
HIROSHIMA MATH. J.
21 (1991), 539-555

A note on the Selberg zeta function for compact
quotients of hyperbolic spaces

Masato WAKAYAMA

(Received July 31, 1990)

0. Introduction

In the previous paper [18], we have worked out a new method of the
analytic continuation of the logarithmic derivative of Selberg's zeta function for
the compact Riemannian surfaces X. In the present note, we consider the
generalization of those results when X is a certain compact quotient of
hyperbolic space X.

Now, let G be a connected component of the isometric transformation
group of X. Let K be a maximal compact subgroup of G. Then X is realized
by G/K, a noncompact symmetric space of rank one. Let F be a discrete
torsion-free subgroup of G such that F\G is compact. Thus our manifold X
treating throughout this note is given by F\G/K for some such F. Let Tbe a
finite-dimensional unitary representation of F9 and let % be its character. In
the monumental work [15], A. Selberg constructed a function of complex
variable Zr(s, /), which is called Selberg's zeta function, and showed how the
location and the order of its zeroes gave us information about the spectrum of
the Laplacian for X on the one hand and about the topology of X on the other
hand. Furthermore, in the famous paper [4], R. Gangolli extended these
results in the more general situation, that is to say, in the present case.

The zeta function of Selberg's type is given by the infinite product which
converges absolutely for some half plane, say 5Rs > 2p0, where 5Rs stands for the
real part of s e C. Here, the number p0 is a positive real one depending only
on X and the product is taken over all primitive conjugacy classes in F and a
certain semi-lattice of roots with respect to the Cartan subgroup of G. Roughly
speaking, this zeta function has the following properties:

(A) Zr(s, x) is holomorphic in a half plane 9ls > 2p0 and has a
meromorphic continuation to the whole complex plane.

(B) Zr(s, x) satisfies the functional equation

Zr(2p0 -s,x) =

Here, y(X) is the volume of X in a suitable normalization and \i(z)dz is

f
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the Plancherel measure of X.
(C) Zr(s, x) always has certain zeroes. These zeroes are called spectral

because their location and order gives us the spectral information of
X. Furthermore, these zeroes lie on the line SRs = p0 except for a finite
number. Those zeroes which are off this line are all real and lie in the interval
[0, 2p0], symmetrically about p0.

(D) Apart from the spectral zeroes of Zr(s, x\ there may exist a series of
"trivial" zeroes or poles of Zr(s, i). These exist only when &\m(X) is
even. We are able to know these location and order (resp. residues) precisely.

Of course, above properties of the zeta function correspond to those of the
logarithmic derivative of it. Also, these properties always derived from the
Selberg trace formula. Therefore the choice of the test function which we put
into the trace formula is the most important matter. The choice of the test
function taken by Selberg and Gangolli, and hence the meromorphic
continuation of the logarithmic derivative of the zeta function studied by them
are, of course, important, but in view of the proof of the functional equation it
is somewhat troublesome. More direct method is discovered by Hejhal in the
special case, that is, in the case of the compact Riemannian space [8]. But the
generalization with this method in higher dimensional cases seems to pose a
delicate problem, because the several higher derivatives of the logarithmic
derivative of the zeta function appeared at a stroke in the formula, which is
expected to give us the meromorphic continuation of it.

The main purpose of this note is to prove quite another interesting formula
for the logarithmic derivative of the zeta function. The properties possessed by
the zeta function can be also derived from our foumula immediately. Our
choice of the test function is closely related to the density function of the
Plancherel measure of X. The proof of this formula, however, is more or less
elementary than that of the special case discussed in [18]. Moreover, as the
application, we will show a certain asymptotic formula with respect to the
spectrum of Laplacian acting on the L2-sections of the homogeneous vector
bundle associated with the unitary representation T of F.

The author wishes to his gratitude to Professor M. Hashizume for valuable
advices and comments in this presentation. In particular, the author declares
that the argument to which he refers, in Section 3, is much indebted to
Hashizume's idea discussed in [7]. The author also regrets that the paper [7]
is written in Japanese only.

1. Preliminaries

Let G be a connected noncompact semisimple Lie group with finite center,
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K a maximal compact subgroup. Let g, I be their respective Lie algebras and
let g = I + p be a Cartan decomposition of g with respect to the Cartan
involution 9 determined by f. Let ap be a maximal abelian subspace of p.

We assume that the real rank of G is one, namely dimap = 1. Then X
= G/K is a noncompact symmetric space of rank one.

We put Ap = expap. Let M and M* be the centralizer and normalizer of
Ap in K, respectively. Let W = M*/M be the Weyl group of (g, ap). It is clear
that [W~\ — 2. Extend ap to maximal abelian 0-stable subalgebra a of g, so
that a = af + ap, with at = a n!. Then a is a Cartan subalgebra of g. Further,
we denoe by A = AXAP the centralizer of a in G, that is, the Cartan subgroup of
G.

For any subspace I of g, we denote by Ic the complexification of I. Let
A = A($c, ac) denote the set of roots of (gc, ac), and introducing, as usual,
compatible orders on the dual spaces of ap and ap + iaf. Let A + be a set of
positive roots under this order. Let P+ = {oceA +; a # 0 on av}. Put p =

Let g = I + ap H-n, G = KApN be the Iwasawa decompositions corre-
sponding to these order, of course, N = exp n. Let E be the set of restrictions
to ap of the element of P+. Then one can find an element XeZ such that 2X is
the only other possible element of E. Let p (resp. q) be the number of elements
of P+ which restrict to X (resp. 2A). Choose Hoeap so that X(H0) = 1. We
denote by p0 the number p(H0) throughout the paper. Also, we see that the
dimension of X, say d, is equal to p + q + 1. Let a*c be the dual space of
avC. Since dimap = 1, we have a* ^ R, a*>c ~ C, and we fix the following
identification of a*tC with C for future use: Namely seC shall correspond to

For every xeG, let H(x)eav be defined by x = kexpH(x)n, ksK,neN,
according to the Iwasawa decomposition.

For any aeAp, we put t = /l(loga). Then we have a = at, where we put at

= QxptH0. We normalize the Haar measure da on Ap by the formula dat = dt,
where dt stands for the Lebesgue measure on R. We also fix the normalized
Haar measure dk on K, and the Haar measure dn on N normalized by the
condition JNexp(— 2p(f/(0(n"1))))rfn = 1. Having fixed the above measures on
K, Ap9 N, we normalize the Haar measure dx on G by dx = e2potdkdtdn, if
x = katn. These normalization will be adhered to throughout this paper.

We denote by C?(K\G/K), (resp. CP(K\G/K)) the space of smooth
compactly supported (resp. p-times differentiable) K-biinvariant functions on G.

For each vea* c , we denote by </>v the zonal spherical function, defined by

J.= exp(iv - p)(H(xk))dk, xeG.
IK



542 Masato WAKAYAMA

This <t>v is characterized by the unique (K-biinvariant) solution of the
differential equation

with the initial condition 0V(1) = 1, where A is the Laplacian on X.
Now we have the spherical Fourier transform / and the Abel-Selberg-

Harish-Chandra transform Ff defined by

/(v) = [ f(x)<l>v(x)dx
JG

Ff(at) = e«* I f(atri)dn
JN

for any feC?{K\G/K). The following relation is well known:

/(v) = F}(v) = f °° Ff(at)e^dt. (1-1)
J — oo

Here FJ is the usual Euclidean Fourier transform on the vector group
Av. Since \_W~\ = 2, we have the inversion formula for the spherical Fourier
transform

/( I ) = — f(v)fi(v)dv9 (1-2)
4rcJ-oo

where n(v) is (the density function of) the Plancherel measure for X. The
explicit formula of the Plancherel measure for each X is collected in the
subsequent section.

Let F be a discrete torsion-free subgroup of G such that F\G is
compact. Fix a G-invariant measure dx on F\G by requiring that for any
compactly supported function / on G we have

f f(x)dx = f
JG J I

I f(yx)di.
r\G y*r

By assumption on F, each element ysF is conjugate in G to an element of
the Cartan subgroup A. Choose an element h(y) of A to which y is conjugate,
and let h(y) = mya7(my e Al9 aY e Ap). We further demand that h(y) be chosen so
that ay lies in A* = expa^, where a^ is the positive Weyl chamber in ap. We
then define uy = X(logay). Of course, uy depends only on y and it is essentially
the length of the shortest geodesic in the free homotopy class associated to y on
the manifold X defined by X = F\X. Also, my is determined up to conjugacy
in M [5]. We denote by {y} the conjugacy class corresponding to y within
itself and by {F} the set of all T-conjugacy classes in F. Also we put {F}'
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= {F} — {1}. An element yeF (y ̂  1) is called primitive if it can not be
expressed as Sj for some integer j > 1 and S e F. Further, we denote by {8}p

the primitive conjugacy class corresponding to the primitive element <5. It is
well known that every y( / 1) is equal to a positive power of a unique primitive
element d. Hence, we define a positive integer j(y) by the relation y
= Sjiy\ Thus we have uy = j(y)ud.

Our chief tool is the Selberg trace formula. Let T be a finite dimensional
unitary representation of f on a vector space V, with the character x- W e

denote by n the unitary representation of G induced by T. Thus n acts on the
Hilbert space H consisting of functions f.G-*V which satisfy (i) f(yx)
= T(y)f(x) and (ii) J n G </(x),/(x)> dx < oo, where <, > is the inner product on
V. The action on G on H is given by the right translation. Since F\G is
compact, n is a discrete direct sum of irreducible representations of G, occurring
with finite multiplicities. Let {T^-; j > 0} be the spherical (namely, class 1 with
respect to K) representations that occur in n, and let mj(j) denote their
multiplicities. Each TC, is completely determined by its zonal spherical function,
say (t)Vj(VjeC). Since nj is unitary, (j>v. is positive definite function. Therefore
one knowns that n^A) = — (v? + pi) < 0, where A denotes the Laplacian on
X. By means of this fact, we see that Vj is either real or purely imaginary. We
choose and fix v, so that when it is real, we have v, > 0, and when it is purely
imaginary, we have iVj < 0. For technical reasons, we always let K0 be the
trivial representation of G, namely v0 = ip0. Its multiplicity mo(x) is equal to
the multiplicity of the trivial representation of F in T. Thus mo(x) may be zero.

Let L}(K\G/K) be the convolution algebra of K-biinvariant integrable
functions on G. For fel}(K\G/K\ the operator n(f) = \Gf(x)n(x)dx is a
bounded operator on H. As in [15] [6], we say t h a t / i s admissible if (i) the
series £yer/(.y~1yx)7Xy) converges absolutely, uniformly on any compact subset
of G x G, to a continuous End(K)-valued function Kf(x, y, T) and (ii) the
operator n(f) is of trace class. When / i s admissible, we have the trace formula

Z mj(x)f(Vj) = I TraceX^x, x, T)dx. (1-3)
i=0 Jr\G

Since the total mass of K is equal to 1, it is clear that the volume of F\G is
equal to i^{X). Thus, as in [15], we can rewrite the right side of (1-3) to get
the final form of the trace formula:

Z mj(x)f(Vj) = xi\)nX)f{\) + Z X(7)uyj(y)-* C(h(y))Ff(ay). (1-4)
j = 0 y e { T } '

Here the number C(h(y)) is the positive one and is explicitly give by
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where fa stands for the character of A defined by £a(/i) = exp a(log h) for any
oceP+. It is clear that the number C(h(y))Ff(aY) depends only on the G-
conjugacy class of each y.

2. Main results

At the first place, we prepare several notations. We enumerate the roots
in P+ as a1?..., a,. Let A be the semi lattice in a£ defined by A = {^ = 1 m£a£;
mf > 0, mteZ}. For XeA9 define mA to be the number of distinct ordered t-
tuples (ml9..., mt) such that X = Y!i=i m*ar F o r s u c h ^e^i, we denote by £A the
character of Cartan subgroup A defined by £A = flJ^iff/.

With these notations, the Selberg zeta function is given by

zr(s, X ) = U U
{(5} XeA

where the outer product is taken over all primitive conjugacy classes in
F. Moreover the product converges absolutely, if 5Rs > 2p0. The reason for
denoting the infinite product by Zr(s, %) instead of Zr(s9 T) is that we can, in
fact, easily show that this product depends only on the character x-

Let ¥V(s, x) be the logarithmic derivative of the Selberg zeta function.
Namely,

Then, by the straightforward computation we obtain

*V(s, x) = Z Z Z usma&KMS))-^-™
{3} XeAjzl

= Z x(y)uyj(y) ~x c(/z(y))^(po ~s)My.
ye { T} '

It is clear that this infinite series converges absolutely and uniformly in any half
plane 9ls > 2p0 + e(e > 0).

In the paper [4], Wr(s, x) was studied with the trace formula by
Gangolli. He found its pole in terms of the spectrum of the Laplacian and he
proved the residues are all rational with common denominator, say K. But, in
[3], Fried pointed out that one may take K = 1. This is the reason for the
absence of K in our definition of the Selberg zeta function.

Now we will go to our situation, that is to say, we will describe hyperbolic
spaces which we shall treat. So, we need the following complete list of the
irreducible noncompact Riemannian symmetric spaces X = H(F) of rank one
and their Plancherel measures fi(r), [11] [21]:
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H(R)0 = SO0{2n + 1, l)/SO(2n + 1), (n > 1, p 0 = n)

(2n + l)-dimensional real hyperbolic space

H(R)e = SO0(2n, l)/SO(2n), ( n > l , P o = n - ^

2n — dimensional real hyperbolic space

* +U V+(*
H(Q = SU(n, l)/S(U(n) x C/(l)), (n > 2, p 0 = n)

2n — dimensional complex hyperbolic space

71 m — 1 •jrf

\-r2 + (2fc)2]2cothy („ = 2m)
2 8 W -3 r ( 2 m ) 2r (2m)2 > [I \-r + (2fc)]cothy

7T

T
= Sp{n, lySpin) x Sp(l), (n > 2, p 0 = 2n + 1)

4n — dimensional quaternion hyperbolic space

nn [r2 + (2k - l)2]2[r2 + (2n - l ) 2 ] t a n h y ,

= (F4(_20),5o(9)), ( p o = l l )

16 — dimensional Cayley (or, octonion) hyperbolic space

Mr) = 2 3 5 r ( 8 ) 2 r(r2 + l)(r2 + 32)Jf[ [r2 + (2* - I)2] t a n h y .

Moreover, we define the rational function which is closely related to the
polynomial part of the Plancherel measure. Let d = dim X. For any distinct
[f]-tuples of numbers a = (a0, au...9 a ^ - i ) , we define them by the following

formulas:

D(r> a) = I ! T 1 1 ? ! i f ^ = H ( * ) " H ( ^ a n d

g( r , f l )= d ^ : ° 2 [ r 2 + ^ ] if X = H(H)
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and

Also, we put

Further, we will denote by [Mr)]p the polynomial part of fi(r). We now state
the main theorem of this paper.

THEOREM. The logarithmic derivative Wr(s,x) = jf\ogZr(s,x) of the
Selberg zeta function is holomorphic in the half plane 9ts > 2p0 and has the
following analytic continuation as a meromorphic function on the whole complex
plane:

VAs + Po, X) + \l{l)r(X)n{is) = Sli{is)Ar{s, a, x).

Here, the even meromorphic function Ar(s, a, %) is given by the following way:

X = H(Q, H(H), H(O):

Ar(s, a, x) = 2D(is, a) £ ™ J ( * ? 2 ,_ 2,
j=o fi(Vj)D(Vj, a){s2 + vj)

iN, a)(s2 - N2)

where a = (a0, a t fl|-i) satisfies the conditions:

akep0 + 2N (k = 1,.. . , - - 1 ).

X = H(R)e:

^ r f o <*> Z) = 2D(is, a)

2 'FAN + p0,
iN, a)(s2 - N2)
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where a = (a0, a l 5 . . . , a*-,) satisfies the conditions:

akep0 + N (k = 1,.. . , - - 1 ).

X = H(R)0:

Ar{s, a, x) = 2D(is, a)

Pa, X) 1 [ ^ 1 J>"fe a)
* A , akD\iak, aMiak)(s> - 4) T 2 * w ' ^ A ^ K ^ ) '

where a = (a0, ax,..., a^.^^ satisfies the conditions:

a> (k=l \*}-l)

The following assertion is derived immediately from this theorem.

COROLLARY 1. The function *Pr(s, x) satisfies the functional equation

*?r(s + Po, X) + *V(" s + Po, Z) + Z( l )^TOw) = 0 (s e Q.

Moreover, the poles of W^s, x) are all simple, and are as follows:

Pole Residue

0 mJy) -

If 0 occures in the spectrum, that is, if for some j , we have Vj = 0, then for that j ,
the residue at this pole is 2m;(x). Here rk, (k > 0) are the poles of fi(r) in the
upper half plane, if any, and dk stands for the residue of fi(r) at the pole rk, and of
course, these are explicitly computable numbers.

The properties possessed by the Selberg zeta function which we have
described in the introduction can be easily shown by the above results.

Moreover, we find that the following more or less interesting formula.
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COROLLARY 2. The following formula holds

under the conditions that m (\m\ > p0) satisfies m = p0 (mod 2) if X = H(Cj,
H{H), H(O) and if X = H(R)e then m is the integer.

In their paper [5] and [19], Gangolli and Wallach respectively showed the
following asymptotic formula for the spectrum of X:

limt* f mj{x)e-^+^ = cX(l)r{X)
no j=o

for some constant c depending only on X. Now, if we let m to oo in the
formula described in the preceding corollary, then we have the one kind of the
asymptotic formula different from the above one.

COROLLARY 3.

where a = (a0, al9...9 «[|]-i) satisfies the conditions described in the theorem.

In the following sections, we devote ourselves to the proof of the theorem.

3. The general principle of the proof

We have to make clear that the kind of functions which we can put into
the trace formula. For the sake of the proof, it is necessary to find that the
wide class of admissible functions rather than that of [5], [6].

The following result was proved by Hashizume [7], and it is the extension
of the result in [15].

PROPOSITION. Suppose that the integer N satisfies the condition: N > [f]
+ 1. For any positive number e we put

where 3r denotes the imaginary part of reC. Let s/N'E be a set of all even
holomorphic functions h on De which satisfy the following growth condition:

p |
reDE

Then there exist an inverse spherical Fourier transform f of h for each h e jtfN

such that
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(3-1)

\fU)(at)\ < Cj(cosht)-<2<><>^+» (o < j < N - r ^ l - l\ (3-2)

and

for some constants Cj > 0.

The proof of this proposition is follows from the explicit inversion formula
of Abel-Selberg-Harish-Chandra transform. Also, using the integral formula
relative to the Cartan decomposition of G [11] and the estimate (3-2), one can
easily verify that / is, in fact, belong to L}(K\G/K). By means of the
proposition, the following assertion can be proved in the similar way that are
discussed in [7].

LEMMA. For any hes/N>e
9 let f be the K-biinvariant function on G such that

/(v) = h (v). Then the series

converges absolutely, uniformly on any compact subset of G x G, to a continuous
End(V)-valued function.

On the other hand, it is well known that (see, for example, [4] [19]) the
series

vJol^F (3"3)

converges if 9ts > d. Therefore, if the integer N satisfies N > d then the inverse
spherical Fourier transform of the elements in <stfN'E are admissible functions.

Thus, it is easy to see that the following function F*(r) (9ls > p0) is a
spherical Fourier image of certain admissible function:

H(R)0, d = 2n+l(n>l):

c +
H(R)e, d = 2n(n>l):

F*(r) — ,

H(Q, d = 4n(n>l):

A) n;:;i>2+(2k)2mn71>2+*nir>+^ 2 •
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d = 4n + 2(n> 1):

F*{r) rUUdr + (2k)l ID;
A) ~ mitt?2+(»+D2]nr=o[^2+^^+^ 2 •
), rf = 4n(n>2):

F . ( r ) - rH = 1 [ r 2 + (2fc)] *r

H(O), d= 16:

y coth
n:=oi>2+(2k+i)2]n t '=o['-2+«2]i>2+^ 2 •

where the distinct [f]-tuple of numbers a = {aOi al9..., fl^-i) satisfies the

condition described in the theorem for all cases. If we choose the above F* as
the test function / of the trace formula in each case, using the well known
representation of tanh nh (resp. coth nr) by partial fractions, we are able to show
the analytic continuation of ^V(s, #). Since each case is proved in the same
manner, we will only prove the case X = F\H(C) {d = An) precisely in the
ensuing section.

4. The compact quotient of the complex hyperbolic space

In the first place, we review some notations. Let G = SU(2n9 1), K
= S(U(2ri) x U(l)). Then the space we now consider is of the form X
= r\G/K. In this case, we have d = 4n, p0 = In. If we put cG =
n/{2Sn-3r(2n)2}, then

By the formula (1-1) and (1-2), in terms of F*9 the trace formula takes the form

j=o *n J-00

+ I ^vy-f00 Ff(r)eir^dr,

where we put
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Of course, for Ws > In, both side of series converge absolutely.
For the sake of simplicity we put s = a2n for a while. Then it is easy to

see that

iriixin-c fc = O lr f

_c r i lW'tf - afXr2 +

Hence we have

- ^ P ° Ff(r)ii(r)dr
4TTJ

u2"-1 k2-a2 n2--1 k2 s2^ (4^2)

1 Ik = 0 •- *_̂  i 1 Ik = 0 L

On the other hand, using the representation of tanh ^- by partial fractions, we
obtain

— E -1—-—

4 « f y yit(m) ^, Bt (m) c ( m )
= : E« m^i U^i r2 + (2fc)2 ' *=o r2 + a2 r2 + (2m - I)2 J '

Here we put

^*(W) = n » - l F7^2 ^,.'2-,TT2«o|-fl2 _ (2fc)2][(2lB - I)2 - (2fc)2] '

and

C(m) =
n ," :o [ (20 2 - (2m - I)2] n 2 = o ' [a2 - (2m - I)2] [>2 - (2m - I)2] '

It should be noted that C{m) = 0 for m = 1, 2 , . . . , n.
Since

we have
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m = l

Also, since a0 — p0 = In and ak = In (mod 2), ak > 2n, we have

YJ Bk(m) = 0 (k = 0, 1, 2 , . . . , In — 1).
m = l

Furthermore, since a2w = s we see that

Since the series Y2=i^m) converges absolutely, uniformly for s in any
compact set disjoint from the numbers {+ (2m — 1); m > n + 1}, thanks to the
Lebesgue dominated convergence theorem, we observe

1 f00
— Ff(r)eirudr
271 J - 00

, 2

T K r o
1 [ ^ 2 - ( 2 m - l)2][s2 - (2m - I)2] '

for positive M. Here we use the elementary integral formula

-4-—Tdx = J—e~su.

These manipulation are valid if 5 is equal to neither odd integers nor
ajU = 0, 1,..., 2n — 1) and satisfies the condition 9ts > In.

Since

for 9is > p0 = 2n, by the trace formula (4-1), (4-2) and (4-3) we get

; A

jllj^MJ - a?][s2 - a?] T s ,U a? -
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*M* + Po, X)

ECU i C(2fc - ! ) 2 - (2m - !)2] ̂ r (2m - 1 + p 0 , X)
(2m - l)Y\l~=\E(2k)2 - (2m - I)2] Y^1 l>2 - (2m - I)2]

[s2 - (2m - I)2]

The procedure can be justified by the following argument: It is known that
the numbers {uy; y e {r}'} are bounded away from zero. If we choose a
positive number s0 so small that it is smaller than those numbers, then it is easy
to see that

I Wr{2m - 1 + Po, x)\ ^ X(l)*r(2p0 + eo> 1)

for m > n + 1, where T denotes the trivial character of F. Hence the last term
of the series, in fact, converges absolutely and uniformly for s in any compact
set disjoint from the numbers {±(2m — l ) ; m > n + l } .

Moreover, since

D(is9 a) = 2f\
k* -r at - s

n-l n s

fi(is) = - cGs3 Yl [(2fc)2 — s2]2cot —,

we have

4 ^ o flt/)*(iflto a){s2 - al) 4sD(is, a) 2s[i(is)D(is, a)

!Pr
r(2m - 1 + po, x)2 „

D»(i(2m - l))],D(i(2m - 1), a)[s2 - (2m - I)2] '

Now multiply by 2sfi{is)D{is, a) to both sides and transpose the terms we have
the desired formula:

Vr(s + Po, X) + \
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(fa, a) „
n m£+1 Qi(i(2m - l))]FD(i(2m - 1), a)[_s2 - (2m - I)2]

x(\)r(X)2n-1 Dk(is,a)

This completes the proof of the theorem in the case of the compact quotient of
4n-dimensional complex hyperbolic space. In the event of other spaces, we can
do their proofs quite similar way.
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