined by (4.13), where T is a constant in
(4.8). Let Lf and L! (I=1,2,...) be the real numbers satisfying (4.18), (4.19)
and Li > 1,1=1,2,.... We define m(f) on [T, o) as follows:
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4.33)
kex1 for T<t<T,

m(t) = Lh ~
Lim(z(t)) + g[t(t)]" +kt*! for T_(T)<t<T(T), 1=1,2,....

Notice that m(t) can be inductively determined on [T, o) and that m(z) is a
positive nondecreasing piecewise continuous function on [T, ). Let C[T, o)
be the Fréchet space as mentioned in the proof of Theorem 4.1. We denote
by X the set of all x € C[T, o) satisfying

uc*tk < x(t) < c*n(p)t* for t>T,
and
[x(t;) — x(t,)] < c*m(t,)|t, — t4] for t,>t,>T.

The set X is a nonempty, convex and compact subset of C[T, c0). We define
the operator & on X in the following manner:

(Fx)()
h(e)x(x(8) + (1 — p)c*e*

t (t _ s)k—l ® (u _ S)n—k—l

=4 HEUTe ) G ), mok—

p(w)f(x(g(u))duds fort>T,

(1 —pec*t*  forT<t<T.

We show that & maps X into itself. Assume that xe X. By (4.11), Fx
belongs to C[T, c0). Noting (4.14), we find that pc*t* < x(t) < c*t*/(3u) for
t > T; that is, if (1.1) is sublinear then ct* < x(t) < ct*/(3u?) for t > T, and if
(1.1) is superlinear then 3u%ct* < x(t) < ct* for t > T. Set

k—1 n—k—1
@39 60 =| _S)l)' f (“ ) [ PWf(<(g@) duds,  1=T.
Then
t (t — s)k—l © (u - T n—k—1
1G@)| < . k=) s . ml’(u)ﬂx(g(l‘))) du

k ©
= m j L ST P (x(g() ds

for t > T. Therefore, condition (4.31) gives

k ©
160 < o f = f @ elgo1) ds

< =

< ctk = pc*t*, t>T,
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in the case where (1.1) is sublinear, and

O r— f S ela91) d

<3ulctt = pc*t*, t>T,
in the case where (1.1) is superlinear. In either case, we have
4.35) |G(8)] < uc*t* for t>T.
Then it can be shown that
(4.36) uc*t* < (Fx)(t) < c*n(t)t* for t>T

by using (4.35) and the same argument as in the proof of Theorem 4.1.
If T<t, <t, <T,then

(4.37) I(Fx)(t2) — (FX)(t)] = (1 — p)c*|e5 — ]
< (1 — we*kts e, — ¢,
< c*mty)|t, — t4],
where we have used the mean value theorem for t*. The derivative of G

defined by (4.34) is given by the following:

n—2
G0 = f O pOSlgoNds,  t>T

for the case of k = 1, and

t (t . s)k—2 (u . S)n—k 1

0= dud >T
® r k=2 J, n— )'p(u)f(x(g(u))) uds, t>

for the case of 2 < k <n — 1. Therefore we have
1 ©
IG'(0)] < r—] j s"72p(s)f(x(g(s))) ds

< uc*, t>T

for the case of k = 1, and
k-1

k — D)l(n —

< pc*kt* ', t>T

G0 < o | s &

for the case of 2 < k <n— 1. From the above, we get

|G'(t)] < pc*kt*? for t>T and 1<k<n-—1.
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By the mean value theorem we obtain
(4.38) |G(t2) — G(ty)| < pc*kes™ [t, — 1ty
for t,>t;,>T and 1<k<n-—1.

Lett;>t;, >Tand T,_((T)<t, < T(T),l=1, 2,.... Then we see by (4.18),
(4.19), (4.33) and (4.38) that

(4.39) I(FX)(t2) — (Fx) ()]
< Th(E)x(x(t2)) — x(2(€))] + [x(z(22))l [h(E2) — h(ty)]
+ (1 = we*| — til + G(t,) — G(t;)]

< e*m((t2))Ie(tz) — (ey)l + %[T(tz)]k|h(t2) — h(ty)|
+ (1 = we*|t; — ti] + |G(ty) — G(zy)

< L)t = 1] + 5 [e() L — 1
+ (1 — we*kts™ e, — ty| + pc*kts e, — |

<c* [Lfm(r(tz)) + %[r(tz)]" + kt’z“l] [ty — t4]

= c*m(ty)|t; — ty].
From (4.37) and (4.39) we obtain
(440)  |(FX)(ty) — (FX)(t,)] < c*m(t,)|t, —t;] for t,>t, >T.

Then, inequalities (4.36) and (4.40) mean that & maps X into X.

Furthermore it is easily verified that & is continuous on X. By the
Schauder-Tychonoff fixed point theorem we can conclude that there exists
an x € X such that x = #x. This x satisfies

dk
7 X0 = h)x(z(2)]

© (S _ t)n—k—l

=1 —pc*kl + (=10 Py — p(s)f(x(g(s))) ds

for t > T;(T) and is a positive solution of equation (1.1). From the above
equality it follows that
lim (Lx)(t)/t* = lim [x(t) — h(®)x(z(£))]/t* = (1 — p)c* > 0.

t— o t—o
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Then, by (iii) of Lemma 2.7 we find that x satisfies (4.27). The proof of
Theorem 4.2 is complete.

COROLLARY 4.2. Let (1.1) be either sublinear or superlinear, and let k be
an integer with 1 <k <n— 1. In addition to (1.2)-(1.6), (4.1) and (4.2), assume
that lim,_ . h(t)[t(¢)/t]* exists and is finite. Then equation (1.1) has a non-
oscillatory solution x such that

®

X
lim o = const # 0

t—o0

if and only if (4.28) holds.

REMARK 4.1. It is easy to verify that if x is a nonoscillatory solution of
(1.1) satisfying (4.27), then x € 4} for the case of (—1)"*¢ = —1 and x € A},
for the case of (—1)" %6 = 1. This observation is also true in the case of k = 0.

ExampLE 4.1. Consider the equation
ar .
4.41) ¥IC [x(t) — hsint-x(t — 27n)] + op(t)|x(t — 7)|" sgn x(t — 1) =0,

where n>2, 6 =1 or —1, pe C[0, ©), p(t) >0 on [0, ), and h, 7, y are
constant such that |h| <1, |1 < o0, |yl <o0. Let k be an integer with
0<k<n-—1. Theorems 4.1 and 4.2 show that the condition

(4.42) f "k () dt < oo

is a necessary and sufficient condition for (4.41) to have a nonoscillatory
solution x satisfying
lx(@)]

0 < lim inf x < lim sup

t— oo t— o0

t
LU

ExampPLE 4.2. Consider the equation
dn
(4.43) e [x(t) — hx(t — 2m)] + op(t)|x(t — 7)]" sgn x(t — 1) =0,

where n, o, p, h, 7, y are as in Example 4.1. Then it follows from Corollaries 4.1
and 4.2 that, for an integer k with 0 < k < n — 1, condition (4.42) is necessary
and sufficient for (4.43) to have a nonoscillatory solution x such that

LG

+— = const # 0.

t—o0
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5. Nonoscillatory solutions in A}, 1 <j<n—1

In this section we establish conditions under which equation (1.1) has non-
oscillatory solutions of the classes .4}, where 1 <j<n—1and (—1)"7 !¢ = 1.
These results are based upon the following lemmas which are concerned with

5.1 {oy™(@®) + p(®)f(¥(9()))} sgn y(9()) < 0.

Here we assume that n > 2, 6 =1 or —1, and p, f and g satisfy (1.4), (1.5) and
(1.6), respectively. We say that a nonoscillatory solution y of (5.1) is of class
A; if y satisfies

{y(t)y“’(t) >0, 0<i<j,
(=@ >0, j+1<i<n,

for all sufficiently large t. We use the notation

g*(t) = min {g(t)’ t} .

DEerFINITION 5.1. Equation (1.1) or inequality (5.1) is called strictly sublinear
if there is a number « such that 0 < a < 1 and

Sl )

lug® — Jul*

luy| < |u,l, uu; >0.

Equation (1.1) or inequality (5.1) is called strictly superlinear if there is a number
B > 1 such that

LSl _ 1))l

<

PRASRTAL for |u;| <l|upl,  wu,;>0.
1 2

Clearly equation (1.9) is strictly sublinear if —o0 <y <1 and is strictly
superlinear if 1 <y < o0.

LEMMA 5.1. Let (5.1) be strictly sublinear and 1 <j<n-—1, (=17 lg=1.
If (5.1) has a solution of class A}, then

52 j w (%)qﬂﬁ_ll’(t)If(c[g(t)]j)l dt<oo  for some c#0,

where o is the strict sublinearity constant for (5.1).

For the proof of Lemma 5.1, see Kitamura [11, Theorem 2]. A close look
at the proofs of Theorem 1 of Kitamura [11] and Theorem B of Kitamura and
Kusano [12] enables us to obtain the next result.
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LeMMA 5.2. Let (5.1) be strictly superlinear and 1 <j<n—1, (=17 ¢ =
1. If (5.1) has a solution of class A}, then

(53) f " L0 O POl Lo de < 0o for some ¢ 0.

First we find a necessary condition for the existence of a solution x of (1.1)
which belongs to 4.

THEOREM 5.1. Let (1.1) be strictly sublinear and 1 <j<n—1, (=1 '¢g =
1. If (1.1) has a nonoscillatory solution x in the class A}, then (5.2) holds.

ProoF. Let x be a solution of (1.1) in the class .#;. Without loss of
generality we may assume that x is eventually positive. Then (Lx)(t) is even-
tually positive and increasing. By Lemmas 2.3 and 2.4 there are ¢* >0, ¢, >0
and T > a such that

(54) (LX) (9(1) < x(9(1)) < c*(Lx)(g(t)) for ¢>T.
Then from the definition of the strict sublinearity for (1.1) it follows that
55) stalON) > fe L) DY

2 (cy/c*’ S (c*(Lx)(9(1)
fort > T. From equation (1.1) and (5.5) we obtain
a(Lx)™() + (cy/c*PO)f(*LX)(gM) <0, t=>T,
and so the inequality
{oy®(t) + (cu/c*’p(0)f(c*y(g(1))} sgn y(g(1) < O

has a positive solution Lx of class .#;. Then we conclude by Lemma 5.1 that
(5.2) holds. This completes the proof of Theorem 5.1.

THEOREM 5.2. Let (1.1) be strictly superlinear and 1<j<n-—1,
(=17t =1. If (1.1) has a nonoscillatory solution x in the class A}, then (5.3)
holds.

Proor. Let x be an eventually positive solution of (1.1) in the class A4/
As in the proof of Theorem 5.1, Lx is eventually positive and (5.4) is satisfied
for some ¢* > 0,c, >0and T > a. By equation (1.1) and (5.4) we have

o(Lx)™(t) + p()f(c(Lx)(9())) <0, t>T,
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which means that the inequality

{oy™ () + p(0)f(c,y(9(1)))} sgn y(g(1) <O

has a positive solution Lx of class .4#;. Then, by Lemma 5.2 we see that (5.3)
holds. The proof of Theorem 5.2 is complete.

THEOREM 5.3. Let (1.2)—(1.6), (4.1) and (4.2) be satisfied. Assume that (1.1)
is strictly sublinear and 1 <j<n— 1, (—1)"7"'¢ = 1. Assume in addition that
g,(t) = min {g(2), t} satisfies

(5.6) lim in “;*((:))

Then, a necessary and sufficient condition for (1.1) to have a nonoscillatory
solution of class A is that

>0.

(5.7 jw " p(0)| f(c[g(®) 1) dt < o for some c#0.

ProOF. Note that, under condition (5.6), (5.2) is equivalent to (5.7). Then
the necessity part follows from Theorem 5.1, and the sufficient part follows from
Theorems 4.1, 4.2 and Remark 4.1.

Likewise, from Theorems 5.2, 4.1, 4.2 and Remark 4.1 we have the following
result.

THEOREM 5.4. Let (1.2)—(1.6), (4.1) and (4.2) be satisfied. Assume that (1.1)
is strictly superlinear and 1 <j<n—1, (=17l =1. Assume in addition
that g,(t) = min {g(¢), t} satisfies

t
(5.8) lim inf—g—"‘g >0.
t— oo
Then, a necessary and sufficient condition for (1.1) to have a nonoscillatory
solution of class A} is that

(5.9) jw t"p®)| flc[g(®) ™) dt < o for some ¢ #0.

ExAMPLE 5.1. Let us reconsider equation (4.41). First notice that the case
(IT) in Theorem 3.1 does not occur (that is, the class A4 for (4.41) is always
empty) since the function h(t) = hsint takes a nonpositive value on [T, o)
for all T. Let j be an integer satisfying 1 <j<n—1 and (—1)"7'o =1
Theorem 5.3 shows that equation (4.41) with —oco <y < 1 has a nonoscillatory
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solution of class .4} if and only if
© . .
f t" T Yip(t) dt < o,

while Theorem 5.4 shows that (4.41) with 1 <y < oo has a nonoscillatory
solution of class .4 if and only if

I ") dt < oo .

Consider the special case that n is even and o = 1 in (4.41). We see that if
y < 1 and the condition

(5.10) f "™ Vp(t) dt = ©

is satisfied, then all the classes A4}, j=1, 3, ..., n—1, for (441) are empty.
Since A is also empty, we can conclude the following: Let n be even, o = 1
and y < 1. Then equation (4.41) has no nonoscillatory solutions if and only if
(5.10) holds. Similarly we have the following result: Let n be even, ¢ = 1 and
y > 1. Then equation (4.41) has no nonoscillatory solutions if and only if

Jm t" p(t)dt = © .
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