A linearization of the Einstein-Maxwell field equations

Hideo Doi and Ryuichi Sawae

(Received September 19, 1989)

0. Introduction

Our principal objective in this paper is to solve the Belinskii ansatz for the Einstein-Maxwell field equations [1]. For a space-time metric $(d s)^{2}=$ $g_{i j} d x^{i} d x^{j}$ and an electromagnetic potential $A_{i} d x^{i}$, the field equations are given as follows.

$$
\begin{equation*}
R_{i j}=-F_{i m} F_{j}^{m} / 2+g_{i j} F_{m n} F^{m n} / 8, \quad \nabla_{m} F^{i m}=0, \tag{0.0}
\end{equation*}
$$

where $R_{i j}$ is the Ricci tensor, $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}$ is the electromagnetic field and ∇_{m} denotes the covariant differential operator.

To explain the ansatz, we introduce a 2-dimensional reduction. For a symmetric matrix $g=\left(g_{i j}\right)_{1 \leq i, j \leq 2} \in \mathfrak{g l}(2, R[[t, z]])$ with $\operatorname{det} g=t^{2}$ and $A=$ $\left(A_{1}, A_{2}\right) \in R^{2}[[t, z]]$, we set

$$
\begin{gathered}
-(d s)^{2}=e^{2 \sigma}\left(-(d t)^{2}+(d z)^{2}\right)+\sum_{1 \leq i, j \leq 2} g_{i j} d x^{i} d x^{j}, \quad x^{0}=t, x^{3}=z, \\
\sigma \in R[[t, z]], A_{0}=A_{3}=0 \text { and } h=\left[\begin{array}{cc}
g+{ }^{t} A A & { }^{t} A \\
A & 1
\end{array}\right] \in \operatorname{gl}(3, R[[t, z]]) .
\end{gathered}
$$

Then the following two systems of equations are equivalent [1].

$$
\begin{equation*}
\left((d s)^{2}, A_{i}\right) \text { satisfies (0.0) for some } \sigma \text { and } F_{m n} F^{m n}=0 \tag{0.1}
\end{equation*}
$$

Moreover we assume some boundary conditions which are deduced from suitable physical assumptions.

$$
\begin{equation*}
g_{11}(0, z)=g_{12}(0, z)=A_{1}(0, z)=A_{2}(0,0)=0, \quad g_{22}(0,0)>0, \quad \partial_{t} g(0, z)=0 . \tag{0.3}
\end{equation*}
$$

If (g, A) satisfies $(0.2-3)$, then we call (g, A) a solution of the Belinskii ansatz.
For $u_{11}, u_{31} \in R[[x]]$ with $u_{11}(0)>0$, we define $u=\left(u_{i j}\right) \in S L(3, R[[x]])$ as follows.

$$
\begin{gathered}
f=1 / u_{11}, \quad a= \pm x u_{31} f, \\
u_{21}=\left\{\begin{array}{l}
a u_{31} / 2+c u_{11} \quad \text { with } c \in R \quad \text { if } \quad u_{31} \neq 0, \\
\text { an arbitrary element of } R[[x]] \quad \text { if } u_{31}=0,
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& u_{12}=x^{2} u_{21}, \quad u_{13}=x^{2} u_{31}, \quad u_{22}=f+a^{2}+u_{21} u_{12} \\
& u_{23}=a+u_{21} u_{13} f, \quad u_{32}=a+u_{31} u_{12} f, \quad u_{33}=1+u_{31} u_{13} f .
\end{aligned}
$$

Also we define $w_{k} \in \mathfrak{g l}(3, R[[t, z]]), k \in Z$ as $\Sigma_{k \in Z} w_{k} \lambda^{k}=\exp \left(t^{2} \partial_{t} / 2 \lambda\right) \times$ $\left\{u(\lambda+2 z) \operatorname{diag}\left(1+2 z / \lambda, 1_{2}\right)\right\} \in \operatorname{gl}\left(3, R\left[\left[t, z, \lambda, \lambda^{-1}\right]\right]\right)$, and we set $W_{i j}=w_{j-i}$, $W=\left(W_{i j}\right)_{i \in Z, j<0}$ and $W_{-}=\left(W_{i j}\right)_{i, j<0}$. Then an argument in K. Nagatomo [3, §3] implies that the matrix W_{-}is invertible and that $Y=W \cdot W_{-}^{-1}$ is welldefined. From the explicit form of $Y_{0,-1}$, it follows that there exists a unique $h \in \operatorname{gl}(3, R[[t, z]])$ such that

$$
h(0, z)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & f+a^{2} & a \\
0 & a & 1
\end{array}\right]_{x=2 z}, \quad \partial_{t}^{2} h(0, z)=2 / f\left[\begin{array}{ccc}
1 & \partial_{x}\left(x u_{21} f\right) & \partial_{x}\left(x u_{31} f\right) \\
* & * & * \\
* & * & *
\end{array}\right]_{x=2 z}
$$

and

$$
t \partial_{t} h=\left(\partial_{z} Y_{0,-1}\right) h
$$

We can now state our main
Theorem. (i) h is decomposed as $\left[\begin{array}{cc}g+{ }^{t} A A & { }^{t} A \\ A & 1\end{array}\right]$ and (g, A) is a solution of the Belinskii ansatz.
(ii) All solutions of the Belinskii ansatz are obtained through the above procedure.

In $\S 1$, we study the solvability of the Belinskii ansatz. In §2, we consider some potentials which will be associated with solutions of the Belinskii ansatz. In §3, we prove the theorem. Then a crucial point is that our treating equations have regular singularities along $t=0$. It enables us to control the solutions with their boundary values.

The authors would like to thank heartly Professor Kiyosato Okamoto for his suggestions and encouragement.

1. The Belinskii ansatz

Let $g \in \operatorname{gl}(2, R[[t, z]])$ satisfy ${ }^{t} g=g$ and $\operatorname{det} g=t^{2}$, and let $A \in R^{2}[[t, z]]$. As easily seen, (0.2) is equivalent to the following system:

$$
\begin{gather*}
d\left(t * d g \cdot g^{-1}\right)+d^{t} A t * d A \cdot g^{-1}=0, \quad d\left(t * d A \cdot g^{-1}\right)=0 \tag{1.1}\\
* d A \cdot g^{-1} d^{t} A=0 \tag{1.2}
\end{gather*}
$$

Here d denotes exterior differentiation and $*$ is the Hodge operator with respect
to the metric $(d t)^{2}-(d z)^{2}$. For $\varphi \in R^{N}[[t, z]]$ and $n \in Z_{+}$, we define $\varphi^{[n]} \in$ $R^{N}[[z]]$ as $\varphi=\Sigma_{n \geq 0} \varphi^{[n]} t^{n}$.

Lemma 1.1. Let (g, A) satisfy (0.3) and (1.1). Then (g, A) is determined by $g_{22}^{[0]}, A_{2}^{[0]}, A_{1}^{[2]}$ and $g_{12}^{[2]}$.

Proof. Let f, a and γ stand for $g_{22}^{[0]}, A_{2}^{[0]}$ and $g_{12}^{[2]}$, respectively. Since $\operatorname{det} g=t^{2}$, we have $g_{11}^{[2]}=1 / f$. Letting $\tilde{g}=\operatorname{det} g \cdot g^{-1}$, we can rewrite the system (1.1) as follows:

$$
\begin{aligned}
& \left(\left(t \partial_{t}\right)^{2}-2 t \partial_{t}\right) g=t^{2} \partial_{z}^{2} g+\left(\partial_{z} g \partial_{z} \tilde{g}-\partial_{t} g \partial_{t} \tilde{g}\right) g-t \partial_{t}^{t} A \cdot t \partial_{t} A+t^{2} \partial_{z}^{t} A \cdot \partial_{z} A \\
& \left(\left(t \partial_{t}\right)^{2}-2 t \partial_{t}\right) A=t^{2} \partial_{z}^{2} A+\left(\partial_{z} A \partial_{z} \tilde{g}-\partial_{t} A \partial_{t} \tilde{g}\right) g
\end{aligned}
$$

Hence we obtain $A^{[1]}=0$,

$$
\begin{aligned}
& \left(n^{2}-2 n\right) g^{[n]}=\left[\begin{array}{lc}
0 & 0 \\
0 & f^{\prime} f \partial_{z} g_{11}^{[n]}+2 n\left(2 g_{12}^{[n]} \gamma f-g_{22}^{[2]} g_{11}^{[n]} f-g_{22}^{[n]}\right)
\end{array}\right]+(\cdots) \\
& \left(n^{2}-2 n\right) A^{[n]}=\left(0, \quad a^{\prime} f \partial_{z} g_{11}^{[n]}+2 n\left(A_{1}^{[2]} g_{12}^{[n]} f-A_{2}^{[2]} g_{11}^{[n]} f+A_{1}^{[n]} \gamma f-A_{2}^{[n]}\right)\right)+(\cdots),
\end{aligned}
$$

where (\cdots) are terms including only $g^{[k]}, A^{[k]}$ with $k<n$, and the superscript ' denotes ∂_{z}. Therefore by induction we have the lemma.

Corollary 1.2. If (g, A) is a solution of (0.3) and (1.1), then we have $g(t, z)=g(-t, z)$ and $A(t, z)=A(-t, z)$.

Proof. Clearly the equations (0.3) and (1.1) are invariant under the transformation $t \rightarrow-t$.

Lemma 1.3. If (g, A) satisfies (0.3), (1.1) and (1.2), then
(i) $A_{1}^{[2]}= \pm \partial_{z} A_{2}^{[0]} / 2 g_{22}^{[0]}$,
(ii) $A_{2}^{[0]} \partial_{z}\left(g_{22}^{[0]} g_{12}^{[2]}\right)=0$.

Proof. Since $d\left(t * d A \cdot g^{-1}\right)=0$ and $\left.d A_{1}\right|_{t=0}=0$, there exists $B \in R^{2}[[t, z]]$ satisfying $d B=t * d A \cdot g^{-1}$ and $B(0,0)=0$. Then (1.2) means that $\partial_{t} B \partial_{z}^{t} A-$ $\partial_{z} B \partial_{t}^{t} A=0$.

We set $b=B_{1}^{[0]}$. Since $t \partial_{t} B=\partial_{z} A \cdot \tilde{g}$ and $t \partial_{t} A=\partial_{z} B \cdot g$, we obtain the following formulas:

$$
\begin{aligned}
& B_{2}^{[0]}=0, \quad 2 A_{1}^{[2]}=b^{\prime} / f, \quad 2 B_{2}^{[2]}=a^{\prime} / f, \\
& 2 A_{2}^{[2]}=b^{\prime} \gamma+\left(a^{\prime} / 2 f\right)^{\prime} f, \quad 2 B_{1}^{[2]}=\left(b^{\prime} / 2 f\right)^{\prime} f-a^{\prime} \gamma, \\
& 4 A_{1}^{[4]}=\partial_{z} B_{1}^{[2]} / f+b^{\prime} g_{11}^{[4]}+\left(a^{\prime} / 2 f\right)^{\prime} \gamma, \\
& 4 B_{2}^{[4]}=-\left(b^{\prime} / 2 f\right)^{\prime} \gamma+a^{\prime} g_{11}^{[4]}+\partial_{z} A_{2}^{[2]} / f .
\end{aligned}
$$

Therefore $\left(t \partial_{t} B \partial_{z}^{t} A\right)^{[2]}=\left(a^{\prime}\right)^{2} / f$ and $\left(\partial_{z} B t \partial_{t}^{t} A\right)^{[2]}=\left(b^{\prime}\right)^{2} / f$. Thus we have (i). Also

$$
\begin{aligned}
& \left(t \partial_{t} B \partial_{z}^{t} A\right)^{[4]}=-\left(b^{\prime} / f\right) \gamma a^{\prime}+\left(a^{\prime}\right)^{2} g_{11}^{[4]}+\left(\left(b^{\prime} / 2 f\right)^{\prime}\right)^{2} f+\left(b^{\prime} \gamma+\left(a^{\prime} / 2 f\right)^{\prime} f\right)^{\prime}\left(a^{\prime} / f\right), \\
& \left(\partial_{z} B t \partial_{t}^{t} A\right)^{[4]}=\left(\left(b^{\prime} / 2 f\right)^{\prime} f-a^{\prime} \gamma\right)^{\prime}\left(b^{\prime} / f\right)+\left(a^{\prime} / f\right)^{\prime} b^{\prime} \gamma+\left(\left(a^{\prime} / 2 f\right)^{\prime}\right)^{2} f+\left(b^{\prime}\right)^{2} g_{11}^{[4]}
\end{aligned}
$$

Hence $\left(t \partial_{t} B \partial_{z}{ }^{t} A-\partial_{z} B t \partial_{t}^{t} A\right)^{[4]}=2\left(a^{\prime} / f\right)\left(b^{\prime} / f\right)(f \gamma)^{\prime}$.
Theorem 1.4. Let $f, a, \gamma \in R[[z]]$ satisfy $f(0)>0, a(0)=0$ and $a(f \gamma)^{\prime}=0$. Then there exists a unique solution (g, A) of the Belinskii ansatz satisfying $g_{22}^{[0]}=f, g_{12}^{[2]}=\gamma, A_{2}^{[0]}=a$ and $A_{1}^{[2]}= \pm \partial_{z} a / 2 f$.

Proof. First, we assume that $a=0$. Then the proof of Lemma 1.1 implies that $A=0$. Because $\operatorname{tr}\left(d\left(t * d g \cdot g^{-1}\right)\right)=d\left(t * d \operatorname{det} g \cdot \operatorname{det} g^{-1}\right)$, the system (1.1) is equivalent to the following:

$$
\begin{gathered}
g_{11} g_{22}-\left(g_{12}\right)^{2}=t^{2} \\
d\left(t^{-1} * d g_{1 i}\right) \cdot g_{22}-d\left(t^{-1} * d g_{22}\right) \cdot g_{1 i}=0, \quad i=1,2
\end{gathered}
$$

Hence we obtain the following formulas:

$$
\begin{gathered}
g_{1}^{[n]} g_{22}^{[0]}+g_{11}^{[2]} g_{22}^{[n-2]}=\left\langle\left\langle g_{11}^{[k]}, g_{12}^{[k]}, k \leq n-2, \quad g_{22}^{[j]}, j \leq n-4\right\rangle\right\rangle \\
n(n-2) g_{11}^{[n]} g_{22}^{[0]}-(n-2)(n-4) g_{22}^{[n-2]} g_{11}^{[2]}=\left\langle\left\langle g_{11}^{[k]}, k \leq n-2, \quad g_{22}^{[j]}, j \leq n-4\right\rangle\right\rangle \\
n(n-2) g_{12}^{[n]} g_{22}^{[0]}=\left\langle\left\langle g_{12}^{[k]}, g_{22}^{[k]}, k \leq n-2\right\rangle\right\rangle,
\end{gathered}
$$

where $\left\langle\left\langle g_{\alpha \beta}^{[m]}, \cdots\right\rangle\right\rangle$ denotes term including only $g_{\alpha \beta}^{[m]}, \cdots$. Hence $g_{11}^{[n]}, g_{12}^{[n]}$ and $g_{22}^{[n-2]}$ are determined inductively.

Second, we consider the case $f \gamma=c \in R$. Set $s=\left[\begin{array}{cc}1 & -c \\ 0 & 1\end{array}\right] . \quad$ Because $g_{11}^{[2]}=1 / f$ and ($\left.{ }^{t} s g s, A s\right)$ satisfies (0.3) and (1.1), we may assume that $\gamma=0$. It is sufficient to prove now that there exists (g, A) satisfying (0.3), (1.1-2) and $g_{12}=0$.

When $g_{12}=0$, the equations ($1.1-2$) are rewritten as follows:

$$
\begin{gather*}
g_{11} g_{22}=t^{2}, \quad d\left(t^{-1} * d g_{22} \cdot g_{11}\right)+d A_{2} t^{-1} * d A_{2} \cdot g_{11}=0 \tag{1.1}\\
d\left(t^{-1} * d A_{1} \cdot g_{22}\right)=d\left(t^{-1} * d A_{2} \cdot g_{11}\right)=0 \\
g_{22} d A_{1} * d A_{1}+g_{11} d A_{2} * d A_{2}=0 \tag{1.1}\\
d A_{1} * d A_{2}=0 \tag{1.2}
\end{gather*}
$$

We see easily that there exists a solution (g, A) of (1.1)' and (0.3). Let $B \in$ $R^{2}[[t, z]]$ satisfy $d B=t^{-1} * d A \cdot \tilde{g}$ and $B(0,0)=0$. Then $d\left(t^{-1} * d B_{1} \cdot g_{22}\right)=0$.

Therefore $A_{2}^{[0]}= \pm B_{1}^{[0]}$ implies that $A_{2}= \pm B_{1}$. Since $d A_{1}=t^{-1} * d B_{1} \cdot g_{11}$, we have

$$
\begin{gathered}
g_{22} d A_{1} * d A_{1}=g_{11}\left(* d B_{1}\right) d B_{1}=-g_{11} d A_{2} * d A_{2} \quad \text { and } \\
d A_{2} * d A_{1}=d A_{2} d B_{1} t^{-1} g_{11}=0 .
\end{gathered}
$$

2. Potentials

Let $D_{1}=-\lambda \partial_{z}+t \partial_{t}+2 \lambda \partial_{\lambda}$ and $D_{2}=-\lambda \partial_{t}+t \partial_{z}$. For U and $V \in \mathfrak{g l}(3$, $R[[t, z]]$), the compatibility condition of

$$
\begin{equation*}
D_{1} \Psi=U \Psi \quad \text { and } \quad D_{2} \Psi=V \Psi \quad \text { with } \Psi \in \mathfrak{g l}\left(3, R\left[\left[t, z, \lambda^{-1}\right]\right]\right) \tag{2.0}
\end{equation*}
$$

is

$$
\begin{equation*}
\partial_{t} U-\partial_{z} V=0 \quad \text { and } \quad t\left(\partial_{z} U-\partial_{t} V\right)+V+[U, V]=0 . \tag{2.1}
\end{equation*}
$$

For $\Psi=1+\Sigma_{n>0} \Psi_{n} \lambda^{-n}$, if $\partial_{\lambda}\left(D_{1} \Psi \cdot \Psi^{-1}\right)=\partial_{\lambda}\left(D_{2} \Psi \cdot \Psi^{-1}\right)=0$, then we have $D_{1} \Psi \cdot \Psi^{-1}=-\partial_{z} \Psi_{1}$ and $D_{2} \Psi \cdot \Psi^{-1}=-\partial_{t} \Psi_{1}$.

Lemma 2.1. Let U and $V \in \mathfrak{g l}(3, R[[t, z]])$ be a solution of (2.1). Then there exists a unique $\Psi=1+\Sigma_{n>0} \Psi_{n} \lambda^{-n}$ satisfying (2.0) and $\Psi(0,0, \lambda)=1$.

Proof. The system (2.0) means that $\partial_{z} \Psi_{n+1}=t \partial_{t} \Psi_{n}-2 n \Psi_{n}-U \Psi_{n}$ and $\partial_{t} \Psi_{n+1}=t \partial_{z} \Psi_{n}-V \Psi_{n} . \quad$ By induction we have $\partial_{t}\left(t \partial_{t} \Psi_{n}-2 n \Psi_{n}-U \Psi_{n}\right)=$ $\partial_{z}\left(t \partial_{t} \Psi_{n}-V \Psi_{n}\right)$.

Lemma 2.2. For $u \in G L(3, R[[x]])$ and $\Psi=1+\Sigma_{n>0} \Psi_{n} \lambda^{-n} \in$ $\mathfrak{g l}\left(3, R\left[\left[t, z, \lambda^{-1}\right]\right]\right)$, if $X=\Psi \exp \left(t^{2} \partial_{z} / 2 \lambda\right)\left\{u(\lambda+2 z) \operatorname{diag}\left(1+2 z / \lambda, 1_{2}\right)\right\}$ belongs to $\mathfrak{g l}(3, R[[t, z, \lambda]])$, then $\partial_{\lambda}\left(D_{1} \Psi \cdot \Psi^{-1}\right)=\partial_{\lambda}\left(D_{2} \Psi \cdot \Psi^{-1}\right)=0$.

Proof. Let $T=\exp \left(t^{2} \partial_{z} / 2 \lambda\right)$ and $w=T\left\{u(\lambda+2 z) \operatorname{diag}\left(1+2 z / \lambda, 1_{2}\right)\right\}$. Then $\left[D_{1}, T\right]=0,\left[D_{2}, T\right]=-T \cdot t \partial_{z}, D_{1} w=w \operatorname{diag}(-2,0,0)$ and $D_{2} w=0$. Therefore we have $D_{1} X=\left(D_{1} \Psi \cdot \Psi^{-1}\right) X+X \operatorname{diag}(-2,0,0)$ and $D_{2} X=$ $\left(D_{2} \Psi \cdot \Psi^{-1}\right) X$. Because $X \in G L(3, R[[t, z, \lambda]])$, we see that $D_{1} \Psi \cdot \Psi^{-1}$ and $D_{2} \Psi \cdot \Psi^{-1}$ belong to $\mathfrak{g l}\left(3, R[[t, z, \lambda]] \cap R\left[\left[t, z, \lambda^{-1}\right]\right]\right)$.

We set $w=\Sigma_{k \in Z} w_{k} \lambda^{k}, W_{i j}=w_{j-i}, W=\left(W_{i j}\right)_{j \in Z, j<0}$ and $W_{-}=\left(W_{i j}\right)_{i, j<0}$. Then the following result is due to K. Nagatomo [3, §3].

Lemma 2.3. The matrix W_{-}is invertible and $W \cdot W_{-}^{-1}$ is well-defined.
Proof. First we show that $W_{-}(0, z)$ is invertible. Since $w(0, z)=$ $\Sigma_{k \geq 0} \partial_{x}^{k} u(2 z) \lambda^{k}(1+\operatorname{diag}(2 z, 0,0) / \lambda) / k$!, we have $w_{k}(0, z)=0$ for $k \leq-2$,
$w_{-1}(0, z)=u(2 z) \operatorname{diag}(2 z, 0,0)$ and $w_{k}(0, z)=\partial_{x}^{k} u(2 z) / k!+\partial_{x}^{k+1} u(2 z) \operatorname{diag}(2 z, 0,0) /$ $(k+1)$! for $k \geq 0$. Let $K=1-w_{0}(0, z)^{-1} W_{-}(0, z)$. For $p \in R^{N}[[z]]$, we set ord $p=\sup \left\{m \in Z ; p \in z^{m} R^{N}[[z]]\right\}$. By induction we see that $K_{i j}^{n}=0$ if $i-j>n$ and that ord $K^{n}{ }_{i j} \geq(n+i-j) / 2$ for any $i, j<0$. Hence $\Sigma_{n \geq 0} K^{n}$ is well-defined, and $W_{-}(0, z)^{-1}=\Sigma_{n \geq 0} K^{n} w_{0}(0, z)^{-1}$.

We set $W=\Sigma_{m \geq 0} W(m) t^{2 m}$. Since $W_{i j}(m)=\left(\partial_{z} / 2\right)^{m} w_{j-i+m}(0, z) / m!$, we see that $W_{i j}(m)=0$ if $i-j \geq m+2$. Let $H(n, m)_{i j}$ stand for $-\left(K^{n} w_{0}(0, z)^{-1} W_{-}(m)\right)_{i j}=$ $-\Sigma_{i-n \leq p \leq j+m+1} K^{n}{ }_{i p} w_{0}(0, z)^{-1} W_{p j}(m)$, and let $H(n, m)=\left(H(n, m)_{i j}\right)_{i, j<0}$. Note that ord $H(n, m)_{i j} \geq(n+i-j-m-1) / 2$. Therefore $H=\Sigma_{n \geq 0, m \geq 1} H(n, m) t^{2 m}$ is well-defined and $W_{-}=W_{-}(0, z)(1-H)$.

By definition, $H(n, m)_{i j}=0$ if $i-j>n+m+1$. Hence if

$$
(*)=H\left(n_{1}, m_{1}\right)_{i j_{2}} H\left(n_{2}, m_{2}\right)_{j_{2} j_{3}} \cdots H\left(n_{N}, m_{N}\right)_{j_{N} j}
$$

is nonzero, then $i-j_{2} \leq n_{1}+m_{1}+1, j_{2}-j_{3} \leq n_{2}+m_{2}+1, \cdots, j_{N}-j \leq n_{N}+$ $m_{N}+1$. Therefore, fixing $i, j,\left(n_{k}\right)$ and $\left(m_{k}\right)$, we have $(*)=0$ for almost all indices j_{2}, \cdots, j_{N}. Also ord $(*) \geq\left(\Sigma n_{k}-\Sigma m_{k}+i-j-N\right) / 2$. Hence, fixing i, $j,\left(m_{k}\right)$ and $r>0$, we see that ord $(*)>r$ except a finite number of indices $\left(n_{k}\right)$. Thus $\Sigma_{n_{i} \geq 0} H\left(n_{1}, m_{1}\right) \cdots H\left(n_{N}, m_{N}\right)$ is well-defined, and so is H^{N}.

For $(* *)=\left(H\left(n_{1}, m_{1}\right) \cdots H\left(n_{N}, m_{N}\right)\right)_{i p} W_{-}(0, z)^{-1}{ }_{p j}$, we have ord $(* *) \geq\left(\Sigma n_{k}-\right.$ $\left.\Sigma m_{k}+i-p-N\right) / 2$. Hence, fixing $i, j,\left(m_{k}\right)$ and r, we see that $\operatorname{ord}(* *) \geq r$ for almost all indices $\left(n_{k}\right)$ and $p<0$. Thus $H^{N} \cdot W_{-}(0, z)^{-1}$ is well-defined. By the definition, if $W(m)_{i j} \neq 0$, then $i-m-1 \leq j<0$. Therefore $W \cdot\left(\Sigma_{N \geq 0} H^{N} W_{-}(0, z)^{-1}\right)$ is well-defined, and $W_{-}^{-1}=\Sigma_{N \geq 0} H^{N} W_{-}(0, z)^{-1}$.

Applying Lemma 2.2, we have the Birkhoff decomposition of w. Letting $\Psi=\Sigma_{j \in Z} \Psi_{-j} \lambda^{j}=1+\Sigma_{j>0}-\left(W \cdot W_{-}^{-1}\right)_{0,-j} \lambda^{-j}$, we see that $\Psi_{w \in \mathfrak{g l}}(3, R[[t, z$, d]]) because $\left(\Psi_{-j}\right)_{j<0} W_{-}+\left(W_{0 j}\right)_{j<0}=\left(\Psi_{-j}\right)_{j \in Z} W=0$. Also we notice that if $\widetilde{\Psi}_{w} \in \mathfrak{g l}(3, R[[t, z, \lambda]])$ for $\widetilde{\Psi} \in \mathfrak{g l}\left(3, R\left[\left[t, z, \lambda^{-1}\right]\right]\right)$ with $\widetilde{\Psi}(0,0, \lambda)=1$, then $\tilde{\Psi}=\Psi$.

Lemma 2.4. Let $\varphi \in \mathfrak{g l}(3, R[[t, z]])$ satisfy

$$
\begin{equation*}
\left(t \partial_{t}\right)^{2} \varphi-2 t \partial_{t} \varphi-t^{2} \partial_{z}^{2} \varphi+\left[t \partial_{t} \varphi, \partial_{z} \varphi\right]=0 \tag{2.2}
\end{equation*}
$$

$$
\varphi_{11}^{[0]}=2 z, \quad \varphi_{i j}^{[0]}=0 \quad i=1,2,3, \quad j=2,3 \quad \text { and } \quad \varphi^{[1]}=0
$$

Then φ is determined by $\varphi_{11}^{[2]}, \alpha_{i}=\varphi_{i 1}^{[0]}, \varphi_{i j}^{[2]}$ and $\varphi_{1 i}^{[4]} i, j=2,3$. Moreover if $\operatorname{tr} \varphi^{[2]}=0$, then $\operatorname{tr} \varphi=2 z$.

Proof. We note that $\left(n^{2}-2 n\right) \varphi^{[n]}-\partial_{z}^{2} \varphi^{[n-2]}+\Sigma_{k+m=n}\left[k \varphi^{[k]}, \partial_{z} \varphi^{[m]}\right]=0$. Let Φ stand for $\left[n \varphi^{[n]}, \partial_{z} \varphi^{[0]}\right]$. Then we have $\Phi_{1 i}=-2 n \varphi_{1 i}^{[n]} \quad i=2,3, \Phi_{11}=$ $n \varphi_{12}^{[n]} \alpha_{2}^{\prime}+n \varphi_{13}^{[n]} \alpha_{3}^{\prime}, \Phi_{i j}=-\alpha_{i}^{\prime} \varphi_{1 j}^{[n]} \quad 2 \leq i, j \leq 3$ and $\Phi_{i 1}=2 \varphi_{i 1}^{[n]}+n \varphi_{12}^{[n]} \alpha_{2}^{\prime}+$
$n \varphi_{i 3}^{[n]} \alpha_{3}^{\prime}-\alpha_{i}^{\prime} n \varphi_{11}^{[n]} \quad i=2,3$. Also we see that $n(n-2) \operatorname{tr} \varphi^{[n]}=\partial_{z}^{2} \operatorname{tr} \varphi^{[n-2]}$. Therefore, by induction we have the lemma.

3. A linearization of the Belinskii ansatz

Letting (g, A) be a solution of the Belinskii ansatz, we set $h=\left[\begin{array}{cc}g+{ }^{t} A A & { }^{t} A \\ A & 1\end{array}\right]$, $U=t \partial_{t} h \cdot h^{-1}$ and $V=t \partial_{z} h \cdot h^{-1}$. Since U and V satisfy (2.1), we have a solution $\Psi=1+\Sigma_{n>0} \Psi_{n} \lambda^{-n}$ with $\Psi(0,0, \lambda)=1$ of (2.0). Because $U(0, z)=$ $\left[\begin{array}{lll}2 & 0 & 0 \\ * & 0 & 0 \\ * & 0 & 0\end{array}\right]$, we can set

$$
-\Psi_{1}(0, z)=\left[\begin{array}{ccc}
2 z & 0 & 0 \\
\alpha_{2} & 0 & 0 \\
\alpha_{3} & 0 & 0
\end{array}\right], \quad \alpha_{i} \in R[[z]] \quad i=2,3 .
$$

For $u \in G L(3, R[[x]])$, we set $w=\exp \left(t^{2} \partial_{z} / 2 \lambda\right)\left\{u(\lambda+2 z) \operatorname{diag}\left(1+2 z / \lambda, 1_{2}\right)\right\}$ and $X=\Psi w$.

Lemma 3.1. $\quad X(0, z, \lambda) \in \mathfrak{g l}(3, R[[z, \lambda]])$ if and only if

$$
\begin{equation*}
\alpha_{i} u_{11}(2 z)=2 z u_{i 1}(2 z) \quad \text { and } \quad u_{1 i}(0)=0 \quad i=2,3 . \tag{3.1}
\end{equation*}
$$

Proof. Putting $t=0$, we have $\left(-\lambda \partial_{z}+2 \lambda \partial_{\lambda}\right) \Psi=\left[\begin{array}{ccc}2 & 0 & 0 \\ \alpha_{2}^{\prime} & 0 & 0 \\ \alpha_{3}^{\prime} & 0 & 0\end{array}\right] \Psi . \quad$ Hence

$$
\begin{aligned}
& \Psi(0, z, \lambda)=\left[\begin{array}{ccc}
\lambda /(\lambda+2 z) & 0 & 0 \\
-\alpha_{2} /(\lambda+2 z) & 1 & 0 \\
-\alpha_{3} /(\lambda+2 z) & 0 & 1
\end{array}\right] \text { and } \\
& X_{11}(0, z, \lambda)=u_{11}(\lambda+2 z), \quad X_{i 1}(0, z, \lambda)=\lambda u_{i 1}(\lambda+2 z) /(\lambda+2 z), \\
& X_{i 1}(0, z, \lambda)=\left(-\alpha_{i} u_{11}(\lambda+2 z)+2 z u_{i 1}(\lambda+2 z)\right) / \lambda+u_{i 1}(\lambda+2 z), \\
& X_{i j}(0, z, \lambda)=-\alpha_{i} u_{1 j}(\lambda+2 z) /(\lambda+2 z)+u_{i j}(\lambda+2 z), \quad 2 \leq i, j \leq 3 .
\end{aligned}
$$

The lemma is now clear.
We set $f=g_{22}^{[0]}, a=A_{2}^{[0]}, v=A_{1}^{[2]}$ and $\Delta_{i j}=u_{11} u_{i j}-u_{i 1} u_{1 j}, 2 \leq i, j \leq 3$.
Lemma 3.2. Let u satisfy (3.1). Then $\partial_{t}^{2} X(0, z, \lambda) \in \mathfrak{g l}(3, R[[z, \lambda]])$ if and only if

$$
\begin{gather*}
\left(f u_{11}\right)^{\prime}=0, \quad\left(a \Delta_{3 i}-\Delta_{2 i}\right)^{\prime}=0 \quad \text { and } \tag{3.2}\\
a^{\prime} \Delta_{2 i}-a a^{\prime} \Delta_{3 i}=\left(f \Delta_{3 i}\right)^{\prime}, \quad i=2,3
\end{gather*}
$$

Proof. Note that $\partial_{t} w=t \partial_{z} w / \lambda, \partial_{t}^{2} X=\partial_{t}^{2} \Psi \cdot w+2 \partial_{t} \Psi \cdot t \partial_{z} w / \lambda+$ $\Psi \cdot \partial_{t}\left(t \partial_{z} w\right) / \lambda$ and $\Psi(t, z)=\Psi(-t, z)$. Since $\partial_{t} D_{2} \Psi(0, z)=-\partial_{t}^{2} \Psi_{1}(0, z) \cdot \Psi(0, z)$, we have $\partial_{t}^{2} \Psi(0, z)=\left(\partial_{z} \Psi(0, z)+\partial_{t}^{2} \Psi_{1}(0, z) \cdot \Psi(0, z)\right) / \lambda$. Therefore

$$
\partial_{t}^{2} X=\left(\partial_{z} X+\partial_{t}^{2} \Psi_{1} \cdot X\right) / \lambda \quad \text { on } t=0
$$

Putting $t=\lambda=0$, we have $X_{11}=u_{11}, X_{1 i}=0, X_{i j}=-\alpha_{i} \tilde{u}_{1 j}+u_{i j} 2 \leq i, j \leq 3$, where $\tilde{u}_{1 j}=u_{1 j}(2 z) / 2 z$. Also we see that

$$
-\partial_{t}^{2} \Psi_{1}=V^{[1]}=\left[\begin{array}{ccc}
-f^{\prime} / f & 0 & 0 \\
\gamma^{\prime} f-f^{\prime} \gamma+a v^{\prime} f-a a^{\prime} \gamma & f^{\prime} / f+a a^{\prime} / f & -a f^{\prime} / f-a^{2} a^{\prime} / f+a^{\prime} \\
v^{\prime} f-a^{\prime} \gamma & a^{\prime} / f & -a a^{\prime} / f
\end{array}\right]
$$

If $\partial_{z} X+\partial_{t}^{2} \Psi_{1} \cdot X=0$ on $t=\lambda=0$, we have

$$
\begin{gathered}
-\left(f^{\prime} \mid f\right) u_{11}=\partial_{2} u_{11} \\
\left(f^{\prime}+a^{\prime} a\right) \Delta_{2 i}+\left(-a f^{\prime}-a^{2} a^{\prime}+a^{\prime} f\right) \Delta_{3 i}=\left(\Delta_{2 i} f\right)^{\prime}, \\
a^{\prime} \Delta_{2 i}-a a^{\prime} \Delta_{3 i}=\left(\Delta_{3 i} f\right)^{\prime}
\end{gathered}
$$

These imply (3.2). Also we note that if $\left(f u_{11}\right)^{\prime}=0$, then $\left(\partial_{z} X+\partial_{t}^{2} \Psi_{1} \cdot X\right)_{i 1}=0$, $i=2,3$ on $t=\lambda=0$. Hence (3.2) implies $\partial_{t}^{2} X(0, z, \lambda) \in \mathfrak{g l}(3, R[[z, \lambda]])$.

Lemma 3.3. Assume (3.1-2). If $\partial_{t}^{4} X_{1 i}(0, z, \lambda) \in R[[z, \lambda]], i=2,3$, then

$$
\begin{equation*}
f u_{11}\left(f \tilde{u}_{1 i}\right)^{\prime \prime}=\left\{\left(\alpha_{2}-\alpha_{3} a\right) \Delta_{2 i}+\left(\alpha_{3} a^{2}+\alpha_{3} f-\alpha_{2} a\right) \Delta_{3 i}\right\}^{\prime \prime} . \tag{3.3}
\end{equation*}
$$

Proof. Note that $\partial_{t}^{2} w=\partial_{z} w / \lambda, \partial_{t}^{4} w=3 \partial_{z}^{2} w / \lambda^{2}$ and $\partial_{t}^{3} D_{2} \Psi=-\partial_{t}^{4} \Psi_{1} \cdot \Psi-$ $3 \partial_{t}^{2} \Psi_{1} \cdot \partial_{t}^{2} \Psi$ on $t=0$. Therefore $\partial_{t}^{4} X=\partial_{t}^{4} \Psi \cdot w+6 \partial_{t}^{2} \Psi \cdot \partial_{z} w / \lambda+3 \Psi \partial_{z}^{2} w / \lambda^{2}$ and $\lambda \partial_{t}^{4} \Psi=3 \partial_{t}^{2} \partial_{z} \Psi+\partial_{t}^{4} \Psi_{1} \cdot \Psi+3 \partial_{t}^{2} \Psi_{1} \cdot \partial_{t}^{2} \Psi$ on $t=0$. After a calculation, we have $\partial_{t}^{4} X=3\left\{\partial_{z}^{2} X+\partial_{z}\left(\partial_{t}^{2} \Psi_{1} \cdot X\right)+\partial_{t}^{2} \Psi_{1} \cdot \partial_{z} X+\left(\partial_{t}^{2} \Psi_{1}\right)^{2} X\right\} / \lambda^{2}+\partial_{t}^{4} \Psi_{1} \cdot X / \lambda$ on $t=0$.
Also it is easily seen that $\partial_{\lambda} X_{1 i}(0, z, 0)=\tilde{u}_{1 i}, V_{12}^{[3]}=\left(f^{\prime} / f^{2}\right) \gamma+\gamma^{\prime} f+v a^{\prime} / f$, $V_{13}^{[3]}=-V_{12}^{[3]} a+v f^{\prime} / f+v^{\prime}$,

$$
\begin{aligned}
& \operatorname{Res}_{\lambda=0} \partial_{t}^{4} X_{1 i}(0, z, \lambda) / 3=\left(f \tilde{u}_{1 i}\right)^{\prime \prime} / f-\left(2 V^{[3]} X\right)_{1 i}, \quad i=2,3 \quad \text { and } \\
& f^{2} u_{11}\left(V^{[3]} X\right)_{1 i}
\end{aligned}=\left\{(f \gamma)^{\prime}+v a^{\prime} f\right\} \Delta_{2 i}+\left\{-(f \gamma)^{\prime} a-v a^{\prime} f a+(f v)^{\prime} f\right\} \Delta_{3 i} .
$$

Using $2 f \gamma=\alpha_{2}^{\prime}-\alpha_{3}^{\prime} a, 2 f v=\alpha_{3}^{\prime}$ and (3.2), we have $2\left\{(f \gamma)\left(\Delta_{2 i}-a \Delta_{3 i}\right)+v f^{2} \Delta_{3 i}\right\}$ $=\left\{\alpha_{2}\left(\Delta_{2 i}-a \Delta_{3 i}\right)+\alpha_{3}\left(-a \Delta_{2 i}+\left(a^{2}+f\right) \Delta_{3 i}\right)\right\}^{\prime}$.

Proposition 3.4. Let $u \in G L(3, R[[x]])$ satisfy $(3.1-2-3)$. Then $\Psi w \in$ $\mathfrak{g l}(3, R[[t, z, \lambda]])$.

Proof. By Lemma 2.3, we have $\Psi^{u} \in \mathfrak{g l}\left(3, R\left[\left[t, z, \lambda^{-1}\right]\right]\right)$ satisfying $\Psi^{u} w \in$ $\mathrm{gl}(3, R[[t, z, \lambda]])$ and $\Psi^{u}(0,0, \lambda)=1$. Then the uniqueness of the Birkhoff decomposition implies that $\Psi^{u}(0, z, \lambda)=\Psi(0, z, \lambda)$. Therefore $\partial_{t}^{2} \Psi_{1}(0, z)=$ $-\partial_{z} X(0, z, 0) \cdot X(0, z, 0)^{-1}=\partial_{t}^{2} \Psi_{1}^{u}(0, z)$ and $\left(\partial_{t}^{4} \Psi_{1}(0, z) \cdot X(0, z, 0)\right)_{1 i}=-3 \operatorname{Res}_{\lambda=0}$ $\left\{\partial_{z}^{2} X+\partial_{z}\left(\partial_{t}^{2} \Psi_{1} \cdot X\right)+\partial_{t}^{2} \Psi_{1} \cdot \partial_{z} X+\left(\partial_{t}^{2} \Psi_{1}\right)^{2} X\right\}_{1 i} / \lambda^{2}=\left(\partial_{t}^{4} \Psi_{1}^{u}(0, z) \cdot X(0, z, 0)\right)_{1 i}$. Since $X(0, z, 0)=\left[\begin{array}{lll}* & 0 & 0 \\ * & * & * \\ * & * & *\end{array}\right]$, we have $\operatorname{det}\left(X_{i j}(0, z, 0)\right)_{2 \leq i, j \leq 3} \in R[[z]]^{\times}$. Thus $\partial_{t}^{4} \Psi_{1}(0, z)_{1 i}=\partial_{t} \Psi_{1}^{u}(0, z)_{1 i}, i=2,3$. Applying Lemmas 2.4 and 2.1 , we see that $\Psi_{1}=\Psi_{1}^{u}$ and $\Psi=\Psi^{u}$.

Proof of Theorem. Let u be defined as in $\S 0$. We set $f(z)=1 / u_{11}(2 z)$, $\alpha_{i}(z)=2 z u_{i 1}(2 z) f \quad i=2,3, \cdot a(z)= \pm \alpha_{3}(z)$ and $\gamma=\left(\alpha_{2}^{\prime}-a \alpha_{3}^{\prime}\right) / 2$. Using Theorem 1.4, we have a solution (g, A) of the Belinskii ansatz. Since u satisfies (3.1-2-3), Proposition 3.4 implies that $\Psi_{1}=-\left(W \cdot W_{-}^{-1}\right)_{0,-1}$.

If $t \partial_{t} h=-\partial_{z} \Psi_{1} \cdot h$ for $h \in \mathfrak{g l}(3, R[[t, z]])$, then $n h^{[n]}=-\partial_{z} \Psi_{1}^{[0]} h^{[n]}-$ $\Sigma_{k<n} \partial_{z} \Psi_{1}^{[n-k]} h^{[k]}$. Note that $-\partial_{z} \Psi_{1}(0, z)=\left[\begin{array}{ccc}2 & 0 & 0 \\ \alpha_{2}^{\prime} & 0 & 0 \\ \alpha_{3}^{\prime} & 0 & 0\end{array}\right]$. Therefore h is determined by $h^{[0]}$ and $h_{1 i}^{[2]} \quad i=1,2,3$. Thus we see that $h=\left[\begin{array}{cc}g+{ }^{t} A A & { }^{t} A \\ A & 1\end{array}\right]$.

Example. Let $u_{11}=1, u_{31}=2 \beta$ and $u_{21}= \pm 2 \beta^{2} x+\gamma$, with $\beta \neq 0, \gamma \in R$. Then we have

$$
\begin{aligned}
& g=\left(1+2 \beta^{2} t^{2}\right)^{-2}\left[\begin{array}{cc}
t^{2} & \gamma t^{2} \\
\gamma t^{2} & \left(1+2 \beta^{2} t^{2}\right)^{4}+\gamma^{2} t^{2}
\end{array}\right], \\
& A=2 \beta\left(1+2 \beta^{2} t^{2}\right)^{-1}\left(t^{2}, \pm 2 z\left(1+2 \beta^{2} t^{2}\right)+\gamma t^{2}\right) .
\end{aligned}
$$

References

[1] V. A. Belinskii: L-A pair of a system of coupled equations of gravitational and electromagnetic fields, JTEP Lett. 30, 1979, 28-31.
[2] V. A. Belinskii \& V. E. Zakharov: Integration of the Einstein equations by means of the inverse scattering problem technique, Sov. Phys. JETP 48, 1978, 985-994.
[3] K. Nagatomo: Formal power series solutions of the stationary axisymmetric vacuum Einstein equations, Osaka J. Math. 25, 1988, 49-70.
[4] Y. Nakamura: On a linearization of the stationary axially symmetric Einstein equations, Class. Quantum Grav. 4, 1987, 437-440.

> Department of Mathematics, Faculty of Science, Hiroshima University and
> No. 202 Takemoto haitsu, 1-7-20 Yoshijimahigashi, Nakaku Hiroshima*)

[^0]
[^0]: ${ }^{*)}$ Present address: Department of Mathematics, Faculty of Science, Hiroshima University

