Hiroshima Math. J. **21** (1991), 1–21

Discrete subgroups of convergence type of U(1, n; C)

Shigeyasu KAMIYA

(Received December 15, 1989)

Introduction

Let C be the field of complex numbers. Let $V = V^{1,n}(C)$ $(n \ge 1)$ denote the vector space C^{n+1} , together with the unitary structure defined by the Hermitian form

$$\Phi(z^*, w^*) = -\overline{z_0^*} w_0^* + \overline{z_1^*} w_1^* + \dots + \overline{z_n^*} w_n^*$$

for $z^* = (z_0^*, z_1^*, ..., z_n^*)$ and $w^* = (w_0^*, w_1^*, ..., w_n^*)$ in V. An automorphism g of V, that is, a linear bijection such that $\Phi(g(z^*), g(w^*)) = \Phi(z^*, w^*)$ for z^* , $w^* \in V$, will be called a *unitary transformation*. We denote the group of all unitary transformations by $U(1, n; \mathbb{C})$. Let $V_0 = \{z^* \in V | \Phi(z^*, z^*) = 0\}$ and $V_- = \{z^* \in V | \Phi(z^*, z^*) < 0\}$. It is clear that V_0 and V_- are invariant under $U(1, n; \mathbb{C})$. Set $V^* = V_- \cup V_0 - \{0\}$. Let $\pi: V^* \to \pi(V^*)$ be the projection map defined by $\pi(z_0^*, z_1^*, ..., z_n^*) = (z_1^* z_0^{*-1}, z_2^* z_0^{*-1}, ..., z_n^* z_0^{*-1})$. Set $H^n(\mathbb{C}) =$ $\pi(V_-)$. Let $\overline{H^n(\mathbb{C})}$ denote the closure of $H^n(\mathbb{C})$ in the projective space $\pi(V^*)$. An element g of $U(1, n; \mathbb{C})$ operates in $\pi(V^*)$, leaving $\overline{H^n(\mathbb{C})}$ invariant. Since $H^n(\mathbb{C})$ is identified with the complex unit ball $B^n = B^n(\mathbb{C}) = \{z = (z_1, z_2, ..., z_n) \in$ $\mathbb{C}^n ||z||^2 = \sum_{k=1}^n |z_k|^2 < 1\}$, we regard a unitary transformation as a transformation operating on B^n . Therefore discrete subgroups of $U(1, n; \mathbb{C})$ are considered to be generalizations of Fuchsian groups.

Our purpose in this paper is to extend results for Fuchsian groups to those for discrete subgroups of U(1, n; C).

Our work is divided into four sections. In Section 1 we consider the Laplace-Beltrami equation. We show in Theorem 1.4 the relation between the type of a discrete subgroup of U(1, n; C) and the existence of a certain automorphic function in B^n . Using this fact, we shall prove in Theorem 1.6 that if G is a discrete subgroup of convergence type, then $\sum_{g \in G} (1 - ||g(z)||)^n$ is uniformly bounded in B^n . In Section 2 we shall discuss the properties of *M*-harmonic and of *M*-subharmonic functions. Section 3 is devoted to giving sufficient conditions for a discrete subgroup to be of convergence type. In Section 4 we define a point of approximation and show in Theorem 4.6 that if a

This research was partially supported by Grant-in-Aid for Scientific Research (No. 60740101, 61740109), Ministry of Education.

discrete subgroup G is of convergence type, then the measure of the set of all points of approximation of G is equal to 0. The corresponding results for Fuchsian groups and discrete groups of Möbius transformations in higher dimensions can be found in [1] and [10].

The author wishes to express his deep gratitude to Professors M. Ohtsuka, H. Sato and H. Yamamoto for their encouragement and advice.

1. Discrete subgroups of convergence type

Throughout this paper G will always denote a discrete subgroup of U(1, n; C). First we recall the definition of a discrete subgroup of convergence type.

DEFINITION 1.1. A discrete subgroup G of U(1, n; C) is said to be of convergence type if $\sum_{a \in G} (1 - ||g(z)||)^n$ converges for some point $z \in B^n$.

We note that this definition does not depend on the choice of z (see [6; Theorem 5.1]).

For later use we shall quote criteria for a discrete subgroup to be of convergence type from [6] and [7].

THEOREM 1.2 ([6; Theorem 5.3] and [7; Theorem 3.2]). The following statements are equivalent to one another:

- (a) G is of convergence type;
- (b) $\sum_{g_m \in G} |a_{11}^{(m)}|^{-2n} < \infty$, where $g_m = (a_{ij}^{(m)})_{i,j=1,2,...,n+1}$;
- (c) $\int_0^1 (1-t)^{n-1} n(t,z) dt < \infty$, where n(t,z) is the number of elements f in G such that ||f(z)|| < t for $z \in B^n$.

Now we consider the Laplace-Beltrami operator relative to the metric $g_{ij}(z) = \delta_{ij}(1 - ||z||^2)^{-1} + \overline{z}_i z_j (1 - ||z||^2)^{-2}$ for $z = (z_1, z_2, \dots, z_n) \in B^n$. This operator is given by

$$\widetilde{\Delta} = 2(1 - \|z\|^2) \left(\sum_j \frac{\partial^2}{\partial \overline{z}_j \partial z_j} - \sum_{j,k} \overline{z}_j z_k \frac{\partial^2}{\partial \overline{z}_j \partial z_k} \right).$$

We shall show that this operator commutes with the action of all elements in U(1, n; C).

PROPOSITION 1.3. Let $\tilde{B}^n = \{(w_1, \overline{w_1}, \dots, w_n, \overline{w_n}) | \Sigma_{k=1}^n | w_k |^2 < 1\}$. If $u \in C^2(\tilde{B}^n)$, then $\tilde{\Delta}(u \circ f)(z) = \tilde{\Delta}(u(w))_{w=f(z)}$ for any element f of $U(1, n; \mathbb{C})$.

PROOF. We need to prove the following equation

Discrete subgroups of convergence type

$$(1 - ||z||^2) \{ \sum_j \overline{D}_j D_j (u \circ f)(z) - \sum_{j,k} \overline{z}_j z_k \overline{D}_j D_k (u \circ f)(z) \}$$

= $(1 - ||w||^2) \{ \sum_j \overline{D}_j^* D_j^* u(w) - \sum_{j,k} \overline{w}_j w_k \overline{D}_j^* D_k^* u(w) \},$

where $D_i = \partial/\partial z_i$, $\overline{D}_i = \partial/\partial \overline{z}_i$, $D_i^* = \partial/\partial w_i$ and $\overline{D}_i^* = \partial/\partial \overline{w}_i$. Note that

$$\overline{D}_j D_k(u \circ f) = \sum_i \left\{ \sum_h (\overline{D}_h^* D_i^* u) (\overline{D}_j \overline{f}_h) (D_k f_i) \right\}.$$

We consider the coefficients of $\overline{D}_h^* D_i^* u$ for $1 \leq h$, $i \leq n$. To prove our proposition we have only to show

$$(1 - \|z\|^2) \{ \sum_j (\overline{D}_j \overline{f}_h) (D_j f_i) - \sum_{j,k} \overline{z}_j z_k (\overline{D}_j \overline{f}_h) (D_k f_i) \} = (1 - \|w\|^2) (\delta_{hi} - \overline{w}_h w_i) .$$

Let $f = (a_{ij})_{i,j=1,2,...,n+1}$, $z^* = (1, z_1, z_2, ..., z_n)$ and $w^* = f(z^*) = (w_0^*, w_1^*, ..., w_{n+1}^*)$. Nothing that $\Phi(w^*, w^*) = \Phi(z^*, z^*)$, we have $1 - ||z||^2 = |w_0^*|^2 - |w_1^*|^2 - \cdots - |w_n^*|^2 = |w_0^*|^2(1 - ||w||^2)$. We see that

$$D_j f_h = w_0^{*-2} \{ (D_j w_h^*) w_0^* - (D_j w_0^*) w_h^* \} ,$$

$$D_j w_h^* = a_{h+1, j+1} ,$$

$$D_j w_0^* = a_{1, j+1} .$$

Using these equalities, we obtain

$$\sum_{j=1}^{n} z_j(D_j f_h) = w_0^{*-2} \{ (\sum_{j=1}^{n} a_{h+1,j+1} z_j) w_0^* - (\sum_{j=1}^{n} a_{1,j+1} z_j) w_h^* \}$$

= $w_0^{*-2} \{ (w_h^* - a_{h+1,1}) w_0^* - (w_0^* - a_{11}) w_h^* \}$
= $w_0^{*-2} (-a_{h+1,1} w_0^* + a_{11} w_h^*).$

It follows that

$$\sum_{j,k} \overline{z_j} z_k(\overline{D_j} \overline{f_h})(D_k f_i) = \{ \overline{\sum_j z_j(D_j f_h)} \} \{ \sum_k z_k(D_k f_i) \}$$
$$= |w_0^*|^{-4} (\overline{w_h^* a_{11}} - \overline{w_0^* a_{h+1,1}}) (w_i^* a_{11} - w_0^* a_{i+1,1}) .$$

To compute $\sum_{j=1}^{n} (\overline{D}_{j} \overline{f}_{h}) (D_{j} f_{i})$ we use the relations $\sum_{j=1}^{n} \overline{a_{h+1,j+1}} a_{i+1,j+1} = \delta_{hi} + \overline{a_{h+1,1}} a_{i+1,1}$, $\sum_{j=1}^{n} |a_{1,j+1}|^{2} = -1 + |a_{11}|^{2}$, $\sum_{j=1}^{n} \overline{a_{1,j+1}} a_{h+1,j+1} = \overline{a_{11}} a_{h+1,1}$ which follow from the fact $f \in U(1, n; C)$. We have

$$\sum_{j=1}^{n} (\overline{D}_{j} \overline{f}_{h}) (D_{j} f_{i}) = |w_{0}^{*}|^{-4} \{ |w_{0}^{*}|^{2} \sum_{j=1}^{n} \overline{a_{h+1,j+1}} a_{i+1,j+1} a_{i+1,j+1} + \overline{w_{h}^{*}} w_{i}^{*} \sum_{j=1}^{n} |a_{1,j+1}|^{2} - \overline{w_{0}^{*}} w_{i}^{*} \sum_{j=1}^{n} \overline{a_{h+1,j+1}} a_{1,j+1} + \overline{w_{h}^{*}} w_{0}^{*} \sum_{j=1}^{n} \overline{a_{1,j+1}} a_{i+1,j+1} \}$$

$$= |w_{0}^{*}|^{-4} \{ |w_{0}^{*}|^{2} (\delta_{hi} + \overline{a_{h+1,1}} a_{i+1,1}) + \overline{w_{h}^{*}} w_{i}^{*} (-1 + |a_{11}|^{2}) - \overline{w_{0}^{*}} w_{i}^{*} \overline{a_{h+1,1}} a_{11} - \overline{w_{h}^{*}} w_{0}^{*} \overline{a_{11}} a_{i+1,1} \} .$$

Thus

$$(1 - ||z||^2) \{ \sum_j (\overline{D}_j \overline{f}_h) (D_j f_i) - \sum_{j,k} \overline{z}_k z_j (\overline{D}_k \overline{f}_h) (D_j f_i) \}$$

= $(1 - ||z||^2) |w_0^*|^{-4} (|w_0^*|^2 \delta_{hi} - \overline{w_h^*} w_i^*)$
= $(1 - ||w||^2) (\delta_{hi} - \overline{w_h} w_i) .$

Our proposition is now proved.

Let u(t) be a positive function of t, 0 < t < 1, such that $\tilde{\Delta}u(||u||^2) = 0$, where $u(||z||^2)$ is regarded as a function of z. We shall determine u. After a little computation we obtain

$$(1-t)^{2}tu''(t) + (1-t)(n-t)u'(t) = 0$$

where $t = ||z||^2$. If $u'(t) \neq 0$, then this differential equation can be written as

$$u''(t)/u'(t) + n/t + (n-1)/(1-t) = 0$$

or

$$\frac{d}{dt} \left[\log u'(t) + n \log t - (n-1) \log (1-t) \right] = 0,$$

which gives

$$u'(t)t^{n}(1-t)^{1-n} = K$$
 (constant)

As a normalized solution, we have

$$u(t) = \int_{t}^{1} (1-s)^{n-1} s^{-n} ds$$
$$= \sum_{k=1}^{n-1} (-1)^{n-k-1} k^{-1} (1-t)^{k} t^{-k} + (-1)^{n} \log t$$

We shall show the relation between a subgroup of convergence type and the function u.

THEOREM 1.4. Let u be the function defined as above and let $\{g_0, g_1, ...\}$ be the complete list of elements of G. Then the following statements (a) and (b) are equivalent to each other:

- (a) G is of convergence type;
- (b) $\sum_{g_m \in G} u(||g_m(z)||^2)$ converges at some point z in B^n .

Furthermore, if (b) is satisfied, then the series in (b) is uniformly convergent on every compact subset in $B^n - \bigcup_{m \ge 0} g_m(0)$.

PROOF. Since

Discrete subgroups of convergence type

$$\int_{t}^{1} (1-s)^{n-1} ds \leq \int_{t}^{1} (1-s)^{n-1} s^{-n} ds$$
$$\leq \int_{t}^{1} (1-s)^{n-1} t^{-n} ds \quad \text{for} \quad t < s < 1 ,$$

we have

$$(1/n)(1 - \|g_m(z)\|^2)^n \leq u(\|g_m(z)\|^2)$$
$$\leq (1/n)\|g_m(z)\|^{-2n}(1 - \|g_m(z)\|^2)^n.$$

From these inequalities it follows that (a) and (b) are equivalent to each other.

Now we denote the ball $\{||z|| < r | 0 < r < 1\}$ by *D*. Since *G* is discontinuous in B^n , there exist an integer *N* and a real number $r_1 > r$ such that $||g_m(z)|| > r_1$ for every $z \in D$ and m > N. Hence we have

$$(1/n) \|g_m(z)\|^{-2n} (1 - \|g_m(z)\|^2)^n \leq (1/n) r_1^{-2n} (1 - \|g_m(z)\|^2)^n.$$

Thus the series in (b) is uniformly convergent on every compact subset of $B^n - \bigcup_{m \ge 0} g_m(0)$.

REMARK 1.5. When G is of convergence type, we put

$$F(z) = \sum_{g_m \in G} u(\|g_m(z)\|^2) \, .$$

Then F(g(z)) = F(z) for every element g in G.

Using the above theorem, we shall show that $\sum_{g \in G} (1 - ||g(z)||)^n$ is uniformly bounded in B^n .

THEOREM 1.6. If G is of convergence type, then $\sum_{g \in G} (1 - ||g(z)||)^n \leq K$ for $z \in B^n$, where K is a constant that does not depend on z.

To prove Theorem 1.6, we recall

LEMMA 1.7 (cf. [9; Theorem 4.3.2]). Suppose Ω is an open subset of B^n . Let u be a real-valued continuous function in $\overline{\Omega}$. If $\overline{\Delta}u = 0$ in Ω and $u \leq 0$ on $\partial\Omega$, then $u \leq 0$ in Ω .

From the proof of [6; Theorem 5.1] we obtain

LEMMA 1.8. If g is an element of U(1, n; C), then

$$1 - \|g(z)\| \leq 4(1 - \|z\|^2)^{-1}(1 - \|g(0)\|),$$

 $1 - \|g(0)\| \leq 4(1 - \|z\|^2)^{-1}(1 - \|g(z)\|)$

for $z \in B^n$.

REMARK 1.9. The latter inequality will be used later.

PROOF OF THEOREM 1.6. Using [3; Proposition 3.2.2] and the fact that G is a countable set, we see that there is a point in B^n which is not fixed by any element of G except the identity. Therefore we can find an element $h = (a_{ij})_{i,j=1,2,...,n+1}$ in U(1, n; C) such that the stabilizer $(hGh^{-1})_0$ of the origin 0 consists of only of the identity. Let z be a point in B^n and set w = h(z). Then

$$\begin{split} \sum_{g \in G} (1 - \|g(z)\|)^n \\ &= \sum_{g \in G} (1 - \|gh^{-1}(w)\|)^n \\ &= \sum_{g \in G} (1 - \|hgh^{-1}(w)\|)^n (1 - \|hgh^{-1}(w)\|)^{-n} (1 - \|gh^{-1}(w)\|)^n \\ &\leq \sum_{g \in G} (1 - \|hgh^{-1}(w)\|)^n 2^n (1 - \|hgh^{-1}(w)\|^2)^{-n} (1 - \|gh^{-1}(w)\|^2)^n \\ &= \sum_{g \in G} (1 - \|hgh^{-1}(w)\|)^n 2^n |a_{11} + a_{12}Z_1 + a_{13}Z_2 + \dots + a_{1,n+1}Z_n|^{2n} \,, \end{split}$$

where $gh^{-1}(w) = (Z_1, Z_2, Z_3, ..., Z_n) \in B^n$. We note that $|a_{11} + a_{12}Z_1 + a_{13}Z_2 + \cdots + a_{1,n+1}Z_n|^{2n}$ is bounded in B^n . Hence, if $\sum_{g \in G} (1 - ||hgh^{-1}(w)||)^n$ is uniformly bounded in B^n , then so is $\sum_{g \in G} (1 - ||g(z)||)^n$. Thus we have only to prove our theorem in the case where the stabilizer $G_0 = \{\text{identity}\}$.

We note that

$$\begin{split} \sum_{\|g(z)\| < r} (1 - \|g(z)\|)^n &= \int_0^r (1 - t)^n \, dn(t, z) \\ &= (1 - r)^n n(r, z) - n(0, z) \\ &+ n \int_0^r (1 - t)^{n-1} n(t, z) \, dt \qquad \text{for } r \in (0, 1) \, . \end{split}$$

By [6, Proposition 4.1], $(1 - r)^n n(r, z)$ is bounded. Therefore we need to prove only that $\int_0^r (1 - t)^{n-1} n(t, z) dt \leq M$ for any point z in B^n . Let $\{g_0, g_1, \ldots\}$ be the complete list of elements of G. Since G is of convergence type, we can define the function F(z) as in Remark 1.5. Set

$$F_i(z) = \sum_{m=0}^i u(\|g_m(z)\|^2),$$

where u is the function defined before Theorem 1.4. It is obvious that $F_i(z) \leq F(z)$ for any point z in B^n .

We use $d(\cdot)$ for the distance which is induced from the metric g_{ij} . Namely,

$$d(z, w) = \cosh^{-1} \left[|\Phi(z^*, w^*)| \{ \Phi(z^*, z^*) \Phi(w^*, w^*) \}^{-1/2} \right],$$

where $z^* \in \pi^{-1}(z)$ and $w^* \in \pi^{-1}(w)$.

Let Ω be an open ball with center at 0 included in the Dirichlet poly-

hedron $D_0 = \{z \in B^n | d(z, 0) < d(z, g(0)) \text{ for any element } g \text{ in } G - \{\text{identity}\}\}$ (see [6; p. 181]). Let $g_m(\Omega)$ be denoted by Ω_m . It follows from Proposition 1.3 that the function $F_i(z)$ satisfies $\tilde{\Delta}F_i = 0$ in $B^n - \bigcup_{0 \le m \le i} \Omega_m$ and $F_i(z) = 0$ on the boundary of B^n . Using Lemma 1.7 and the invariance of F(z) under G, we have

$$0 < F_i(z) \leq \max_{\zeta \in \bigcup_{0 \leq m \leq i} \partial \Omega_m} F_i(\zeta) \leq \max_{\zeta \in \bigcup_{0 \leq m \leq i} \partial \Omega_m} F(\zeta) = \max_{\zeta \in \partial \Omega} F(\zeta)$$

for $z \in B^n - \bigcup_{0 \le m \le i} \Omega_m$. Hence letting $i \to \infty$, we obtain

$$0 < F(z) \leq \max_{\zeta \in \partial \Omega} F(\zeta)$$
 for $z \in B^n - \bigcup_{m \geq 0} \Omega_m$.

Set $M_1 = \max_{\zeta \in \partial \Omega} F(\zeta)$. It follows that

$$\sum_{\|g(z)\| < r} u(\|g(z)\|^2) = \int_0^r u(t^2) \, dn(t, z)$$

= $[u(t^2)n(t, z)]_0^r + 2 \int_0^r t^{1-2n}(1-t^2)^{n-1}n(t, z) \, dt$
\ge 2 $\int_0^r (1-t)^{n-1}n(t, z) \, dt$.

Therefore it is seen that

$$\int_0^r (1-t)^{n-1} n(t,z) dt \leq M_1/2 \quad \text{for } z \in B^n - \bigcup_{m \geq 0} \Omega_m.$$

Next let z be a point in Ω . Using Lemma 1.8, we have

$$n \int_{0}^{r} (1-t)^{n-1} n(t,z) dt \leq \sum_{g \in G} (1-||g(z)||)^{n}$$
$$\leq M_{2} \sum_{g \in G} (1-||g(0)||)^{n}$$
$$\leq M_{3},$$

where M_2 depends only on the radius of Ω . Since the number n(t, z) is invariant under G and $\sum_{g \in G} (1 - ||g(z)||)^n = \sum_{g \in G} (1 - ||g(g_m^{-1}(z))||)^n < M_3$ for any $z \in \Omega_m$, the inequality $\int_0^r (1 - t)^{n-1} n(t, z) dt \leq M_3$ holds for any $z \in \Omega_m$ and hence for any $z \in (\bigcup_{m \geq 0} \Omega_m$. Thus we obtain

$$\int_0^r (1-t)^{n-1} n(t, z) \, dt \le \max \left(M_1/2, M_3/n \right) = M \qquad \text{for any } z \in B^n \, .$$

Our theorem is now proved.

2. M-harmonic functions and M-subharmonic functions

For later use we discuss the properties of *M*-harmonic and *M*-subharmonic functions. We need some definitions and notation. We denote the subgroup $\left\{ \begin{bmatrix} \alpha & 0 \\ 0 & A \end{bmatrix} \in U(1, n; C) | |\alpha| = 1, A \in U(n; C) \right\}$ of U(1, n; C) by $U(1; C) \times U(n; C)$. Let σ be the $U(1; C) \times U(n; C)$ -invariant Borel measure on ∂B^n for which $\sigma(\partial B^n) = 1$. Let Ω be a region of B^n . If a real-valued function $f \in C^2(\Omega)$ satisfies $\widetilde{\Delta}f = 0$ in Ω , then f is called an *M*-harmonic function in Ω . We have the mean value property as follows.

THEOREM 2.1 (cf. [9; Corollary 2 to Theorem 4.2.4]). An M-harmonic function f in Ω satisfies

$$f(a) = \int_{\partial B^n} f(g(r\zeta)) \, d\sigma(\zeta)$$

for each $a \in \Omega$ and r > 0 such that $g(rB^n) \subset \Omega$, where $g \in U(1, n; C)$ with g(0) = a.

Conversely, if a continuous function f in Ω satisfies this mean value property, then f is M-harmonic in Ω .

If a real-valued function f is upper semi-continuous in Ω and satisfies

$$f(a) \leq \int_{\partial B^n} f(g(r\zeta)) \, d\sigma(\zeta)$$

for each $a \in \Omega$ and r > 0 as above, instead of the equality in Theorem 2.1, then f is called an *M*-subharmonic function in Ω . In the same manner as in the proof of [5; Chapter I, Theorem 6.3], we have

THEOREM 2.2. If f is an M-subharmonic function in Ω and there is a constant K such that $\limsup_{z \to \zeta} f(z) \leq K(<\infty)$ for every $\zeta \in \partial \Omega$, then $f(z) \leq K$ in Ω .

Next we shall give the definition of K-limit. For $\alpha > 1/2$ and $\zeta \in \partial B^n$, we write $D_{\alpha}(\zeta)$ for the set of all elements $z \in B^n$ such that

$$|\Phi(z^*,\zeta^*)||\zeta_0^*|^{-1} < \alpha |\Phi(z^*,z^*)||z_0^*|^{-1},$$

where $z^* = (z_0^*, z_1^*, ..., z_n^*) \in \pi^{-1}(z)$ and $\zeta^* = (\zeta_0^*, \zeta_1^*, ..., \zeta_n^*) \in \pi^{-1}(\zeta)$. It is easy to show that $g(D_{\alpha}(\zeta)) = D_{\alpha}(g(\zeta))$ for $g \in U(1; \mathbb{C}) \times U(n; \mathbb{C})$. Set $P(z, \zeta) = \{|\zeta_0^*|^2 | \Phi(z^*, z^*)| | \Phi(z^*, \zeta^*)|^{-2}\}^n$ and $S(z, \zeta) = \{-\overline{z_0^*}\zeta_0^* \Phi(z^*, \zeta^*)^{-1}\}^n$. We call them the Poisson kernel and the Szegö kernel, respectively. We note that

$$D_{\alpha}(\zeta) = \{z \in B^n | |S(z, \zeta)| P(z, \zeta)^{-1} < \alpha^n \}.$$

DEFINITION 2.3. Suppose $\zeta \in \partial B^n$. Let f be a complex-valued function in B^n . We say that the function f has K-limit λ at ζ if $f(z_i) \to \lambda$ as $i \to \infty$ for every $\alpha > 1/2$ and for every sequence $\{z_i\}$ in $D_{\alpha}(\zeta)$ that converges to ζ . We write $(K-\lim f)(\zeta) = \lambda$.

Now we quote a theorem from [9] on the K-limit of the Poisson integral.

THEOREM 2.4 (cf. [9; Theorem 5.4.8]). If $f \in L^1(\sigma)$, then $(K-\lim \int_{\partial B^n} f(\zeta) P(z, \zeta) d\sigma(\zeta))(\zeta) = f(\zeta)$ at every Lebesgue point ζ of f.

3. Sufficient conditions for a discrete subgroup to be of convergence type

We shall give sufficient conditions for a discrete subgroup of U(1, n; C) to be of convergence type. We begin with preliminaries.

Let G be a discrete subgroup of U(1, n; C). Denote the orbit $\{g(z)|g \in G\}$ of a point $z \in B^n$ by G(z), and define the limit set L(G) of G by $L(G) = \overline{G(z)} \cap \partial B^n$. This set L(G) does not depend on the choice of z (see [3; Lemma 4.3.1]). We observe that $L(G) = \partial B^n$ or L(G) is nowhere dense on ∂B^n (see [8; p. 108]). A discrete subgroup G is said to be of the first kind if $L(G) = \partial B^n$, otherwise G is said to be of the second kind. We denote the smallest subspace containing $\pi^{-1}(L(G))$ by $\langle \pi^{-1}(L(G)) \rangle$, and set $\langle L(G) \rangle = \pi(\langle \pi^{-1}(L(G)) \rangle \cap V_{-})$.

Next we shall give the definition of $d^*(z, w)$ for $z, w \in B^n$.

DEFINITION 3.1. For z and w in $\overline{B^n}$, we define

$$d^{*}(z, w) = \{ |z_{0}^{*}|^{-1} |w_{0}^{*}|^{-1} |\Phi(z^{*}, w^{*})| \}^{1/2},$$

where $z^* = (z_0^*, z_1^*, \dots, z_n^*) \in \pi^{-1}(z)$ and $w^* = (w_0^*, w_1^*, \dots, w_n^*) \in \pi^{-1}(w)$.

It is easy to show that $d^*(z, w)$ does not depend on the choice of z^* and w^* . We shall state some properties of d^* .

Proposition 3.2.

- (a) d^* is invariant under $U(1; \mathbb{C}) \times U(n; \mathbb{C})$.
- (b) $d^*(z, w) = d^*(w, z)$ and $d^*(z, w) \leq d^*(z, x) + d^*(x, w)$ for $x, z, w \in B^n$.
- (c) If g is an element of U(1, n; C), then

$$d^{*}(g(z), g(w)) = \{(1 - \|g(z)\|^{2})(1 - \|z\|^{2})^{-1}\}^{1/4} \\ \times \{(1 - \|g(w)\|^{2})(1 - \|w\|^{2})^{-1}\}^{1/4}d^{*}(z, w)$$

for $z, w \in B^n$.

- (d) d^* is a metric on ∂B^n .
- (e) Let ζ be a point in ∂B^n and let $S(\zeta, k) = \{\eta \in \partial B^n | d^*(\zeta, \eta) < k\}$. If $g \in U(1; \mathbb{C}) \times U(n; \mathbb{C})$, then $g(S(\zeta, k)) = S(g(\zeta), k)$.

PROOF. (a) It is easy to prove this statement.

(b) The first equality is immediate. We shall show the triangle inequality. By using (a), we may assume that x = (r, 0, ..., 0), where $0 \le r \le 1$. Let $z = (z_1, z_2, ..., z_n)$ and $w = (w_1, w_2, ..., w_n)$. It is easy to see that

$$d^*(z, x)^2 = |1 - rz_1|$$
 and $d^*(x, w)^2 = |1 - rw_1|$.

Setting $\omega = \sum_{j=2}^{n} \overline{z_j} w_j$, we see that

$$\begin{split} \omega|^2 &\leq \left(\sum_{j=2}^n |z_j|^2\right) \left(\sum_{j=2}^n |w_j|^2\right) \leq (1 - |z_1|^2) (1 - |w_1|^2) \\ &\leq (1 - |rz_1|^2) (1 - |rw_1|^2) \leq 4|1 - rz_1||1 - rw_1| \,. \end{split}$$

From the above inequality it follows that

$$d^{*}(z, w)^{2} \leq |1 - \overline{z_{1}}w_{1} - \omega| \leq |1 - r\overline{z_{1}} + \overline{z_{1}}(r - w_{1}) - \omega|$$

$$\leq |1 - rz_{1}| + |r - w_{1}| + |\omega|$$

$$\leq |1 - rz_{1}| + |1 - rw_{1}| + |\omega|$$

$$\leq |1 - rz_{1}| + |1 - rw_{1}| + 2(|1 - rz_{1}||1 - rw_{1}|)^{1/2}$$

$$= \{d^{*}(z, x) + d^{*}(x, w)\}^{2}.$$

Therefore we obtain the triangle inequality.

(c) Let
$$z^* = (1, z_1, ..., z_n)$$
 and $w^* = (1, w_1, ..., w_n)$. We have
 $d^*(g(z), g(w))^2 = |\Phi(g(z)^*, g(w)^*)|$
 $= |g(z^*)_0|^{-1}|g(w^*)_0|^{-1}|\Phi(g(z^*), g(w^*))|$
 $= |g(z^*)_0|^{-1}|g(w^*)_0|^{-1}|\Phi(z^*, w^*)|$
 $= |g(z^*)_0|^{-1}|g(w^*)_0|^{-1}d^*(z, w)^2$.

From the identity $\Phi(g(z^*), g(z^*)) = \Phi(z^*, z^*)$ we derive $|g(z^*)_0|^2 (1 - ||g(z)||^2) = 1 - ||z||^2$. Hence $|g(z^*)_0|^{-1} = \{(1 - ||g(z)||^2)(1 - ||z||^2)^{-1}\}^{1/2}$. Similarly $|g(w^*)_0|^{-1} = \{(1 - ||g(w)||^2)(1 - ||w||^2)^{-1}\}^{1/2}$. Substituting these equalities in the above relation, we obtain the required equality.

(d) Let ξ and η be points in ∂B^n . It is obvious that if $\xi = \eta$, then $d^*(\xi, \eta) = 0$. Therefore we have only to prove that if $d^*(\xi, \eta) = 0$, then $\xi = \eta$. Using (a), we may assume that $\xi = (1, 0, ..., 0)$. Let $\eta = (\eta_1, \eta_2, ..., \eta_n)$. Then we see that

$$d^*(\xi, \eta) = |1 - \eta_1|^{1/2} = 0$$
.

It follows from this equality that $\eta = (1, 0, ..., 0)$. Thus $\xi = \eta$.

10

(e) Let g be an element of $U(1; C) \times U(n; C)$. By definition and (a) we have

$$x \in S(g(\zeta), k) \rightleftharpoons d^*(g(\zeta), x) < k \rightleftharpoons d^*(\zeta, g^{-1}(x)) < k$$
.

Moreover

$$d^*(\zeta, g^{-1}(x)) < k \rightleftharpoons g^{-1}(x) \in S(\zeta, x) \rightleftharpoons x \in g(S(\zeta, k)).$$

Therefore $S(g(\zeta), k) = g(S(\zeta, k))$.

Thus our proof is complete.

We shall show that each compact subset of $\overline{B^n} - L(G)$ meets only a finite number of its images under transformations of G. By considering a conjugated group, if necessary, we may assume that the stabilizer G_0 of 0 consists only of the identity. Let D_0 be the Dirichlet polyhedron for G centered at 0. We recall that D_0 is expressed as

$$\{z \in B^n | |a_{11}^{(m)} + a_{12}^{(m)} z_1 + \dots + a_{1,n+1}^{(m)} z_n| > 1 \text{ for all } g_m$$
$$= (a_{ij}^{(m)})_{i,j=1,2,\dots,n+1} \in G - \{\text{identity}\}\}$$

(see [6; p. 181]). Denote the closure of D_0 in $\overline{B^n}$ by $\overline{D_0}$.

PROPOSITION 3.3. A compact set K in $\overline{B^n} - L(G)$ is covered by a finite number of images of $\overline{D_0}$ under transformations of G.

To prove Proposition 3.3, we need a lemma.

LEMMA 3.4. Let $g = (a_{ij})_{i,j=1,2,...,n+1}$ be an element of $U(1, n; \mathbb{C})$. Let $z = (z_1, z_2, ..., z_n)$ and $w = (w_1, w_2, ..., w_n)$ be points in $\overline{B^n}$. If w = g(z), then

$$|\overline{a_{11}} - \overline{a_{21}}w_1 - \dots - \overline{a_{n+1,1}}w_n| = |a_{11} + a_{12}z_1 + \dots + a_{1,n+1}z_n|^{-1}.$$

PROOF. We first note that

$$g(0) = (a_{21}/a_{11}, a_{31}/a_{11}, \dots, a_{n+1}/a_{11}),$$
$$|a_{11}|^2 - \sum_{i=2}^{n+1} |a_{i1}|^2 = 1.$$

It follows from these relations that

$$d^{*}(g(0), g(z))^{2}/d^{*}(g(0), g(0))$$

$$= d^{*}(g(0), w)^{2}/d^{*}(g(0), g(0))$$

$$= |1 - (\overline{a_{21}/a_{11}})w_{1} - (\overline{a_{31}/a_{11}})w_{2} - \dots - (\overline{a_{n+1,1}/a_{11}})w_{n}|$$

$$\times (1 - \sum_{i=2}^{n+1} |a_{i1}/a_{11}|^{2})^{-1/2}$$

$$= |\overline{a_{11}} - \overline{a_{21}}w_{1} - \overline{a_{31}}w_{2} - \dots - \overline{a_{n+1,1}}w_{n}|.$$

On the other hand, the proof of (c) in Proposition 3.2 yields that

$$d^*(g(0), g(z))^2/d^*(g(0), g(0))$$

= $|g(z^*)_0|^{-1} = |a_{11} + a_{12}z_1 + a_{13}z_2 + \dots + a_{1,n+1}z_n|^{-1}.$

Thus we obtain our desired equality.

PROOF OF **PROPOSITION** 3.3. Let $z = (z_1, z_2, ..., z_n) \in K$ and let $w = (w_1, w_2, ..., w_n) \in \overline{D_0}$. Assume that w = g(z) for some $g = (a_{ij})_{i, j=1, 2, ..., n+1} \in G$. By Lemma 3.4,

(1)
$$|\overline{a_{11}} - \overline{a_{21}}w_1 - \dots - \overline{a_{n+1,1}}w_n|^{-1} = |a_{11} + a_{12}z_1 + \dots + a_{1,n+1}z_n| \le 1$$
.

As $K \subset \overline{B^n} - L(G)$, K contains only finitely many points of G(0). Therefore there exist an integer N and $\delta > 0$ such that $m \ge N$ implies

(2)
$$d^*(z, g_m^{-1}(0)) > \delta \quad \text{for all } z \in K.$$

Let $g_m = (a_{ij}^{(m)})_{i,j=1,2,...,n+1}$. Noting that $g_m^{-1}(0) = (-\overline{a_{12}^{(m)}/a_{11}^{(m)}}, -\overline{a_{13}^{(m)}/a_{11}^{(m)}}, ..., -\overline{a_{1,n+1}^{(m)}/a_{11}^{(m)}})$, we see that (2) is equivalent to

$$|a_{11}^{(m)} + a_{12}^{(m)}z_1 + \dots + a_{1,n+1}^{(m)}z_n| > \delta^2 |a_{11}^{(m)}|$$
 for all $m \ge N$.

It follows from [6; Theorem 5.2] and [7; Theorem 3.2] that if t > n, then $\sum_{g_m \in G} |a_{11}^{(m)}|^{-2t}$ is convergent, so $\sum_{g_m \in G} |a_{11}^{(m)} + a_{12}^{(m)}z_1 + \cdots + a_{1,n+1}^{(m)}z_n|^{-2t}$ is uniformly convergent on K. This implies that $\{g \in G | |a_{11} + a_{12}z_1 + \cdots + a_{1,n+1}z_n| < 1\}$ is a finite set. Denote this set by H. By (1), K is included in $\bigcup_{g \in H} g^{-1}(\overline{D_0})$. Thus our proof is complete.

PROPOSITION 3.5. If K_1 and K_2 are compact subsets of $\overline{B^n} - L(G)$, then $g(K_1)$ meets K_2 for at most finitely many $g \in G$.

PROOF. By Proposition 3.3 we may assume that $K_2 \subset \bigcup_{1 \le m \le h} g_m(\overline{D_0})$. Then $g(K_1)$ can meet K_2 only if $g(K_1)$ meets some $g_m(\overline{D_0})$, m = 1, 2, ..., h, that is, K_1 meets $g^{-1}(g_m(\overline{D_0}))$. Since K_1 is compact, one more application of Proposition 3.3 shows that, for each m = 1, 2, ..., h, K_1 meets $g^{-1}(g_m(\overline{D_0}))$ for only a finite number of g.

Taking $K_1 = K_2$, we have the following corollary.

COROLLARY 3.6. A compact subset of $\overline{B^n} - L(G)$ meets only a finite number of its images under transformations of G.

Now we shall consider sufficient conditions for G to be of convergence type.

THEOREM 3.7. If there is a measurable subset E of ∂B^n with $\sigma(E) > 0$ such that $E \cap g(E) = \emptyset$ for any element g in G except a finite number of elements, then G is of convergence type.

To prove Theorem 3.7, we need a lemma.

LEMMA 3.8. Let $g = (a_{ij})_{i,j=1,2,...,n+1}$ be an element of U(1, n; C) and let $\zeta = (\zeta_1, \zeta_2, ..., \zeta_n)$ be a point in ∂B^n . If f is an integrable function in ∂B^n , then

$$\int_{\partial B^n} f \, d\sigma = \int_{\partial B^n} f(g(\zeta)) |a_{11} + a_{12}\zeta_1 + \dots + a_{1,n+1}\zeta_n|^{-2n} \, d\sigma$$
$$= \int_{\partial B^n} f(g(\zeta)) |g(\zeta^*)_0/\zeta_0^*|^{-2n} \, d\sigma \,,$$

where $\zeta^* = (\zeta_0^*, \zeta_1^*, \dots, \zeta_n^*) \in \pi^{-1}(\zeta)$ and $g(\zeta^*) = (g(\zeta^*)_0, g(\zeta^*)_1, \dots, g(\zeta^*)_n)$.

PROOF. Since $g^{-1}(0) = (-\overline{a_{12}/a_{11}}, -\overline{a_{13}/a_{11}}, \dots, -\overline{a_{1,n+1}/a_{11}})$, $P(g^{-1}(0), \zeta) = |a_{11} + a_{12}\zeta_1 + \dots + a_{1,n+1}\zeta_n|^{-2n}$. Using (5) in [9; p. 45] and $g^{-1}(\partial B^n) = \partial B^n$, we see that

$$\int_{\partial B^n} f \, d\sigma = \int_{\partial B^n} f(g(\zeta)) P(g^{-1}(0), \zeta) \, d\sigma$$

=
$$\int_{\partial B^n} f(g(\zeta)) |a_{11} + a_{12}\zeta_1 + \dots + a_{1,n+1}\zeta_n|^{-2n} \, d\sigma$$

=
$$\int_{\partial B^n} f(g(\zeta)) |g(\zeta^*)_0 / \zeta_0^*|^{-2n} \, d\sigma \, .$$

PROOF OF THEOREM 3.7. Let $k = \#\{g \in G | E \cap g(E) \neq \emptyset\}$. Put $u(z) = \int_{\partial B^n} \chi_E(\zeta) P(z, \zeta) \, d\sigma(\zeta)$, where $\chi_E(\zeta)$ is the characteristic function of E. Then $u(0) = \int_{\partial B^n} \chi_E(\zeta) P(0, \zeta) \, d\sigma(\zeta) = \int_{\partial B^n} \chi_E(\zeta) \, d\sigma(\zeta) = \sigma(E)$. Using [6; Proposition 5.11, (1) and Lemma 5.12] and Lemma 3.8, we see that

$$\begin{split} u(0) &= \int_{\partial B^n} \chi_E(\zeta) P(0, \zeta) \, d\sigma(\zeta) \\ &= \int_{\partial B^n} \chi_E(\zeta) P(g(0), g(\zeta)) |\zeta_0^*/g(\zeta^*)_0|^{2n} \, d\sigma(\zeta) \\ &\leq 2^n (1 - \|g(0)\|)^{-n} \int_{\partial B^n} \chi_E(\zeta) |\zeta_0^*/g(\zeta^*)_0|^{2n} \, d\sigma(\zeta) \\ &= 2^n (1 - \|g(0)\|)^{-n} \int_{\partial B^n} \chi_E(g^{-1}(\zeta)) \, d\sigma(\zeta) \\ &= 2^n (1 - \|g(0)\|)^{-n} \int_{g(E)} d\sigma(\zeta) = 2^n (1 - \|g(0)\|)^{-n} \sigma(g(E)) \, . \end{split}$$

This implies that

$$(1 - ||g(0)||)^n \leq 2^n \sigma(E)^{-1} \sigma(g(E))$$

for any element g in G. For any point $\zeta \in \bigcup_{g \in G} g(E)$, the number $\# \{g \in G | \zeta \in g(E)\}$ is at most k. Therefore we see that

$$\begin{split} \sum_{g \in G} (1 - \|g(0)\|)^n &\leq 2^n \sigma(E)^{-1} \sum_{g \in G} \sigma(g(E)) \leq 2^n \sigma(E)^{-1} k \sigma(\bigcup_{g \in G} g(E)) \\ &\leq 2^n \sigma(E)^{-1} k \sigma(\partial B^n) < \infty \;. \end{split}$$

If G is of the second kind, then there exists a spherical cap F with $\overline{F} \subset \partial B^n - L(G)$. Since \overline{F} is compact, the number $\#\{g \in G | \overline{F} \cap g(\overline{F}) \neq \emptyset\}$ is finite by Corollary 3.6. Applying Theorem 3.7 to F in place of E yields the following result.

THEOREM 3.9. If G is of the second kind, then G is of convergence type.

We shall give an alternative proof of Theorem 3.9.

PROOF OF THEOREM 3.9. Let F be the same spherical cap defined as above. Let $g_m = (a_{ij}^{(m)})_{i,j=1,2,...,n+1}$ be an element in G. From the relation $|a_{11}^{(m)}|^2 - \sum_{j=2}^{n+1} |a_{1j}^{(m)}|^2 = 1$ we derive

$$\begin{aligned} |a_{11}^{(m)} + a_{12}^{(m)}\zeta_1 + \cdots + a_{1,n+1}^{(m)}\zeta_n| \\ &\leq |a_{11}^{(m)}| + |a_{12}^{(m)}\zeta_1 + \cdots + a_{1,n+1}^{(m)}\zeta_n| \\ &\leq |a_{11}^{(m)}| + (\sum_{j=2}^{n+1} |a_{1j}^{(m)}|^2)^{1/2} (\sum_{j=1}^n |\zeta_j|^2)^{1/2} \\ &= |a_{11}^{(m)}| + (|a_{11}^{(m)}|^2 - 1)^{1/2} \leq 2|a_{11}^{(m)}|. \end{aligned}$$

Lemma 3.8 together with this inequality yields

$$\begin{split} \infty &> \sum_{g_m \in G} \int_{g_m(F)} d\sigma \\ &= \sum_{g_m \in G} \int_F |a_{11}^{(m)} + a_{12}^{(m)} \zeta_1 + \dots + a_{1,n+1}^{(m)} \zeta_n|^{-2n} d\sigma \\ &\ge (1/2)^{2n} \sum_{g_m \in G} \int_F |a_{11}^{(m)}|^{-2n} d\sigma \\ &= (1/2)^{2n} \sigma(F) \sum_{g_m \in G} |a_{11}^{(m)}|^{-2n} . \end{split}$$

Hence the series $\sum_{g_m \in G} |a_{11}^{(m)}|^{-2n}$ converges. Thus G is of convergence type by Theorem 1.2.

14

THEOREM 3.10. If one of the following conditions is satisfied, then G is of convergence type.

- (a) There exists a non-constant bounded M-harmonic function on B^n/G .
- (b) There exists a G-invariant measurable subset $E \subset \partial B^n$ with $0 < \sigma(E) < 1$.
- (c) The orbit G(p) of a point $p \in B^n$ is included in the set $\{z = (z_1, z_2, ..., z_{i-1}, b, z_{i+1}, ..., z_n) \in B^n\}$ for some $b \in C$.
- (d) $\langle L(G) \rangle$ is not identical with B^n .

PROOF. (a) As observed in the beginning of the proof of Theorem 1.6 there exists $h \in U(1, n; C)$ such that $g(0) \neq 0$ for any $g \in hGh^{-1} - \{\text{identity}\}$. Since G and hGh^{-1} are of the same type by [6; Theorem 5.9], we may assume $g(0) \neq 0$ for any $g \in G - \{\text{identity}\}$. Let $\{g_0, g_1, \ldots\}$ be the complete list of elements of G. Suppose that there exists a non-constant bounded M-harmonic function on B^n/G . Let p be a point of B^n/G . In the same manner as in the proof of [4; Theorem IV. 3.7], we obtain a positive function H on $B^n/G - \{p\}$ which corresponds to a Green's function for a Riemann surface. The function H has the following properties:

- 1) *H* is *M*-harmonic in $B^n/G \{p\}$;
- 2) $H(w) u(||w||^2)$ is *M*-harmonic in a neighborhood of *p*, where *u* is the function defined before Theorem 1.4 and *w* is a local parameter vanishing at *p*.

Using the inverse mapping π^{-1} , we can construct a positive G-automorphic function h(z) in B^n with the following properties:

- 3) h(z) is M-harmonic in $B^n \bigcup_{m \ge 0} g_m(0)$;
- 4) $h(z) u(||g_m^{-1}(z)||^2)$ is M-harmonic in each neighborhood of $g_m(0)$ for $m \ge 0$.

Let $F_i(z)$ be the function defined in the proof of Theorem 1.6. It follows that $\widetilde{\Delta}(F_i(z) - h(z)) = 0$ in $B^n - \bigcup_{m>i} g_m^{-1}(0)$ and $\limsup_{z \to \zeta} (F_i(z) - h(z)) \leq 0$ for $\zeta \in \partial B^n \cup \bigcup_{m>i} g_m^{-1}(0)$. By Theorem 2.2, $F_i(z) \leq h(z)$ in B^n . Therefore $\sum_{m=0}^{\infty} u(\|g_m(z)\|^2)$ is convergent. From Theorem 1.4 it follows that G is of convergence type.

(b) Assume that there is a G-invariant measurable subset $E \subset \partial B^n$ with $0 < \sigma(E) < 1$ and that G is not of convergence type. Set

$$v(z) = \int_{\partial B^n} \chi_E(\zeta) P(z,\zeta) \, d\sigma(\zeta) \,,$$

where $\chi_E(\zeta)$ is the characteristic function of *E* and $P(z, \zeta)$ is the Poisson kernel. Then $0 \leq v(z) \leq 1$ in B^n .

Let 0 < r < 1 and let h be an element of U(1, n; C). By using Fubini's theorem and [6; Proposition 5.11, (2), (3) and (4)], we see that

$$\begin{split} \int_{\partial B^n} v(h(r\zeta)) \, d\sigma(\zeta) &= \int_{\partial B^n} \left\{ \int_{\partial B^n} \chi_E(\eta) P(h(r\zeta), \eta) \, d\sigma(\eta) \right\} \, d\sigma(\zeta) \\ &= \int_{\partial B^n} \chi_E(\eta) \left\{ \int_{\partial B^n} P(h(r\zeta), \eta) \, d\sigma(\zeta) \right\} \, d\sigma(\eta) \\ &= \int_{\partial B^n} \chi_E(\eta) \left\{ \int_{\partial B^n} P(r\zeta, h^{-1}(\eta)) P(h(0), \eta) \, d\sigma(\zeta) \right\} \, d\sigma(\eta) \\ &= \int_{\partial B^n} \chi_E(\eta) P(h(0), \eta) \left\{ \int_{\partial B^n} P(r\zeta, h^{-1}(\eta)) \, d\sigma(\zeta) \right\} \, d\sigma(\eta) \\ &= \int_{\partial B^n} \chi_E(\eta) P(h(0), \eta) \left\{ \int_{\partial B^n} P(rh^{-1}(\eta), \zeta) \, d\sigma(\zeta) \right\} \, d\sigma(\eta) \\ &= \int_{\partial B^n} \chi_E(\eta) P(h(0), \eta) \, d\sigma(\eta) = v(h(0)) \, . \end{split}$$

By Theorem 2.1, v(z) is *M*-harmonic in B^n . It follows from Lemma 3.8 that for any element $g \in G$

$$\begin{aligned} v(g(z)) &= \int_{\partial B^n} \chi_E(\zeta) P(g(z), \zeta) \, d\sigma(\zeta) \\ &= \int_{\partial B^n} \chi_E(g(\zeta)) P(g(z), g(\zeta)) |\zeta_0^*/g(\zeta^*)_0|^{2n} \, d\sigma(\zeta) \\ &= \int_{\partial B^n} \chi_E(g(\zeta)) |\zeta_0^*/g(\zeta^*)_0|^{2n} P(z, \zeta) |g(\zeta^*)_0/\zeta_0^*|^{2n} \, d\sigma(\zeta) \\ &= \int_{g^{-1}(E)} P(z, \zeta) \, d\sigma(\zeta) = \int_E P(z, \zeta) \, d\sigma(\zeta) = v(z), \end{aligned}$$

where $\zeta^* = (\zeta_0^*, \zeta_1^*, ..., \zeta_n^*) \in \pi^{-1}(\zeta)$ and $g(\zeta^*) = (g(\zeta^*)_0, g(\zeta^*)_1, ..., g(\zeta^*)_n) \in \pi^{-1}(g(\zeta))$. Therefore we can regard v(z) as a bounded *M*-harmonic function on B^n/G . By (a), v(z) is constant. Moreover we know from Theorem 2.4 and [9; Theorem 5.3.1] that (K-lim v)(ζ) = 1 at a point ζ of *E*. Hence $v(z) \equiv 1$. Thus we obtain

$$1 = v(0) = \int_E P(0, \zeta) \, d\sigma(\zeta) = \int_E d\sigma(\zeta) = \sigma(E) \, ,$$

which is a contradiction. Thus we see that (b) is a sufficient condition for G to be of convergence type.

(c) Noting that $L(G) = \overline{G(p)} \cap \partial B^n \subset \{\zeta = (\zeta_1, \zeta_2, \dots, \zeta_{i-1}, b, \zeta_{i+1}, \dots, \zeta_n) \in \partial B^n\}$, we see that there is an open set $E \subset \partial B^n - L(G)$ with $\sigma(E) > 0$. Hence G

is of the second kind. From Theorem 3.9 it follows that G is of convergence type.

(d) Let dim $\langle L(G) \rangle = s$. If s = 0, then G is of the second kind and hence G is of convergence type by Theorem 3.9. As the limit set L(G) is G-invariant, every element of G leaves $\langle L(G) \rangle$ invariant. If 0 < s < n, then we may assume that an element of G has the following form:

$$g = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix},$$

where $A \in U(1, s; \mathbb{C})$ and $B \in U(n - s; \mathbb{C})$. Therefore the restriction of G to $\langle L(G) \rangle$ may be regarded as a discrete subgroup of $U(1, s; \mathbb{C})$. By [6; Theorem 5.2), $\sum_{g \in G} (1 - ||g(z)||)^{s+1} < \infty$ for any $z \in \langle L(G) \rangle$. It follows that $\sum_{g \in G} (1 - ||g(z)||)^n < \infty$ and thus G is of convergence type.

Thus our theorem is completely proved.

In the same manner as in (d) we can prove

THEOREM 3.11. Let Γ be a Fuchsian group keeping $\{z | |z| < 1\}$ invariant and let $\{\gamma_0, \gamma_1, \ldots\}$ be the complete list of elements of Γ . We consider a correspondence between an element γ_i of Γ and an element g_i of $U(1, n; \mathbb{C})$ with $n \ge 2$ as follows:

where $|a_i|^2 - |c_i|^2 = 1$. Denote the group consisting of g_0, g_1, \dots by G. Then G is a discrete subgroup of convergence type in U(1, n; C).

4. Set of points of approximation

In this section we shall discuss the measure of the set of points of approximation of G.

We define a point of approximation (cf. [2; p. 261]).

DEFINITION 4.1. Let ζ be a point in the limit set of G. If there exist a sequence $\{g_m\}$ of distinct elements of G and a region $D_{\alpha}(\zeta)$ defined as in Section 2 such that $g_m(0) \in D_{\alpha}(\zeta)$ and $g_m(0) \to \zeta$, then the point ζ is called a *point of*

approximation. We denote the set of all points of approximation of G by $L_D(G)$.

We shall show that the origin 0 is replaced by any point $z \in B^n$.

PROPOSITION 4.2. Let ζ be a point of approximation of G. Let $\{g_m\}$ be the same sequence of elements of G as in Definition 4.1. For any point z in B^n , there exists a region $D_{\beta}(\zeta)$ such that $g_m(z) \to \zeta$ in $D_{\beta}(\zeta)$.

To prove Proposition 4.2, we need a lemma. By the aid of Lemma 1.8 we obtain

LEMMA 4.3. If g is an element of
$$U(1, n; C)$$
, then
 $(1 - \|g(0)\|^2) (1 - \|g(z)\|^2)^{-1} \leq 8(1 - \|z\|^2)^{-1}$ for $z \in B^n$.

PROOF OF PROPOSITION 4.2. First express $D_{\alpha}(\zeta)$ as $\{z \in B^n | d^*(z, \zeta)^2 < \alpha d^*(z, z)^2\}$. Use (c) in Proposition 3.2 to yield

$$d^{*}(g_{m}(z), \zeta)/d^{*}(g_{m}(z), g_{m}(z))$$

$$\leq \{d^{*}(g_{m}(z), g_{m}(0)) + d^{*}(g_{m}(0), \zeta)\}/d^{*}(g_{m}(z), g_{m}(z))$$

$$= [\{(1 - \|g_{m}(z)\|^{2})(1 - \|z\|^{2})^{-1}(1 - \|g_{m}(0)\|^{2})\}^{1/4}d^{*}(z, 0)$$

$$+ d^{*}(g_{m}(0), \zeta)](1 - \|g_{m}(z)\|^{2})^{-1/2}$$

$$= \{(1 - \|g_{m}(z)\|^{2})^{-1}(1 - \|g_{m}(0)\|^{2})(1 - \|z\|^{2})^{-1}\}^{1/4}$$

$$+ (1 - \|g_{m}(z)\|^{2})^{-1/2}d^{*}(g_{m}(0), \zeta).$$

Since $g_m(0) \in D_{\alpha}(\zeta)$,

$$d^*(g_m(0), \zeta) < \alpha^{1/2} d^*(g_m(0), g_m(0)) = \alpha^{1/2} (1 - \|g_m(0)\|^2)^{1/2}.$$

It follows from the above inequality and Lemma 4.3 that

$$\begin{split} d^*(g_m(z),\zeta)/d^*(g_m(z),g_m(z)) &\leq \{(1-\|g_m(z)\|^2)^{-1}(1-\|g_m(0)\|^2)\}^{1/4}(1-\|z\|^2)^{-1/4} \\ &\quad + (1-\|g_m(z)\|^2)^{-1/2}\alpha^{1/2}(1-\|g_m(0)\|^2)^{1/2} \\ &\leq 8^{1/4}(1-\|z\|^2)^{-1/2} + \{8\alpha(1-\|z\|^2)^{-1}\}^{1/2} < \beta^{1/2} \;, \end{split}$$

where β is a constant depending only on z. Thus we see that $g_m(z) \to \zeta$ in $D_{\beta}(\zeta)$.

REMARK 4.4. Let g be an element of U(1, n; C) which is not the identity. We shall call g loxodromic if it has exactly two fixed points and they lie on ∂B^n , and g parabolic if it has one fixed point and this lies on ∂B^n . Every loxodromic fixed point of G is a point of approximation. There is a parabolic fixed point which is not a point of approximation.

PROPOSITION 4.5. The set $L_D(G)$ is G-invariant.

PROOF. Let $\zeta = (\zeta_1, \zeta_2, ..., \zeta_n)$ be a point of approximation of G. Then there exists a sequence $\{g_m\}$ of elements of G such that each $g_m(z)$ lies in $D_{\alpha}(\zeta)$ for some $\alpha > 1/2$ and some point z of B^n . We denote $g_m(z)$ by $W_m = ((W_m)_1, (W_m)_2, ..., (W_m)_n)$. Let $g = (a_{ij})_{i,j=1,2,...,n+1}$ be an element of G.

We shall show that $g(\zeta)$ is contained in $L_D(G)$. We have only to prove that there exists a positive number $\beta > 1/2$ such that all $g(W_m)$ lie in $D_\beta(g(\zeta))$. Using that $W_m \in D_\alpha(\zeta)$, we see that

$$\begin{aligned} d^*(g(W_m), g(\zeta))^2 / d^*(g(W_m), g(W_m))^2 \\ &= |\Phi(g(W_m)^*, g(\zeta)^*)| |g(\zeta)_0^*|^{-1} |\Phi(g(W_m)^*, g(W_m)^*)|^{-1} |g(W_m)_0^*| \\ &= |\Phi(g(W_m^*), g(\zeta^*))| |g(W_m)_0^*| |g(W_m^*)_0|^{-1} |g(\zeta)_0^*| |g(\zeta^*)_0|^{-1} |g(\zeta)_0^*|^{-1} \\ &\times |\Phi(g(W_m^*), g(W_m^*))|^{-1} |g(W_m)_0^*|^{-2} |g(W_m^*)_0|^2 |g(W_m)_0^*| \\ &= \{ |\Phi(W_m^*, \zeta^*)| |\zeta_0^*|^{-1} |\Phi(W_m^*, W_m^*)|^{-1} |(W_m^*)_0| \} \{ |g(W_m^*)_0| |(W_m^*)_0|^{-1} \} \\ &\times \{ |g(\zeta^*)_0|^{-1} |\zeta_0^*| \} \\ &< \alpha |a_{11} + \sum_{j=2}^{n+1} a_{1j}(W_m)_{j-1} | |a_{11} + \sum_{j=2}^{n+1} a_{1j}\zeta_{j-1} |^{-1} , \\ \end{aligned}$$
where $W_m^* = ((W_m)_0^*, (W_m)_1^*, \dots, (W_m)_n^*) \in \pi^{-1}(W_m).$ It is seen that

$$\begin{aligned} |a_{11} + \sum_{j=2}^{n+1} a_{1j} \zeta_{j-1}| &\ge |a_{11}| - |\sum_{j=2}^{n+1} a_{1j} \zeta_{j-1}| \\ &\ge |a_{11}| - (\sum_{j=2}^{n+1} |a_{1j}|^2)^{1/2} (\sum_{j=1}^{n} |\zeta_j|^2)^{1/2} \\ &= |a_{11}| - (|a_{11}|^2 - 1)^{1/2} > 0 \;. \end{aligned}$$

Therefore we have that $|a_{11} + \sum_{j=2}^{n+1} a_{1j} (W_m)_{j-1}| |a_{11} + \sum_{j=2}^{n+1} a_{1j} \zeta_{j-1}|^{-1}$ is bounded in B^n . This implies that there exists $\beta > 1/2$ such that

$$d^*(g(W_m), g(\zeta))^2/d^*(g(W_m), g(W_m))^2 < \beta$$
.

Thus $g(\zeta) \in L_D(G)$ and our proof is complete.

THEOREM 4.6. If G is of convergence type, then $\sigma(L_D(G)) = 0$.

Before proving our theorem, we prepare a lemma.

LEMMA 4.7 ([9; Proposition 5.1.4]). Let I = (1, 0, ..., 0). If n = 1, then $\sigma(S(I, t))/t^{2n}$ decreases from 1/2 to $1/\pi$ as t decreases from $\sqrt{2}$ to 0. If n > 1,

then $\sigma(S(I, t))/t^{2n}$ increases from 2^{-n} to a finite limit $(1/4)\Gamma(n+1)/\Gamma^2(n/2+1)$ as t decreases from $\sqrt{2}$ to 0.

PROOF OF THEOREM 4.6. Given $z \in B^n$ we denote the orbit G(z) of z by $\{a_k\}$. Let $\zeta = (\zeta_1, \zeta_2, \ldots, \zeta_n)$ be in $L_D(G)$. Then for some $\alpha > 1/2$ there exists a subsequence $\{a_{k_v}\}$ of $\{a_k\}$, $a_k \neq 0$, in $D_{\alpha}(\zeta)$ such that $a_{k_v} \to \zeta$ as $k_v \to \infty$. Writing $a_{k_v} = ((a_{k_v})_1, (a_{k_v})_2, \ldots, (a_{k_v})_n)$, we see that

$$d^{*}(a_{k_{v}}/||a_{k_{v}}||, \zeta)^{2} = ||a_{k_{v}}||^{-1}|-||a_{k_{v}}|| + \sum_{j=1}^{n} \overline{(a_{k_{v}})_{j}}\zeta_{j}|$$

$$\leq ||a_{k_{v}}||^{-1}\{(1-||a_{k_{v}}||)+|1-\sum_{j=1}^{n} \overline{(a_{k_{v}})_{j}}\zeta_{j}|\}$$

$$\leq ||a_{k_{v}}||^{-1}\{(1-||a_{k_{v}}||)+\alpha(1-||a_{k_{v}}||)^{2}\}$$

$$\leq (1+2\alpha)||a_{k_{v}}||^{-1}(1-||a_{k_{v}}||).$$

Let

$$S_{\alpha}(a_k) = \left\{ \eta \in \partial B^n | d^*(a_k/||a_k||, \eta) < [(1+2\alpha)||a_k||^{-1}(1-||a_k||)]^{1/2} \right\}.$$

It is seen that

$$L_D(G) \subset \bigcup_{\alpha>0} (\limsup_{k\to\infty} S_\alpha(a_k)).$$

Using Lemma 4.7, we have $\sigma(S_{\alpha}(a_k)) \leq M(1 - ||a_k||)^n$ except for finitely many a_k 's, where M is a constant depending only on n and α . Since G is of convergence type, given $\varepsilon > 0$ there exists a positive integer k_0 such that

$$\sum_{k>k_0} \sigma(S_{\alpha}(a_k)) \leq M \sum_{k>k_0} (1 - ||a_k||)^n < M\varepsilon.$$

Therefore it follows that

$$\sigma(\limsup_{k\to\infty} S_{\alpha}(a_k)) = 0.$$

Noting that $S_{\beta}(a_k) \supset S_{\alpha}(a_k)$ for $\beta > \alpha$, we see that $\bigcup_{\alpha > 0} (\limsup_{k \to \infty} S_{\alpha}(a_k))$ can be expressed as a countable union of null sets. Thus $\sigma(L_D(G)) = 0$.

Combining Theorem 4.6 with Proposition 4.5 and (b) in Theorem 3.10, we obtain

THEOREM 4.8. The measure $\sigma(L_D(G))$ is either 0 or 1.

THEOREM 4.9. If $\sigma(L_D(G)) > 0$, then $L(G) = \partial B^n$.

PROOF. It follows from Theorem 4.8 that $\sigma(L_D(G)) = 1$. By Theorem 4.6, G is not of convergence type. Using Theorem 3.9, we see that G is of the first kind. Thus $L(G) = \partial B^n$.

References

- L. V. Ahlfors, Möbius transformations in several dimensions, School of Mathematics, University of Minnesota, Minnesota, 1981.
- [2] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer, New York, Heidelberg, Berlin, 1983.
- [3] S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to Analysis, Academic Press, New York, (1974), 49–87.
- [4] H. M. Farkas and I. Kra, Riemann surfaces, Graduate Texts in Mathematics 71, Springer, New York, Heidelberg, Berlin, 1980.
- [5] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- [6] S. Kamiya, On subgroups of convergence or divergence type of U(1, n; C), Math.
 J. Okayama Univ. 26 (1984), 179-191.
- [7] S. Kamiya, On some series associated with discrete subgroups of U(1, n; C), Math. J. Okayama Univ. 26 (1984), 193-197.
- [8] J. Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, 1964.
- [9] W. Rudin, Function theory in the unit ball of Cⁿ, Springer, New York, Heidelberg, Berlin, 1980.
- [10] M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.

Department of Mechanical Science, Okayama University of Science