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A spectrum whose U/^-homology is
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§ 1. Introduction

For each prime p, we have the Brown-Peterson spectrum BP whose
coefficient is the polynomial ring BP^ = Zip)[vl9 v2,~

r\ over Hazewinkel's
generators vt with \vi\=2pi — 2. This has the invariant prime ideals In

= (p, Vxi-'iVn-i) for n > — 1, where / _ ! = (0) and / 0 = (p). Then the Toda-
Smith spectrum V(n) is the finite ring spectrum characterized by

for n > — 1. Once we know the existence of this spectrum, we can construct a
family of nontrivial elements of the homotopy groups n^S of the sphere
spectrum S, which are known as the Greek letter elements. The existence of
the spectrum V(n) is known only for n < 4. In this case V(n) exists if and only
if the prime p is greater than In. It seems that F(4) exists for a large prime p,
but still now we have no way to prove it. We so consider a similar spectrum
Wk(ri) defined by

as a tfi^BP-comodule subalgebra of BP+BP/IH+1 = {BPJIH+1)[tl9t29—].
Then V(4) = W0(4). If Wk(ri) does not exist for some fe, neither does V(n).
However by computing obstructions we obtain the existence of Wk(4) for k > 1
at a prime p > 1 in [6], and in this paper we prove the following

THEOREM. Let p be a prime number greater than 7. Then Wx(4) exists.

In §2 we recall Ravenel's ring spectra T(k) and show the following

PROPOSITION. Let p be any prime and k and n non-negative integers with
k>n. Then there exists a T(k)-module spectrum Wk(ri).

In §§3-4 we compute the differentials of the Adams-Novikov spectral
sequence for the spectrum J^(3) and show the above theorem.

§2. Wk(n)

Let p denote an odd prime number and S be the sphere spectrum. The
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Brown-Peterson spectrum BP is a commutative ring spectrum with the
structure maps r. S^>BP and \i\ BP A BP->BP and gives rise to the
homology theory with the coefficient ring

with \vt\ = 2pi - 2. The tfP^-homology of BP is the polynomial

with \tt\ = 2pl — 2. Besides BP^BP becomes a Hopf algebroid over BP+ from
the ring spectrum BP by a standard argument (cf. [1]).

In [3, p. 369], Ravenel gives a spectrum T(k) for each A; > 0 with

as a comodule algebra over BP^BP ([2]). Since there is a ( 2 p k + 1 - 3 ) -
equivalence T(k)^BP, we see that

(2.1) T\k)t = Z{p)lvu-.,Vk] 0 KerCn/c)* — BPJ.

Let /„ = (p, t>i,•••>*;„_!) denote the invariant prime ideal of BP+. Then we
consider the Toda-Smith spectrum V(ri) for each n > — 1 defined by

On the existence of the spectrum K(n), we have results only for the cases n < 3,
which state that V(n) exists if and only if the prime p > 2n + 1
(c/. [7], [8], [5]). We define a spectrum W£(n) for k > 0 and n > - 1 to be the
one with

as a comodule subalgebra of BP^BP/In + 1. Note that Wk(- 1) = T(fc). The
spectrum W£(n) exists if n < 3 and the prime /? > 2n + 1. In fact, put Wk{n)
= T(fc) A V(ri). In [2, Prop. 1.4.3] Hopkins shows that T(k) A T(k) is homo-
topic to T(k) A B(fe) for the Moore spectrum B(k) for the ring
z[!i9'~>tkl> Similar results hold for Wk(n):

LEMMA 2.2. Let k and I be fixed non-negative integers and suppose that

there exist spectra Wk(ri) for integers k and n with I > n and maps rjn+1: Wk(n)

-> wk(n) for l>n such that Wk(n + 1) is a cofiber ofrjn+1. Then T(k) A Wk(n) is

homo topic to Wk(ri) A B(k) for I > n. Furthermore Wk(ri) for each k>n is a

T(k)-module spectrum.

PROOF. Let sk: T(fc) A T(k) -> T{k) A B(k) be the homotopy equivalence.
Then we define a map skn: Wk(n) A £(£)-• T(k) A Wk(n) by the composition
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(lik A l ) ^ 1 A l)(ik A 1 A 1)(1 A T), where T: Wk{n) A B(k)-+B(k) A WJ(H) is
the switching map and fik: T(k) A T{k) -> T{k) and ik: S -• T(k) are the structure
maps of the ring spectrum T(k). Then we have the commutative diagram

Wk(n) A B(k) ^ ^ i Wk(n) A B(k) > Wk(n + 1) A B(k)

Sk,n\ Sk,n\ Sic, n + 1

T(k) A Wk(n) ̂ ^ i T(k) A Wk(n) • T(k) A Wk(n + 1)

by the definition of the map skfH. Notice that sk_1 = sk
1. Then we

inductively obtain from the five lemma that sk>n for n < I are all homotopy
equivalences. We denote the inverse of skn by tkn. Note here that there exist
maps i: S-+B(k) and j : B(k)^>S of degree 0 such that ji= 1. Suppose next
that q>n = (1 Aj)tKn(ik A 1): Wk(ri)^> Wk(n) is a homotopy equivalence, and we
also see that (pn+1 = ( 1 ̂  j)tkfn+i(ik A 1) is a homotopy equivalence. Since
(p_x = (1 Aj)sk(ik A 1) = 1, the induction shows that every cpn for n < I is a
homotopy equivalence. Define vk n : T(k) A Wk(ri)^> Wk(n) by the composition
(1 A j)(cp~x A \)tkn. Then we see that vktH(ik A 1) = 1 and both vkn(nk A 1)
and vkn(l A vkn) turn out to be the same map 1 A j A j . These imply that
Wk(ri) is a T(fe)-module spectrum with structure map vkn. q.e.d.

Suppose that integers k and n satisfy the inequality k > n. Then
t;n+1eT(fc)s|e by (2.1), and so we define the map rjn+1\ Wk(ri)^> Wk(n) of Lemma
2.2 inductively by the composition rjn+1 = vkn(vn+1 A 1): Wk(n) = S A Wk{n)
-> T(fc) A Wk(n) -> Wk(n). Hence we have

PROPOSITION 2.3. Let n and k be non-negative integers such that
n <k. Then there exists a T(k)-module spectrum Wk(n).

§3. Cobar complexes

Let (A, F) denote a Hopf algebroid over a commutative ring K. Then it is
a pair of X-algebras A and F provided with structure maps, which are a left
and a right units rjL, rjR: A^F, a coproduct A: F^>F®AF, a counit e: F
-> A, and a conjugation c: F^F, with the relations srjL = £7/R = 1A, ( l r ® e)A
= (e®lr)A = ln (lr®A)A=(A®lr)A,crjR = rjL, crjL = rjR, and cc
= l r . A fe/7 F-comodule M is defined to be a left ^-module together with a
left A-linear map ̂ M'-^T®AM such that (e ® 1 M ) ^M = 1M a n d (^ ® ̂ M)^M
= ( l r (g )^ M )^ M . A ngfA/ F-comodule is similarly defined. The cotensor

product M • r N of a right and a left /"-comodules M and iV is the kernel of the
X-module map \j/M ® \N — 1M® il/N: M (£)AN-+M (x)^.T(x)^JV. For a left
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^-module N, consider the map \j/ = (A ®lN): F®AN -+ F(g)A(F®AN), and
we obtain a left /"-comodule F®AN with the structure map i//. We call this
an extended comodule (cf. [5, Appendix A]).

From here on we assume that F is ,4-flat. Then it is well known that the
category of /"-comodules has enough injectives. We denote the sth right
derived functor of Homr(M, )(resp. M D r ) f o r a left (resp. right) /"-comodule
M by Exts

r(M,) (resp. Cotors
r(M,)). We note here that Exts

r(A, M) =
Cotors

r(A, M), since we see that Homr(A, M) = A \Z\rM by definition. By
virtue of this we shall not distinguish these groups hereafter. We call / weak
(r-)injective if Extsr(,4, /) = 0 for s > 0. Let 0->M ->J° - • J 1 -• • • be an
exact sequence with I1 weak injective for i > 0. This is said to be a weak
(F-) injective resolution. Then this sequence splits into short ones 0-+K1-*/'
->Xl + 1->0 and the Ext group satisfies Ext^A, Ki+1) = Ext5/1 (A, Kl) for
s > 0 and 0 -• Ext°r(A, Kl) -• Ex#(,4, P) -+ Ext°r(A, Ki+1)-^ Ext^A, Kl) -+ 0 to
be exact. Therefore we compute Extf(A, M) for a T-comodule M from a weak
injective resolution as well as a injective one. For an A-free /"-comodule M,
we call a resolution O-^M-*/0-*/1-*--- good if I1 is an A-free extended
comodule. Since an extended comodule E is weak injective, a good resolution
is a weak injective resolution.

As an example of a good resolution for an A-free comodule M, we have the
cobar resolution 0 - • M - • D°rM - • Dx

rM - • • • • defined by Ds
rM = r®s+1®AM

with differential ds: Ds
rM^Ds^lM such that ds(x ® m) = X J = 0 ( - l ) ' ^x®wi

- ( - \)sx®\l/Mm for m e M and j c e r s + 1 , where J£ = l t (gM (x) ls_. for / > 0
and for the identity map ln: rm^>r®n.

If i: / -> J is a monomorphism of >4-free comodules, then any map / from /
to an extended comodule r (x) AL extends to J. In fact, we get the extension /
= (1 r ® e ® 1L)(1 r (x)/)(1 r ® j ) ^ J ? for a map j : J -+I such that y'l = 17. This
fact implies

LEMMA 3.1 (cf. [5, Lemma A. 1.2.9]). Let M and N be A-free comodules
and let sequences 0 - > M -> 1° - * / 1 -• ••• and 0-+N -• J ° -• J 1 -• ••• 6 e g f ^ r f
resolutions. Then a map f:M->N of comodules extends to a map of resolutions
and these extended maps induce a unique map on Ext groups.

Let n: {A, F) -> (A, E) be a map of Hopf algebroids over A. Then we
regard F as a 27-comodule by the structure map il/r=(lr®n)A:F
-+F®AZ. In this situation, we have

LEMMA 3.2. Let M be an A-free E-comodule and let a sequence S: 0 -> M

- • / 0 - ^ / 1 - > - - - be a good L-resolution. If F is a weak injective E-comodule,

then the sequence F\Z[ES: 0^> F\Z\zM -> F[JzI0 -> ••• is also a good F-

resolution.



A spectrum whose BP^-homology is (BP^/I^lt^ 591

PROOF. Since F is 4-flat, we have the exact sequences 0-> F (g) AKGT dt

i 0 and Q-> F®AZ (g)^Kerd£-> F(^AZ ®Ar
0, which give the exact sequence O-^rDrKerd;

Fn£lm dt -> Coto4(r, Kerdt). By the hypothesis, Cotor^T, M)
= 0 = Cotor^T, F) for fc> 0. Therefore we see that Cotor^r, Kerd^O = 0,
and the above sequence turns into the short exact one. q.e.d.

§4. Computation of the differentials

The Brown-Peterson ring spectrum BP at a prime p gives rise to the Hopf
algebroid {BP^, BP^BP)(cf. [1]). In this section we consider the Hopf
algebroids

(A, F) = (BPJ(p, vl9 v29 i>3), A[tu t 2 , . . . ] )

with coproduct A: F^> F®AF associated to that of the Hopf algebroid
BP+BP and

{A, Z) = (BPj{p, vl9 v29 i?3), A\tl9 t 3 , - ] )

with coproduct Z = (7r®7r)Ji:21->i7(g)yli7. Here the map n: F^> Z (resp.
i: Z ^>F) denotes the cononical projection (resp. injection). Then F is a right
27-comodule by the structure map il/r= (lr®n)A and put

Note that the map given by the multiplication by tx from F to F is a 21-
comodule map. Then we have Exti

I(A9 F) = 0 for i > 0 followed from the
short exact sequence O^F-^F^Z-^0 and Ext1^, i7) = 0 for i > 0.

LEMMA 4.1. Ext£(,4, B) is the cohomology of the resolution

with differential defined by

i > 1 and for the identity map ln: Z*n->Z*H.

PROOF. Apply the functor T D ^ t o the cobar resolution
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0 >A<=^Z-^E®AZ

and we obtain an exact sequence

by lemma 3.2 identifying r\Z\x{Z®AM)<= r®AM. A direct calculation
shows that the following diagrams commute:

o ^ U

for rj = \r®r\L and A — ( l r®n)A, and

i(«)Ts i ( n + l ) | s

for d = lr® dn and A(n) = A ® ln. Therefore this exact sequence is the desired
one, and gives a good /"-resolution. q.e.d.

We denote this resolution by D*B.

LEMMA 4.2. There is a map f of resolutions from the cobar DfB to D*B9

such that / _ ! = 1B and

fn(y ®yi®'"®yn®i)) = y®7iy®'"® nyn ®nbe DnB

for y ®yx ® ••• ® yn® beF<8>n + 1 ®AB = Dn
rB. Here n: F-^X and n: B-+ A

denote the canonical projections.

PROOF. Since tx is primitive, we compute

a if i = 0
0 otherwise

for aeA, which equals to rjLn(at\), and we have (n ® n) A = rjLn. Then by the
definition of the map /„, we verify

for the differentials dn^1 and dn_1 of the cobar resolutions DfB and D%A,
respectively. Thus fn+1dn=fn+l(A ® id-lI®dn_1) = (A®id)fn-(lr®dn.1)fn
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= dnfn as desired (A = (\r®n)A as above). q.e.d.

Noticing that i D r ^ * 5 = i D ^ * ^ Lemma 3.1 implies

PROPOSITION 4.3. The map f of Lemma 4.2 induces an isomorphism

We put V=V(3) and W= V(3) A T(l). Then B P ^ . 4 and BP+W
= B. Consider the Hopf algebras 0 = Fp[tu t2,~'] and W = Fp[t2i £3,---]
over the prime field Fp of chracteristic p. Then the equalities Homr

r(,4, Ds
rA)

= H o m ^ ^ , D^Fp) and H o m ^ , DSB) = HomV(Fp, Ds^Fp) for t - s < 2p4 - 2
show

LEMMA 4.4. For t - s < 2p* - 2, Ext¥(A, A) = Ext%t(Fp, Fp) and

LEMMA 4.5. Extk£+U2p4-2+kq{Fp, Fp) = 0 for k> 1.

PROOF. We have the cocentral extensions W{ -+ *F(i) -+ W(i — 1) for i > 0,
where ^ = F p [ t J and *F{i) = Fp[_t2, t3,~-,tj. These lead to the Cartan-
Eilenberg spectral sequences, which give the inequality

rank((x)}=2Ext$,.(Fp, Fp))s'r > rank(Ext%(Fp , Fp)).

It is well known that Ext$,.(Fp, Fp) = E(hitJ) (g) Fp\buj\ with \hUj\ = 2 ^ ' ^ - 1)
and \bUj\ = 2pj+1(pi — 1). Here £ stands for the exterior algebra and hUj and
bitj have homology dimensions 1 and 2, respectively. We notice that
Ext£*(Fp, Fp) = Ext$,f4)(Fp, Fp) at total degree 2 / - 3. Under the condition
k > 1, we see that every element of the left hand side of the above inequality has
total degree greater than 2p4 — 3. This implies the lemma. q.e.d.

Consider the cocentral extension Fplt^ -*&^>W, and it gives rise to the
Cartan-Eilenberg spectral sequence converging to Ext<p(Fp, Fp) with E2

= ExtFp[tl]{Fp9 Fp) (g) Ex t^F p , Fp). Here n:&^>W denotes the canonical
projection. By Proposition 4.3 and Lemma 4.4, we see that the edge
homomorphism of this spectral sequnce is the induced map from the
composition fi for the inclusion i: DfA^>DfB. The generator of
Ext2

0
p-U2p4 + 2p-*(Fp, Fp) is known to be the element

£ = b^Q3 h11h20h12h21h30

of the F2-term (cf [5, pp. 217-218]). These show the following:

(4.6) i ^ = 0
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for the map /: V^W induced from the unit map ix: S-+T(l) of the ring
spectrum T(l), since z* is the edge homomorphism of the Cartan-Eilenberg
spectral sequence.

PROPOSITION 4.7. Let w4 be the generator of the E2-term Ext°r'
2p4~2{A, B)

of the Adams-Novikov spectral sequence for W. Then the element M4 is a
permanent cycle.

PROOF. Suppose that d2p-1v4. = k£ for some keZ and the generator v4 of
the £ 2 - t e r m °f the Adams-Novikov spectral sequence for V. Then u4 = i^v4

for the map i: 7-> W9 and the naturality of the differential of the spectral
sequence implies d2p _ x w4 = d2p -11+ v4 = i^ d2p _ x v4 = z* k£ = ki# £ = 0. By

Lemma 4.5 we see that Ext5/(.4, B) = 0 for t - s = 2p4 - 3 except for (s, t)
= (2p - 1, 2 / + 2p - 4). Thus we have dru4 = 0 for r > 2. q.e.d.

PROOF OF THEOREM. By Proposition 4.7, we have the map u^en^W which
is mapped to t;4 of UP* W= B = BP^/I^lt^ by the edge homomorphism of the
Adams-Novikov spectral sequence. Since W is a ring spectrum, we have the
self map rj:W-+W defined by the composition rj = fi(lw A u4) for the
multiplication \i of W. Then we see that BP^rj = (1 A / ^ ( l A MJ* = y4. In
fact, we have the commutative diagram

Therefore the cofiber of rj turns out to be the desired spectrum Wi(4). q.e.d.
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