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1. Introduction

In this paper we consider radially symmetric solutions to the semilinear

elliptic equation

(1.1) A u + f ( \ x \ 9 u ) = 0, xeΩ,

where Ω = {xeR"\ \x\ < 1}, n > 2, and the function /(ί, u) is assumed to be
continuous in [0, 1] x R. In order to discuss radially symmetric solutions u
= u(t\ ί = |x|, it is natural to convert equation (1.1) to the second order
ordinary differential equation

(1.2) u" + —-u' +/(ί, 11) = 0, 0 < ί < 1,

(1.3) ιι'(0) = 0.

In the present paper we establish the existence of infinitely many solutions of
equation (1.2) under the boundary conditions

(1.4) u'(0) = 0, αu(l) + bu'(l) = 0,

for any coefficients a and b. Moreover we investigate the Sobolev norms of
solutions of the problem (1.2)-(1.3) in conjunction with their zeros. We treat
the nonlinear function /(ί, s) under superlinear growth conditions and sublinear
growth conditions. In the present paper the function / is said to be superlinear
(in a neighborhood of s = ±00) if

(1.5) lims^ + 00 ί^= oo uniformly in fe[0, 1].
s

On the other hand, / is said to be sublinear (in a neighborhood of s = 0) if

(1.6) lims-+o—'—= QO uniformly in ίe[0, 1].



112 Ryuji KAJIKIYA

Equation (1.2) can be written as

(1.2)' (ί"-1 uj + tn~lf(t, u) = 0, ίe(0, 1),

and so we can treat the problem (1.2)'-(1.4) as a singular boundary value

problem for a nonlinear Sturm-Liouville equation.
In the case where /(ί, s) is superlinear and odd in s and satisfies some

growth conditions, Ambrosetti and Rabinowitz showed in [1] that equation
(1.1) with Dirichlet boundary condition possesses infinitely many solutions in
any bounded domain Ω. More precisely, they obtained an unbounded
sequence of solutions in Sobolev space HQ(Ω). See [2, 6, 8, 9, 10] for the

related results.
In the case where Ω is the unit ball and / is superlinear, the existence of

infinitely many radially symmetric solutions has been investigated by Castro -
Kurepa [4] and Struwe [11]. In fact, they treated equation (1.2) under
Dirichlet boundary condition, namely,

(1.7) u'(0) = 0, ii(l) = 0.

Then Struwe [11] proved by means of a variational method that there is an
integer fe0 such that for any k > k0 the problem (1.2)-(1.7) admits a solution
with exactly k zeros in the interval [0, 1]. On the other hand, Castro-Kurepa
[4] obtained the same results under weaker assumptions on the nonlinear term
/(ί, s) by applying so-called shooting method. In the case of n = 1 Berestycki
[3] gave similar results with the aid of bifurcation theory. As mentioned
above, many authors have dealt with equation (1.2) under Dirichlet boundary
condition (1.7) in the superlinear case. However, it seems to the author that
very little is known about the existence of infinitely many solutions of (1.2)
under the other types of boundary conditions or in the sublinear case. In the
present paper we establish the existence of infinitely many solutions under
arbitrary boundary conditions in both superlinear and sublinear cases.

On the other hand, it is an interesting problem to study the relation
between H1(Ω) norms of radially symmetric solutions and the numbers of their
zeros. Recently, the author [7] has obtained the following result for this
problem. Consider the superlinear function /(ί, s) = g(s) satisfying

(1.8) 0(0) = 0, 0'(0) = lims_0— exists
s

and

(1.9) 0<a1<g(s)/\s\p-1s<a2

for sufficiently large \s\ and some constants α l 5 a2 and 1 < p < (n + 2)/(n — 2).



Semilinear elliptic equations 113

Under appropriate additional conditions on 0, the author obtained the estimate

α iίϊl r L (P+1V(P~1) <- II u II <: r k(P+ 1)/(/»-l).1U; C1K S || U\\HtfΩ) ^ C2K

for any solution u of the problem (1.2)-(1.7) having exactly k zeros. In this
assertion condition (1.8) can not be removed so far as one employs the method
as in [7]. However, as mentioned before, the existence result of infinitely many
solutions has been obtained without assuming condition (1.8). See [4] and
[11]. Therefore in the present paper we prove the estimate (1.10) without
condition (1.8) by exploiting a new approach. It should be mentioned at this
point that the estimate (1.10) can be derived under condition (1.3) which is
weaker than (1.7). Actually, for the derivation of (1.10) we do not need any
boundary condition at the end point ί = 1.

Outline. In this paper we present four theorems. These are concerned with
the existence and the Sobolev estimates for solutions of (1.2). The first and
second theorems assert respectively that there exist infinitely many solutions of
(1.2) under boundary conditions of the form (1.4) in the sublinear and
superlinear cases. In fact, a positive integer /c0 can be found such that for any

coefficients a and b in (1.4) there exist two sequences {wfc

+}fe>fco and {w fc~}fe>k0 °f
solutions to (1.2)-(1.4) such that both u£ and wk~ have exactly k zeros in the
interval [0, 1] and wk

+(0) > 0, wfe~(0) < 0. Moreover we have

(1.11) lim^ ||u£ ||Loo(β) = 0, lim^ \\u£ \\Hl(Ω} = 0

in the sublinear case;

(1.12) lim^ \\u£ ||Loo(β) = oo, lim^ \\u£ ||flι(β) = oo

in the superlinear case, respectively.
Our third and fourth theorems may be illustrated as follows: In these

theorems the Hi(Ω) estmates for the solutions are given in terms of the
numbers of zeros of the solutions. The third theorem is concerned with the

sublinear case. More precisely, we suppose that

(1.13) 0<a1<f(t,s)/\sΓls<a2

for sufficiently small |s| and some constants α l 9 a2 and 0 < p < 1. Under some
additional conditions on /(ί, s), we obtain the estimate

(1.14) Clk-(1+pv(1~p)< \\u\\Hί(Ω}<c2k-(ί+p)/{1-rt

for any solution u of (1.2)-(1.3) with exactly k zeros. The fourth theorem is
formulated for the superlinear case. In this theorem we assume (1.13) for
sufficiently large \s\ and some constants al9 a2 and p with 1 < p < (n + 2)/
(n — 2). Then we obtain the estimate of the form
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for any solution u of (1.2)-(1.3) with exactly k zeros. This theorem improves
and extends our earlier results given in [7]. In fact, we needed to assume

condition (1.8) in [7] but do not necessitate to assume (1.8) in this paper. Also,
these two theorems provide the estimates for the Sobolev norms of solutions in

which boundary conditions at t = 1 do not affect. More precisely, all solutions

of (1.2)-(1.4) are estimated in the form (1.14) or (1.15) in terms of the Hl(Ω)

norm, although the constants cγ and c2 in (1.14) or (1.15) are independent of the
coefficients a and b in the bundary condition (1.4).

We now sketch the proofs of the above-mentioned theorems. Our main

tools for the proofs are combinations of shooting method, various a priori

estimates for the solutions and new types of Prύfer transformations. We here

employ the following Prϋfer transformation:

\u'\(1-pm+p)u' = p cos φ,

u = p sin φ,

in the sublinear case, where 0 < p < 1, and

u' = p cos φ,

| M | (P-1)/2 M = p sin φ^

<P(O) = |,

in the superlinear case, where 1 < p < (n + 2)/(n — 2). By means of this
transformation one can define new unknown functions p(t) and φ(t\ and it is
seen that these functions are well defined provided u(t) has only simple zeros in
the interval [0, 1]. We here say that a zero τ of u is a simple zero if u(τ) = 0

and u'(τ) Φ 0. We prepare several lemmas and a priori estimates for the
solutions. We can then prove that u(t) has only simple zeros, and so our

Prύfer transformations make sense. Moreover we show that for any solution
w,

(1.16) * = #{fe[0, l ] :κ(f) = 0}

if and only if

(1.17) kπ < φ(l) < (k + l)π.

That is, the value of φ(i) determines the number of zeros of u. On the other
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hand, using the Prϋfer transformation, we obtain the relation

(1-18) φ'(t] = F(t, u(t\ u'(t))>

where F is a function determined by equation (1.2) and can be written
explicitly. Integrating (1.18) over [0, 1], we have

(1.19) φ(l)-φ(0)= P F(t, u(t), u'(t)) dt.
Jo

The left-hand side represents the number of zeros of u(t) by (1.17). We apply
appropriate a priori inequalities, and so the right-hand side can be estimated in
terms of the Hl(Ω) norm of u(t). Thus we obtain the third and the fourth

theorems. The first and second theorems are obtained by applying a shooting

method together with the relation (1.19). To prove these four theorems, we

prepare four propositions, Propositions 3.1, 4.1, 5.1 and 6.1, which are crucial
for our discussions. In fact, Propositions 3.1 and 5.1 contain various a priori
estimates for the solutions of (1.2)-(1.3) in the sublinear and superlinear cases,
respectively. On the other hand, Propositions 4.1 and 6.1 give the relations

between the total number of zeros of the solution u of (1.2)-(1.3) and its value

w(0) at t = 0.
This paper is organized as follows: In Section 2, we state our main results

in Theorems 1, 2, 3 and 4 together with some examples. It turns out that the
existence of infinitely many solutions to the problem (1.2)-(1.4) is proved and

the precise estimates for the Hl(Ω) norm of the solutions are established. Our

theorems are applied to Emden-Fowler type equations. We can discuss the

existence of solutions and investigate the asymptotic distribution of the
solutions in the Sobolev space H1(Ω).

Section 3 deals with the sublinear case and several a priori inequalities are

given for the solutions. These estimates together play an important role in

proving our theorems.
Section 4 contains the proofs of Theorems 1 and 3. Here we introduce a

new Prύfer transformation to treat the sublinear case. This transformation and
the a priori estimates obtained in Section 3 are basic to our arguments in this

section.
Section 5 concerns the superlinear case and several a priori estimates for

the solutions are given.
Finally, in Section 6, we prove Theorems 2 and 4. To this end, we

introduce another Prϋfer transformation for the superlinear case. Using this
transformation and the a priori estimates obtained in Section 5, we prove

Theorems 2 and 4.
The author wishes to express his hearty thanks to Professor S. Oharu for
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valuable discussions and comments.

2. Main results and examples

We begin this section by introducing some notations and definitions which

are used in this paper. First Ω = {xeΛ": |x| < 1} is the open unit ball in

Rn. We denote by Lq(Ω\ 1 < q < oo, and by Hί(Ω) the usual Lebesgue and

Sobolev spaces, respectively. The function spaces Lq and H denote respectively

the subspaces of Lq(Ω) and H1(Ω) which consist of radially symmetric

functions. We define the norm || ||β of Lq and the norm || - ||fl of H by

\ι/β
^ dt\ , ! < 4 < o o ,

/

and

=ess. u(t)\9

l/2

respectively. Given r > 0 the symbols

and

<r}

: \\u\\H<r}

stand for the open balls centered at 0 in L°° and H, respectively. Moreover we

write S for the set of nontrivial solutions weC2(0, IJnC^O, 1] of the problem

(1.2)-(1.3). By a nontrivial solution we mean a solution u of (1.2)-(1.3) such

that u φ 0. For /ceTV, Sk denotes the set of all solutions of (1.2)-(1.3) which

have exactly k zeros in the unit interval [0, 1]. Lastly, given an integer n with

n > 2, the symbol π* means n* = oo if n = 2 and n* = (n + 2)/(n - 2) if

n > 3. In what follows, we impose one of the following two assumptions (A)
and (B) on the function /.

ASSUMPTION (A) (Sublinearity of/). The nonlinear term /is assumed to be
of the form /(ί, 5) = #(s) + /ι(ί, 5), and g(s) and /ι(ί, s) are continuous functions
satisfying the following conditions.

(Al) There exist constants 0 < p < 1, a^ > 0 and r0 > 0 such that for any
M < r ,

a1\s\p+1<sg(s)<a2\s\p+1.
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(A2) The function h satisfies the growth condition

and the convergence is uniform for ίe[0, 1].
(A3) If n > 3, g(s) also satisfies

- — ̂ -,
G(s) n-2

The above assumption is put in the sublinear case, and the next assumption is
imposed in the superlinear case.

lim sups^0 - < — -, where G(s) = g(τ) dτ.
J0

ASSUMPTION (B) (Superlinearity of/). The nonlinear term /is assumed to
be of the form /(f, s) = g(s) + /ι(ί, s), and g and h are continuous functions
satisfying the following conditions.
(Bl) There exist constants 1 < p < n*, a^ > 0 and R0 > 0 scuh that for any

(B2) The function h satisfies the growth condition

and the convergence is uniform for ίe[0, 1].
(B3) If n > 3, g(s) also satisfies

lim sups^ + „ - < — -, where G(s) = g(τ) dτ.
Jo

- — ̂ -,
G(s) n-2 o

The assumptions (A) and (B) restrict the growth order of the nonlinear
term / in a neighborhood of s = 0 and s = ± oo, respectively. These
assumptions imply that the function g is the main part of /and h is regarded as
a small perturbation of g. Under the assumption (A) or (B), we wish to employ
the so-called shooting method in order to prove the existence of infinitely many
solutions to the boundary value problem (1.2)-(1.4). Our approach may be
outlined as follows : We consider the solution u(t, γ) of the initial value

problem

(2.1) H" + ̂ — -ιι' +/(ί, H) = 0, 0 < t < 1,

(2.2)y u'(0) = 0, ιι(0) = y.

We then vary the parameter ye/? continuously and make an attempt to find
infinitely many γ for which solutions u(t, y) of the boundary value problem
(1.2)-(1.4) exist. To proceed this argument, we impose the next assumption.
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ASSUMPTION (C)r Suppose that there exists a unique and global solution

u(t) on [0, 1] of the problem (2.1)-(2.2)r

We now state our first main result which guarantees the existence of

infinitely many solutions for (1.2)-(1.4) in the sublinear case.

THEOREM 1. Suppose that assumptions (A) and (C)y are valid for sufficiently

small \y\. Then there exists a positive integer /c0 such that for any a and b with
a2 + b2^Q, there exist two sequences {uk}k>ko and {uk}k>ko of solutions to

(1.2)-(1.4) such that uk and uk have exactly k zeros in the interval [0, 1], uk(0)

>0, wfc-(0)<0,

lim^Jlt^ll^ =0 and lim^ \\u£ \\H = 0.

In the next theorem we establish the existence of infinitely many solutions

of (1.2)-(1.4) in the superlinear case

THEOREM 2. Suppose that assumptions (B) and (C)γ are valid for sufficiently
large |y |. Then there exists a positive integer k0 such that for any a and b with

a2 4- b2 φ 0, there exist two sequences {uk}k>ko and {uk}k>ko of solutions to (1.2)—
(1.4) such that uk and uk have exactly k zeros in the interval [0, 1], u k ( Q ) > 0,
wk-(0)<0,

limfc^ „ || M± || ̂  = oo and limfc^ ̂  \\ u£ \\ H = oo .

The above two theorems assert the existence of infinitely many solutions of the

boundary value problem (1.2)-(1.4). In the following two theorems we give the

estimates with respect to the H norm of solutions of (1.2)-(1.3) in terms of the
numbers of their zeros. We first deal with the sublinear case.

THEOREM 3. Suppose that assumption (A) is valid. Then there exist

constants c l 5 c2 > 0 and r > 0 such that

(2.3) Clk-(1+p)/(1-p) < \\u\\H < c2

for any ueS kn£oo(r) and any k > 1.

In the next theorem we consider the superlinear case and give the estimates
with respect to the H norm of solutions.

THEOREM 4. Suppose that assumption (B) is valid. Then there exist
constants c l 9 c2 > 0 and R > 0 such that

(2.4) Clk
(p+ί)/(p-l) < \\u\\H <

for any ueSkΓ\B(R)c and any k > 1, where B(R)C means the complement in
H'. B(R)C = H\B(R) = {uGH: \\u\\H > R}.



Semilinear elliptic equations 119

Theorem 4 extends our earlier result given in [7]. In fact, if we put
h(t, s) = 0 in assumption (B), then the main result (Theorem 3) of [7] follows
immediately from Theorem 4. Moreover, it should be mentioned that in
[7, Theorem 3] the function g(s) is assumed to satisfy 0(0) = 0 and supposed to
be differentiable at s = 0. In Theorem 4 these assumptions are removed.

REMARK 2.1. We here list some sufficient conditions for condition
(C)r In later sections, we will obtain certain a priori estimates, (3.10) or (5.9),
for the solutions of (1.2)-(1.3) under the assumptions (A) or (B),
respectively. These estimates imply that any solution of the problem (2.1)-
(2.2)y can be extended on all of the interval [0, 1]. Hence our requirements are
only local existence and uniqueness of solutions. One of them is a local
Lipschitz condition on /(ί, s) for the variable s. However this condition does
not hold in the sublinear case (1.6). Actually, from (1.6) it follows that
/(ί, 0) = 0, and so /(ί, s) is not locally Lipschitz continuous. For the sublinear
case several sufficient conditions have been investigated by Coffman and Wong
[5]. See Theorems A5, A6, A7 and Corollaries A4, A5 and A6 in the paper

[5].

REMARK 2.2. Theorems 3 and 4 do not necessarily guarantee the existence
of solutions on [0, 1] of the problem (1.2)-(1.3). These results give only the
estimates with respect to the H norm of solutions u if they exist. Sufficient
conditions for the existence of solutions are given in Theorems 1 and 2.

Next, we note that the restrictions in terms of B^r) and B(R)° can not
necessarilly be removed in Theorems 3 and 4, respectively. In fact, if we were
able to remove the restriction in terms of B^r) in Theorem 3, this theorem
would imply that any solution with many zeros in [0, 1] must have a small H
norm. But, as seen from Example 3 below, we will find a solution which has

many zeros but has a large H norm. Using the same Example 3, we can also
discuss the case of Theorem 4, too. Therefore we see that the restriction by
means of B^r) and B(R)C are essential in our discussions.

Finally, we illustrate the significance of our results by applying them to a
few typical Emden-Fowler equations. It turns out that the existence and the
asymptotic distribution of the solutions are discussed in the space H.

EXAMPLE 1 (Emden-Fowler equation). Consider the boundary value

problem

„ 1

(2.5) u" + u' + |u | p sgnu = 0, 0 < ί < 1,

(2.6) u'(0) = 0, n(l) = 0,
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where (2.5) is sublinear for 0 < p < 1 and is superlinear for 1 < p < n*. In

each case we can show that for each k > 1 the problem (2.5)-(2.6) possesses a

unique solution which has exactly k zeros in [0, 1] and satisfies u(0) > 0. If we

denote the solution by uk(t\ then

Sk = {uk,-uk} and S = {±uk:keN}.

In the superlinear case, this assertion has already been established in [7]. The

sublinear case can also be proved in the same way as in [7]. To show this, we

consider (2.5) on [0, oo) together with the initial condition,

(2.7) n'(0) = 0 and n(0) = l.

It is easy to check that equation (2.5) subject to (2.7) possesses a unique global

solution w(ί) on [0, oo). Furthermore the solution w(ί) is oscillatory, that is, it

has an unbounded sequence of zeros in the interval [0, oo). To prove this

assertion, we use the so-called Liouville transformations: For the case of n

= 2 we employ

s = logί, y(s) = u(t), f > l ,

and in the case of n > 3 we take

s = (n-2)ί"~2, y(s) = su(t), t > 0.

Then equation (2.5) is reduced to the equation of the form

y" + e2s\y\p sgn y = 0, s > 0, if n = 2

and

y" + csσ \y\p sgn y = 0, s > 0, if n > 3,

where c is a positive constant and σ = — p — 1 + 2/(n — 2). Applying

[12, p345, Theorem 4.7] in the case of n = 2 and [12, p343] in the case where

n > 3, we see that all solutions of the above equations are oscillatory hence so

is w(ί). By the same discussion as in [7] we obtain the uniqueness and
existence of uk(t). We now apply our theorems to find the asymptotic

distribution in H of the solutions of (2.5)-(2.6). If 0 < p < 1, we have

(2.8) lim^ || ιιk || „ = lim^ \\uk\\H = 0

and

(2.9) C l j t-(i+p)/d-p) < \\Uk\\H < c2k-(i+Pmι-P) for

If 1 < p < n* = (n + 2)/(n - 2), we have
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(2.10) lim^JIwJL = lim^ || uk\\H = oo

and

(2.11) C3/c(p+1)/(p-1} < \\uk\\H < C4^
+1)/(p-υ for keN.

EXAMPLE 2 (Perturbed Emden-Fowler equations). We consider the
Emden-Fowler equation with a perturbing term,

(2.12) u" + —uf + \u\p sgn u + h(t) = 0, 0 < t < 1,

(2.13) w'(0) = 0, αw(l) + few'(l) = 0,

where 1 < p < M* and /i is continuous on [0, 1]. Using our theorems, we find
an integer /c0 and two sequences {wk

+}k>ko and {w fc~} fc> fco of solutions to (2.12)-
(2.13) such that wfc

+ and uk have exactly k zeros in [0, 1], wfc

+(0) > 0, wfc~(0) < 0
and they satisfy (2.10) and (2.11).

EXAMPLE 3 (Emden-Fowler equations involving both superlinearity and
sublinearity). Finally, we treat the boundary value problem which involves
both of the superlinearity and sublinearity:

(2.14) u" + - - u' + \u\p sgn u + \u\q sgn u = 0, 0 < t < 1,

(2.15) u'(0) = 0, au(l) + bu'(\) = 0,

where 0<q<l<p<n*. Using the Liouville transformations introduced in
Example 1 and applying Theorems A5, A6 and A7 in [5], one can easily check
that the assumption (C)y is valid for every ye/?. We now apply our theorems
to this equation. Notice that the nonlinear terms in equation (2.14) are odd
functions. Therefore there exist an integer fc0 and four sequences {uk}k>ko,
{ - Uk}k>k0 [Vk}k>k0

 and { - t;k}k>ko of solutions to (2.14)-(2.15) such that uk and
υk have exactly k zeros in [0, 1], wk(0), t;k(0) > 0 and

= oo,

and

i) for fc >
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3. A priori estimates in the sublinear case

In this section we are concerned with the sublinear case and give some
basic a priori estimates of the solutions with respect to the H norm. These
results are basic to the proofs of our results. The most important one is the
following proposition.

PROPOSITION 3.1. Suppose (Al), (A2) and (A3).Then for any m > n - 1 there
exist constants Ct > 0, 1 < i < 5, and r > 0 such that

\u(t)\p+lf < C, max0i«! G(u(t))tn

< C2max0< ί < 1 ιι'(ί)2ί" <CΛ \u'\2tmdt
Jo

<C3 i \u'\2tn-ldt<cΛ G(u)tmdt
Jo Jo

< C4 Γ G(u)tn-^dt <
Jo

C5 max0<ί<1

for any

In what follows, we always make assumptions (Al), (A2) and (A3) without
further mention. By (Al) there exist constants bt > 0, 1 < i < 4, such that

(3.1) |sr 1 < b^s) < b2sg(s) < b3G(s) < b4\s\p+1

for any |s| < r0. From (A2) it follows that given ε > 0 there exists a constant
r(ε)e(0, 1) such that for \s\ < r(έ) and ίe[0, 1],

(3.2) |Λ(ί, s)|<ε|

Since (p + 3)/2 > p + 1, we infer from (3.2) that

(3.3) \sh(t, s) |<ε|s |p + 1 for \s\ < r(ε).

Further, (A3) implies that if n > 3 then there exist positive constants θ and r1

such that

(3.4) (2n-θ)G(s)>(n-2)sg(s) for M^.

We may suppose without loss of generality that r(ε) < r1 < r0 < 1 for all ε > 0.
In what follows, we denote various constants by C l 5 C2, •••, C, C" and C",

which depend on neither a solution u nor the total number of zeros of u. To
prove Proposition 3.1, we prepare several lemmas.


