A spectrum whose $B P_{*}$-homology is $\left(B P_{*} / I_{5}\right)\left[t_{1}\right]$

Katsumi Shimomura
(Received August 15, 1990)

§1. Introduction

For each prime p, we have the Brown-Peterson spectrum BP whose coefficient is the polynomial ring $B P_{*}=\boldsymbol{Z}_{(p)}\left[v_{1}, v_{2}, \cdots\right]$ over Hazewinkel's generators v_{i} with $\left|v_{i}\right|=2 p^{i}-2$. This has the invariant prime ideals I_{n} $=\left(p, v_{1}, \cdots, v_{n-1}\right)$ for $n \geq-1$, where $I_{-1}=(0)$ and $I_{0}=(p)$. Then the TodaSmith spectrum $V(n)$ is the finite ring spectrum characterized by

$$
B P_{*} V(n)=B P_{*} / I_{n+1}
$$

for $n \geq-1$. Once we know the existence of this spectrum, we can construct a family of nontrivial elements of the homotopy groups $\pi_{*} S$ of the sphere spectrum S, which are known as the Greek letter elements. The existence of the spectrum $V(n)$ is known only for $n<4$. In this case $V(n)$ exists if and only if the prime p is greater than $2 n$. It seems that $V(4)$ exists for a large prime p, but still now we have no way to prove it. We so consider a similar spectrum $W_{k}(n)$ defined by

$$
B P_{*} W_{k}(n)=\left(B P_{*} / I_{n+1}\right)\left[t_{1}, \cdots, t_{k}\right]
$$

as a $B P_{*} B P$-comodule subalgebra of $B P_{*} B P / I_{n+1}=\left(B P_{*} / I_{n+1}\right)\left[t_{1}, t_{2}, \cdots\right]$. Then $V(4)=W_{0}(4)$. If $W_{k}(n)$ does not exist for some k, neither does $V(n)$. However by computing obstructions we obtain the existence of $W_{k}(4)$ for $k>1$ at a prime $p>7$ in [6], and in this paper we prove the following

Theorem. Let p be a prime number greater than 7. Then $W_{1}(4)$ exists.
In §2 we recall Ravenel's ring spectra $T(k)$ and show the following
Proposition. Let p be any prime and k and n non-negative integers with $k \geq n$. Then there exists a $T(k)$-module spectrum $W_{k}(n)$.

In §§3-4 we compute the differentials of the Adams-Novikov spectral sequence for the spectrum $W_{1}(3)$ and show the above theorem.

§2. $W_{k}(n)$

Let p denote an odd prime number and S be the sphere spectrum. The

Brown-Peterson spectrum $B P$ is a commutative ring spectrum with the structure maps $l: S \rightarrow B P$ and $\mu: B P \wedge B P \rightarrow B P$ and gives rise to the homology theory with the coefficient ring

$$
B P_{*}(S)=B P_{*}=Z_{(p)}\left[v_{1}, v_{2}, \cdots\right]
$$

with $\left|v_{i}\right|=2 p^{i}-2$. The $B P_{*}$-homology of $B P$ is the polynomial

$$
B P_{*} B P=B P_{*}\left[t_{1}, t_{2}, \cdots\right]
$$

with $\left|t_{i}\right|=2 p^{i}-2$. Besides $B P_{*} B P$ becomes a Hopf algebroid over $B P_{*}$ from the ring spectrum $B P$ by a standard argument (cf. [1]).

In [3, p. 369], Ravenel gives a spectrum $T(k)$ for each $k \geq 0$ with

$$
B P_{*} T(k)=B P_{*}\left[t_{1}, t_{2}, \cdots, t_{k}\right]
$$

as a comodule algebra over $B P_{*} B P$ ([2]). Since there is a $\left(2 p^{k+1}-3\right)$ equivalence $T(k) \rightarrow B P$, we see that

$$
\begin{equation*}
T(k)_{*}=Z_{(p)}\left[v_{1}, \cdots, v_{k}\right] \oplus \operatorname{Ker}\left(T(k)_{*} \rightarrow B P_{*}\right) \tag{2.1}
\end{equation*}
$$

Let $I_{n}=\left(p, v_{1}, \cdots, v_{n-1}\right)$ denote the invariant prime ideal of $B P_{*}$. Then we consider the Toda-Smith spectrum $V(n)$ for each $n \geq-1$ defined by

$$
B P_{*} V(n)=B P_{*} / I_{n+1}
$$

On the existence of the spectrum $V(n)$, we have results only for the cases $n \leq 3$, which state that $V(n)$ exists if and only if the prime $p \geq 2 n+1$ (cf. [7], [8], [5]). We define a spectrum $W_{k}(n)$ for $k \geq 0$ and $n \geq-1$ to be the one with

$$
B P_{*} W_{k}(n)=\left(B P_{*} / I_{n+1}\right)\left[t_{1}, \cdots, t_{k}\right]
$$

as a comodule subalgebra of $B P_{*} B P / I_{n+1}$. Note that $W_{k}(-1)=T(k)$. The spectrum $W_{k}(n)$ exists if $n \leq 3$ and the prime $p \geq 2 n+1$. In fact, put $W_{k}(n)$ $=T(k) \wedge V(n)$. In [2, Prop. 1.4.3] Hopkins shows that $T(k) \wedge T(k)$ is homotopic to $T(k) \wedge B(k)$ for the Moore spectrum $B(k)$ for the ring $Z\left[t_{1}, \cdots, t_{k}\right]$. Similar results hold for $W_{k}(n)$:

Lemma 2.2. Let k and l be fixed non-negative integers and suppose that there exist spectra $W_{k}(n)$ for integers k and n with $l \geq n$ and maps $\eta_{n+1}: W_{k}(n)$ $\rightarrow W_{k}(n)$ for $l>n$ such that $W_{k}(n+1)$ is a cofiber of η_{n+1}. Then $T(k) \wedge W_{k}(n)$ is homotopic to $W_{k}(n) \wedge B(k)$ for $l \geq n$. Furthermore $W_{k}(n)$ for each $k \geq n$ is a $T(k)$-module spectrum.

Proof. Let $s_{k}: T(k) \wedge T(k) \rightarrow T(k) \wedge B(k)$ be the homotopy equivalence. Then we define a map $s_{k, n}: W_{k}(n) \wedge B(k) \rightarrow T(k) \wedge W_{k}(n)$ by the composition
$\left(\mu_{k} \wedge 1\right)\left(s_{k}^{-1} \wedge 1\right)\left(l_{k} \wedge 1 \wedge 1\right)(1 \wedge T)$, where $T: W_{k}(n) \wedge B(k) \rightarrow B(k) \wedge W_{k}(n)$ is the switching map and $\mu_{k}: T(k) \wedge T(k) \rightarrow T(k)$ and $l_{k}: S \rightarrow T(k)$ are the structure maps of the ring spectrum $T(k)$. Then we have the commutative diagram

by the definition of the map $s_{k, n}$. Notice that $s_{k,-1}=s_{k}^{-1}$. Then we inductively obtain from the five lemma that $s_{k, n}$ for $n \leq l$ are all homotopy equivalences. We denote the inverse of $s_{k, n}$ by $t_{k, n}$. Note here that there exist maps $i: S \rightarrow B(k)$ and $j: B(k) \rightarrow S$ of degree 0 such that $j i=1$. Suppose next that $\varphi_{n}=(1 \wedge j) t_{k, n}\left(l_{k} \wedge 1\right): W_{k}(n) \rightarrow W_{k}(n)$ is a homotopy equivalence, and we also see that $\varphi_{n+1}=(1 \wedge j) t_{k, n+1}\left(l_{k} \wedge 1\right)$ is a homotopy equivalence. Since $\varphi_{-1}=(1 \wedge j) s_{k}\left(l_{k} \wedge 1\right)=1$, the induction shows that every φ_{n} for $n \leq l$ is a homotopy equivalence. Define $v_{k, n}: T(k) \wedge W_{k}(n) \rightarrow W_{k}(n)$ by the composition $(1 \wedge j)\left(\varphi_{n}^{-1} \wedge 1\right) t_{k, n}$. Then we see that $v_{k, n}\left(\nu_{k} \wedge 1\right)=1$ and both $v_{k, n}\left(\mu_{k} \wedge 1\right)$ and $v_{k, n}\left(1 \wedge v_{k, n}\right)$ turn out to be the same map $1 \wedge j \wedge j$. These imply that $W_{k}(n)$ is a $T(k)$-module spectrum with structure map $v_{k, n}$. q.e.d.

Suppose that integers k and n satisfy the inequality $k>n$. Then $v_{n+1} \in T(k)_{*}$ by (2.1), and so we define the map $\eta_{n+1}: W_{k}(n) \rightarrow W_{k}(n)$ of Lemma 2.2 inductively by the composition $\eta_{n+1}=v_{k, n}\left(v_{n+1} \wedge 1\right): W_{k}(n)=S \wedge W_{k}(n)$ $\rightarrow T(k) \wedge W_{k}(n) \rightarrow W_{k}(n)$. Hence we have

Proposition 2.3. Let n and k be non-negative integers such that $n \leq k$. Then there exists a $T(k)$-module spectrum $W_{k}(n)$.

§3. Cobar complexes

Let (A, Γ) denote a Hopf algebroid over a commutative ring K. Then it is a pair of K-algebras A and Γ provided with structure maps, which are a left and a right units $\eta_{L}, \eta_{R}: A \rightarrow \Gamma$, a coproduct $\Delta: \Gamma \rightarrow \Gamma \otimes_{A} \Gamma$, a counit $\varepsilon: \Gamma$ $\rightarrow A$, and a conjugation $c: \Gamma \rightarrow \Gamma$, with the relations $\varepsilon \eta_{L}=\varepsilon \eta_{R}=1_{A},\left(1_{\Gamma} \otimes \varepsilon\right) \Delta$ $=\left(\varepsilon \otimes 1_{\Gamma}\right) \Delta=1_{\Gamma}, \quad\left(1_{\Gamma} \otimes \Delta\right) \Delta=\left(\Delta \otimes 1_{\Gamma}\right) \Delta, \quad c \eta_{R}=\eta_{L}, \quad c \eta_{L}=\eta_{R}, \quad$ and $\quad c c$ $=1_{\Gamma}$. A lefl Γ-comodule M is defined to be a left A-module together with a left A-linear map $\psi_{M}: \rightarrow \Gamma \otimes_{A} M$ such that $\left(\varepsilon \otimes 1_{M}\right) \psi_{M}=1_{M}$ and $\left(\Delta \otimes 1_{M}\right) \psi_{M}$ $=\left(1_{\Gamma} \otimes \psi_{M}\right) \psi_{M}$. A right Γ-comodule is similarly defined. The cotensor product $M \square_{\Gamma} N$ of a right and a left Γ-comodules M and N is the kernel of the K-module map $\psi_{M} \otimes 1_{N}-1_{M} \otimes \psi_{N}: M \otimes_{A} N \rightarrow M \otimes_{A} \Gamma \otimes_{A} N$. For a left
A-module N, consider the map $\psi=\left(\Delta \otimes 1_{N}\right): \Gamma \otimes_{A} N \rightarrow \Gamma \otimes_{A}\left(\Gamma \otimes_{A} N\right)$, and we obtain a left Γ-comodule $\Gamma \otimes_{A} N$ with the structure map ψ. We call this an extended comodule (cf. [5, Appendix A]).

From here on we assume that Γ is A-flat. Then it is well known that the category of Γ-comodules has enough injectives. We denote the sth right derived functor of $\operatorname{Hom}_{\Gamma}(M),\left(\right.$ resp. $\left.M \square_{\Gamma}\right)$ for a left (resp. right) Γ-comodule M by $\operatorname{Ext}_{\Gamma}^{s}(M$,$\left.) (resp. \operatorname{Cotor}_{\Gamma}^{s}(M),\right)$. We note here that $\operatorname{Ext}_{\Gamma}^{s}(A, M)=$ $\operatorname{Cotor}_{\Gamma}^{s}(A, M)$, since we see that $\operatorname{Hom}_{\Gamma}(A, M)=A \square_{\Gamma} M$ by definition. By virtue of this we shall not distinguish these groups hereafter. We call I weak (Γ-) injective if $\operatorname{Ext}_{\Gamma}^{s}(A, I)=0$ for $s>0$. Let $0 \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots$ be an exact sequence with I^{i} weak injective for $i \geq 0$. This is said to be a weak $\left(\Gamma\right.$-) injective resolution. Then this sequence splits into short ones $0 \rightarrow K^{i} \rightarrow I^{i}$ $\rightarrow K^{i+1} \rightarrow 0$ and the Ext group satisfies $\operatorname{Ext}_{\Gamma}^{s}\left(A, K^{i+1}\right)=\operatorname{Ext}_{\Gamma}^{s+1}\left(A, K^{i}\right)$ for $s>0$ and $0 \rightarrow \operatorname{Ext}_{\Gamma}^{0}\left(A, K^{i}\right) \rightarrow \operatorname{Ext}_{\Gamma}^{0}\left(A, I^{i}\right) \rightarrow \operatorname{Ext}_{\Gamma}^{0}\left(A, K^{i+1}\right) \rightarrow \operatorname{Ext}_{\Gamma}^{1}\left(A, K^{i}\right) \rightarrow 0$ to be exact. Therefore we compute $\operatorname{Ext}_{\Gamma}^{*}(A, M)$ for a Γ-comodule M from a weak injective resolution as well as a injective one. For an A-free Γ-comodule M, we call a resolution $0 \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots$ good if I^{i} is an A-free extended comodule. Since an extended comodule E is weak injective, a good resolution is a weak injective resolution.

As an example of a good resolution for an A-free comodule M, we have the cobar resolution $0 \rightarrow M \rightarrow D_{\Gamma}^{0} M \rightarrow D_{\Gamma}^{1} M \rightarrow \cdots$ defined by $D_{\Gamma}^{s} M=\Gamma^{\otimes s+1} \otimes_{A} M$ with differential $d_{s}: D_{\Gamma}^{s} M \rightarrow D_{\Gamma}^{s+1} M$ such that $d_{s}(x \otimes m)=\sum_{i=0}^{s}(-1)^{i} \Delta_{i} x \otimes m$ $-(-1)^{s} x \otimes \psi_{M} m$ for $m \in M$ and $x \in \Gamma^{\otimes s+1}$, where $\Delta_{i}=1_{i} \otimes \Delta \otimes 1_{s-i}$ for $i \geq 0$ and for the identity map $1_{n}: \Gamma^{\otimes n} \rightarrow \Gamma^{\otimes n}$.

If $i: I \rightarrow J$ is a monomorphism of A-free comodules, then any map f from I to an extended comodule $\Gamma \bigotimes_{A} L$ extends to J. In fact, we get the extension \tilde{f} $=\left(1_{\Gamma} \otimes \varepsilon \otimes 1_{L}\right)\left(1_{\Gamma} \otimes f\right)\left(1_{\Gamma} \otimes j\right) \psi_{J}$, for a map $j: J \rightarrow I$ such that $j i=1_{I}$. This fact implies

Lemma 3.1 (cf. [5, Lemma A.1.2.9]). Let M and N be A-free comodules and let sequences $0 \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow \cdots$ and $0 \rightarrow N \rightarrow J^{0} \rightarrow J^{1} \rightarrow \cdots$ be good resolutions. Then a map $f: M \rightarrow N$ of comodules extends to a map of resolutions and these extended maps induce a unique map on Ext groups.

Let $\pi:(A, \Gamma) \rightarrow(A, \Sigma)$ be a map of Hopf algebroids over A. Then we regard Γ as a Σ-comodule by the structure map $\psi_{\Gamma}=\left(1_{\Gamma} \otimes \pi\right) \Delta: \Gamma$ $\rightarrow \Gamma \otimes_{A} \Sigma$. In this situation, we have

Lemma 3.2. Let M be an A-free Σ-comodule and let a sequence $S: 0 \rightarrow M$ $\rightarrow I^{0} \xrightarrow{d_{0}} I^{1} \rightarrow \cdots$ be a good Σ-resolution. If Γ is a weak injective Σ-comodule, then the sequence $\Gamma \square_{\Sigma} S: 0 \rightarrow \Gamma \square_{\Sigma} M \rightarrow \Gamma \square_{\Sigma} I^{0} \rightarrow \cdots$ is also a good Γ resolution.

Proof. Since Γ is A-flat, we have the exact sequences $0 \rightarrow \Gamma \otimes_{A} \operatorname{Ker} d_{i}$ $\rightarrow \Gamma \otimes_{A} I^{i} \rightarrow \Gamma \otimes_{A} \operatorname{Im} d_{i} \rightarrow 0 \quad$ and $\quad 0 \rightarrow \Gamma \otimes_{A} \Sigma \otimes_{A} \operatorname{Ker} d_{i} \rightarrow \Gamma \otimes_{A} \Sigma \otimes_{A} I^{i}$ $\rightarrow \Gamma \otimes_{A} \Sigma \otimes_{A} \operatorname{Im} d_{i} \rightarrow 0$, which give the exact sequence $0 \rightarrow \Gamma \square_{\Sigma} \operatorname{Ker} d_{i}$ $\rightarrow \Gamma \square_{\Sigma} I^{i} \rightarrow \Gamma \square_{\Sigma} \operatorname{Im} d_{i} \rightarrow \operatorname{Cotor}_{\Sigma}^{1}\left(\Gamma, \operatorname{Ker} d_{i}\right) . \quad$ By the hypothesis, $\operatorname{Cotor}_{\Sigma}^{k}(\Gamma, M)$ $=0=\operatorname{Cotor}_{\Sigma}^{k}\left(\Gamma, I^{i}\right)$ for $k>0$. Therefore we see that $\operatorname{Cotor}_{\Sigma}^{1}\left(\Gamma, \operatorname{Ker} d_{i-1}\right)=0$, and the above sequence turns into the short exact one.

§4. Computation of the differentials

The Brown-Peterson ring spectrum $B P$ at a prime p gives rise to the Hopf algebroid $\left(B P_{*}, B P_{*} B P\right)(c f .[1])$. In this section we consider the Hopf algebroids

$$
(A, \Gamma)=\left(B P_{*} /\left(p, v_{1}, v_{2}, v_{3}\right), A\left[t_{1}, t_{2}, \cdots\right]\right)
$$

with coproduct $\Delta: \Gamma \rightarrow \Gamma \otimes_{A} \Gamma$ associated to that of the Hopf algebroid $B P_{*} B P$ and

$$
(A, \Sigma)=\left(B P_{*} /\left(p, v_{1}, v_{2}, v_{3}\right), A\left[t_{2}, t_{3}, \cdots\right]\right)
$$

with coproduct $\bar{\Delta}=(\pi \otimes \pi) \Delta i: \Sigma \rightarrow \Sigma \otimes_{A} \Sigma$. Here the map $\pi: \Gamma \rightarrow \Sigma$ (resp. $i: \Sigma \rightarrow \Gamma$) denotes the cononical projection (resp. injection). Then Γ is a right Σ-comodule by the structure map $\psi_{\Gamma}=\left(1_{\Gamma} \otimes \pi\right) \Delta$ and put

$$
B=\Gamma \square_{\Sigma} A .
$$

Note that the map given by the multiplication by t_{1} from Γ to Γ is a Σ comodule map. Then we have $\operatorname{Ext}_{\Sigma}^{i}(A, \Gamma)=0$ for $i>0$ followed from the short exact sequence $0 \rightarrow \Gamma \xrightarrow{t_{1}} \Gamma \rightarrow \Sigma \rightarrow 0$ and $\operatorname{Ext}_{\Sigma}^{i}(A, \Sigma)=0$ for $i>0$.

Lemma 4.1. $\operatorname{Ext}_{\Gamma}^{*}(A, B)$ is the cohomology of the resolution

$$
0 \rightarrow B \xrightarrow{c} \Gamma \xrightarrow{d_{0}} \Gamma \otimes_{A} \Sigma \xrightarrow{d_{1}} \Gamma \otimes_{A}\left(\Sigma \otimes_{A} \Sigma\right) \rightarrow \cdots \rightarrow \Gamma \otimes_{A}\left(\Sigma^{\otimes n}\right) \xrightarrow{d_{n}} \cdots
$$

with differential defined by

$$
d_{n} x=\sum_{i=0}^{n}(-1)^{i} \tilde{U}_{i} x+(-1)^{n+1} x \otimes 1
$$

for $x \in \Gamma \otimes_{A}\left(\Sigma^{\otimes n}\right)$, where

$$
\begin{aligned}
& \tilde{J}_{0}=\left(\left(1_{\Gamma} \otimes \pi\right) \Delta\right) \otimes 1_{n} \text { and }, \\
& \tilde{\Delta}_{i}=1_{\Gamma} \otimes 1_{i-1} \otimes \bar{\Delta} \otimes 1_{n-i}
\end{aligned}
$$

for $i \geq 1$ and for the identity map $1_{n}: \Sigma^{\otimes n} \rightarrow \Sigma^{\otimes n}$.
Proof. Apply the functor $\Gamma \square_{\Sigma}$ to the cobar resolution

$$
0 \longrightarrow A \xrightarrow{\eta_{L}} \Sigma \xrightarrow{\bar{d}_{0}} \Sigma \otimes_{A} \Sigma \xrightarrow{\bar{d}_{1}} \cdots,
$$

and we obtain an exact sequence

$$
0 \longrightarrow B \longrightarrow \Gamma \longrightarrow \Gamma \otimes_{A} \Sigma \longrightarrow \cdots
$$

by lemma 3.2 identifying $\Gamma \square_{\Sigma}\left(\Sigma \otimes_{A} M\right)=\Gamma \otimes_{A} M$. A direct calculation shows that the following diagrams commute:

for $\eta=1_{\Gamma} \otimes \eta_{L}$ and $\hat{\Delta}=\left(1_{\Gamma} \otimes \pi\right) \Delta$, and

$$
\begin{array}{cll}
\Gamma \square_{\Sigma}\left(\Sigma \bigotimes_{A} \Sigma^{\otimes n}\right) & \xrightarrow{d} & \Delta \square_{\Sigma}\left(\Sigma \bigotimes_{A} \Sigma^{\otimes(n+1)}\right) \\
\dot{\Delta}(n) \uparrow \cong & & \begin{array}{c}
\delta(n+1) \uparrow \cong \\
\Gamma \otimes_{A} \Sigma^{\otimes n}
\end{array} \\
\xrightarrow{d_{n}} & \Gamma \otimes_{A} \Sigma^{\otimes n}
\end{array}
$$

for $d=1_{\Gamma} \otimes \bar{d}_{n}$ and $\hat{\Delta}(n)=\hat{\Delta} \otimes 1_{n}$. Therefore this exact sequence is the desired one, and gives a good Γ-resolution.
q.e.d.

We denote this resolution by $D^{*} B$.
Lemma 4.2. There is a map f of resolutions from the cobar $D_{\Gamma}^{*} B$ to $D^{*} B$, such that $f_{-1}=1_{B}$ and

$$
f_{n}\left(\gamma \otimes \gamma_{1} \otimes \cdots \otimes \gamma_{n} \otimes b\right)=\gamma \otimes \pi \gamma \otimes \cdots \otimes \pi \gamma_{n} \otimes \bar{\pi} b \in D^{n} B
$$

for $\gamma \otimes \gamma_{1} \otimes \cdots \otimes \gamma_{n} \otimes b \in \Gamma^{\otimes n+1} \otimes_{A} B=D_{\Gamma}^{n} B$. Here $\pi: \Gamma \rightarrow \Sigma$ and $\bar{\pi}: B \rightarrow A$ denote the canonical projections.

Proof. Since t_{1} is primitive, we compute

$$
(\pi \otimes \bar{\pi}) \Delta\left(a t_{1}^{i}\right)=(\pi \otimes \bar{\pi})\left(a \sum_{j=0}^{i}\binom{i}{j} t_{1}^{i-j} \otimes t_{1}^{j}\right)= \begin{cases}a & \text { if } i=0 \\ 0 & \text { otherwise }\end{cases}
$$

for $a \in A$, which equals to $\eta_{L} \bar{\pi}\left(a t_{1}^{i}\right)$, and we have $(\pi \otimes \bar{\pi}) \Delta=\eta_{L} \bar{\pi}$. Then by the definition of the map f_{n}, we verify

$$
f_{n+1}\left(1_{\Gamma} \otimes \tilde{d}_{n-1}\right)=\left(1_{\Gamma} \otimes \bar{d}_{n-1}\right) f_{n}
$$

for the differentials \tilde{d}_{n-1} and \bar{d}_{n-1} of the cobar resolutions $D_{\Gamma}^{*} B$ and $D_{\Sigma}^{*} A$, respectively. Thus $f_{n+1} \tilde{d}_{n}=f_{n+1}\left(\Delta \otimes i d-1_{\Gamma} \otimes \tilde{d}_{n-1}\right)=(\hat{\Delta} \otimes i d) f_{n}-\left(1_{\Gamma} \otimes \bar{d}_{n-1}\right) f_{n}$
$=d_{n} f_{n}$ as desired $\left(\hat{\Delta}=\left(1_{\Gamma} \otimes \pi\right) \Delta\right.$ as above $)$.
q.e.d.

Noticing that $A \square_{\Gamma} D^{*} B=A \square_{\Sigma} D_{\Sigma}^{*} A$, Lemma 3.1 implies
Proposition 4.3. The map f of Lemma 4.2 induces an isomorphism

$$
f_{*}: \operatorname{Ext}_{\Gamma}^{*}(A, B) \xrightarrow{\cong} \operatorname{Ext}_{\Sigma}(A, A) .
$$

We put $V=V(3)$ and $W=V(3) \wedge T(1)$. Then $B P_{*} V=A$ and $B P_{*} W$ $=B$. Consider the Hopf algebras $\Phi=F_{p}\left[t_{1}, t_{2}, \cdots\right]$ and $\Psi=F_{p}\left[t_{2}, t_{3}, \cdots\right]$ over the prime field F_{p} of chracteristic p. Then the equalities $\operatorname{Hom}_{\Gamma}^{t}\left(A, D_{\Gamma}^{s} A\right)$ $=\operatorname{Hom}_{\Phi}^{t}\left(F_{p}, D_{\Phi}^{s} F_{p}\right)$ and $\operatorname{Hom}_{\Gamma}^{t}\left(A, D^{s} B\right)=\operatorname{Hom}_{\Psi}^{t}\left(F_{p}, D_{\Psi}^{s} F_{p}\right)$ for $t-s<2 p^{4}-2$ show

Lemma 4.4. For $t-s<2 p^{4}-2, \quad \operatorname{Ext}_{\Gamma}^{s, t}(A, A)=\operatorname{Ext}_{\Phi}^{s_{\Phi} t}\left(F_{p}, F_{p}\right) \quad$ and $\operatorname{Ext}_{\Gamma}^{s, t}(A, B)=\operatorname{Ext}_{\Psi}^{s, t}\left(F_{p}, F_{p}\right)$.

Lemma 4.5. $\operatorname{Ext}_{\Psi}^{k q+1,2 p^{4}-2+k q}\left(F_{p}, F_{p}\right)=0$ for $k>1$.
Proof. We have the cocentral extensions $\Psi_{i} \rightarrow \Psi(i) \rightarrow \Psi(i-1)$ for $i>0$, where $\Psi_{i}=F_{p}\left[t_{i}\right]$ and $\Psi(i)=F_{p}\left[t_{2}, t_{3}, \cdots, t_{i}\right]$. These lead to the CartanEilenberg spectral sequences, which give the inequality

$$
\operatorname{rank}\left(\otimes_{j=2}^{i} \operatorname{Ext}_{\Psi_{j}}^{*}\left(F_{p}, F_{p}\right)\right)^{s, t} \geq \operatorname{rank}\left(\operatorname{Ext}_{\Psi_{(i)}}^{s, t}\left(F_{p}, F_{p}\right)\right)
$$

It is well known that $\operatorname{Ext}_{\Psi_{i}}^{*}\left(F_{p}, F_{p}\right)=E\left(h_{i, j}\right) \otimes F_{p}\left[b_{i, j}\right]$ with $\left|h_{i, j}\right|=2 p^{j}\left(p^{i}-1\right)$ and $\left|b_{i, j}\right|=2 p^{j+1}\left(p^{i}-1\right)$. Here E stands for the exterior algebra and $h_{i, j}$ and $b_{i, j}$ have homology dimensions 1 and 2, respectively. We notice that $\operatorname{Ext}_{\underset{\psi}{* *}}^{*}\left(F_{p}, F_{p}\right)=\operatorname{Ext}_{\Psi(4)}^{* *}\left(F_{p}, F_{p}\right)$ at total degree $2 p^{4}-3$. Under the condition $k>1$, we see that every element of the left hand side of the above inequality has total degree greater than $2 p^{4}-3$. This implies the lemma.
q.e.d.

Consider the cocentral extension $F_{p}\left[t_{1}\right] \rightarrow \Phi \xrightarrow{\pi} \Psi$, and it gives rise to the Cartan-Eilenberg spectral sequence converging to $\operatorname{Ext}_{\Phi}\left(F_{p}, F_{p}\right)$ with E_{2} $=\operatorname{Ext}_{F_{p}\left[t_{1}\right]}\left(F_{p}, F_{p}\right) \otimes \operatorname{Ext}_{\Psi}\left(F_{p}, F_{p}\right)$. Here $\pi: \Phi \rightarrow \Psi$ denotes the canonical projection. By Proposition 4.3 and Lemma 4.4, we see that the edge homomorphism of this spectral sequnce is the induced map from the composition $f i$ for the inclusion $i: D_{\Gamma}^{*} A \rightarrow D_{\Gamma}^{*} B$. The generator of $\operatorname{Ext}_{\Phi}^{2 p-1,2 p^{4}+2 p-4}\left(F_{p}, F_{p}\right)$ is known to be the element

$$
\xi=b_{20}^{p-3} h_{11} h_{20} h_{12} h_{21} h_{30}
$$

of the E_{2}-term (cf. [5, pp. 217-218]). These show the following:

$$
\begin{equation*}
t_{*} \xi=0 \tag{4.6}
\end{equation*}
$$

for the map $\imath: V \rightarrow W$ induced from the unit map $l_{1}: S \rightarrow T(1)$ of the ring spectrum $T(1)$, since l_{*} is the edge homomorphism of the Cartan-Eilenberg spectral sequence.

Proposition 4.7. Let u_{4} be the generator of the E_{2}-term $\operatorname{Exx}_{\Gamma}^{0,2 p^{4}-2}(A, B)$ of the Adams-Novikov spectral sequence for W. Then the element u_{4} is a permanent cycle.

Proof. Suppose that $d_{2 p-1} v_{4}=k \xi$ for some $k \in Z$ and the generator v_{4} of the E_{2}-term of the Adams-Novikov spectral sequence for V. Then $u_{4}=l_{*} v_{4}$ for the map $\imath: V \rightarrow W$, and the naturality of the differential of the spectral sequence implies $d_{2 p-1} u_{4}=d_{2 p-1} l_{*} v_{4}=l_{*} d_{2 p-1} v_{4}=l_{*} k \xi=k l_{*} \xi=0$. By Lemma 4.5 we see that $\operatorname{Ext}_{\Gamma}^{s, t}(A, B)=0$ for $t-s=2 p^{4}-3$ except for (s, t) $=\left(2 p-1,2 p^{4}+2 p-4\right)$. Thus we have $d_{r} u_{4}=0$ for $r \geq 2$. q.e.d.

Proof of Theorem. By Proposition 4.7, we have the map $u_{4} \in \pi_{*} W$ which is mapped to v_{4} of $B P_{*} W=B=B P_{*} / I_{4}\left[t_{1}\right]$ by the edge homomorphism of the Adams-Novikov spectral sequence. Since W is a ring spectrum, we have the self map $\eta: W \rightarrow W$ defined by the composition $\eta=\mu\left(1_{W} \wedge u_{4}\right)$ for the multiplication μ of W. Then we see that $B P_{*} \eta=(1 \wedge \mu)_{*}\left(1 \wedge u_{4}\right)_{*}=v_{4}$. In fact, we have the commutative diagram

Therefore the cofiber of η turns out to be the desired spectrum $W_{1}(4)$. q.e.d.

References

[1] J. F. Adams, Stable homotopy and generalised homology, University of Chicago Press, 1974.
[2] M. J. Hopkins, Stable decompositions of certain loop spaces, Thesis, Northwestern University, 1984.
[3] D. C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), 351-414.
[4] D. C. Ravenel, The Adams-Novikov E_{2}-term for a complex with p cells, Amer. J. Math. 107 (1985), 933-968.
[5] D. C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Academic Press, 1986.
[6] K. Shimomura and A. Yabe, Computation of obstructions for a spectrum with $B P_{*^{-}}$ homology $\left(B P_{*} / I_{n}\right)\left[t_{1}, t_{2}, \cdots, t_{k}\right]$, J. Fac. Educ. Tottori Univ. Nat. Sci. 39 (1990), 85-94.
[7] L. Smith, On realizing complex cobordism modules, Amer. J. Math. 92 (1970), 793-856.
[8] H. Toda, On spectra realizing exterior part of the Steenrod algebra, Topology 10 (1971), 53-65.
[9] U. Würgler, On products in a family of cohomology theories associated to the invariant prime ideals of $\pi_{*}(B P)$, Comment. Math. Helv. 52 (1977), 457-481.

Department of Mathematics, Fuculty of Education, Tottori University

