Tests for random-effects covariance structures in the growth curve model with covariates

Takahisa YOKOYAMA and Yasunori FUJIKOSHI (Received January 11, 1991)

1. Introduction

Suppose that we obtain serial measurements for each of N individuals on each of p occasions, yielding an $N \times p$ data matrix of observations X. The growth curve model for the observation matrix X of Potthoff and Roy [8] can be written as

$$X = A\Xi B + U, \qquad (1.1)$$

where A is an $N \times k$ design matrix across individuals, Ξ is a $k \times q$ matrix of unknown parameters, B is a $q \times p$ design matrix within individuals, and U is an $N \times p$ unobservable matrix of random errors. It is assumed that A and B have ranks k and q, respectively, and the rows of U are independently and identically distributed as $N_p(0, \Sigma)$, where Σ is an unknown $p \times p$ positive definite matrix. For an extensive survey of the literature on the model (1.1), see, e.g., Timm [11], Geisser [4] and Woolson [12]. In the model (1.1), suppose that we can use the observations of r covariates for the N individuals. Let Z be the $N \times r$ observation matrix of r covariates. Then the model (1.1)

$$X = A\Xi B + Z\Theta + U, \qquad (1.2)$$

where Θ is an $r \times p$ matrix of unknown parameters. It is assumed that Z is fixed and rank $[A, Z] = k + r \le N - p$. This type of models has been considered in Chinchilli and Elswick [3].

When there is no theoretical or empirical basis for assuming special covariance structures, we need to assume that Σ is an arbitrary positive definite covariance matrix. However, when p is large relative to N, more parsimonious covariance structures are required. Rao [9], [10] introduced a natural candidate for such parsimonious covariance structures, based on random-effects models. As a generalization of his idea we consider a family of covariance structures (see Lange and Laird [7])

$$\Sigma = B'_c \varDelta_c B_c + \sigma_c^2 I_p , \qquad 0 \le c \le q , \qquad (1.3)$$

where Δ_c is an arbitrary positive semi-definite matrix, $\sigma_c^2 > 0$, B_c is the matrix which is composed of the first c rows of B, and I_p is the identity matrix of order p. Without loss of generality, we assume that $BB' = I_q$.

In this paper we consider to test the hypothesis

$$H_{0c}: \Sigma = B'_c \varDelta_c B_c + \sigma_c^2 I_p \tag{1.4}$$

against alternatives $H_{1c} \neq H_{0c}$ under the model (1.2). In Section 2 we obtain a canonical reduction. It is shown that the problem of obtaining the likelihood ratio (=LR) test under (1.2) can be reduced to the one of obtaining the LR test under (1.1). In Section 3 we obtain the LR test for H_{00} and its asymptotic expansion. The LR test for H_{0c} ($c \ge 1$) is examined in Section 4. However, since the exact LR test is very complicated, it is suggested to use the LR test for a modified hypothesis.

2. A canonical reduction

Let $B = [B'_c, B'_c]'$ and \overline{B} be a $(p-q) \times p$ matrix such that $\overline{B}\overline{B}' = I_{p-q}$ and $B\overline{B}' = O$, i.e.

$$Q = \begin{pmatrix} B_c \\ B_{\bar{c}} \\ \overline{B} \end{pmatrix} = \begin{pmatrix} Q_1 \\ Q_2 \\ Q_3 \end{pmatrix}$$
(2.1)

is an orthogonal matrix of order p. Further, let $H = [H_1, H_2]$ be an orthogonal matrix such that H_1 is an orthonormal basis matrix on the space spanned by the column vectors of Z. Consider the transformation from X to

$$\begin{pmatrix} \tilde{Y} \\ Y \end{pmatrix} = \begin{pmatrix} H_1' \\ H_2' \end{pmatrix} X Q' .$$
 (2.2)

Then, the rows of \tilde{Y} and Y are independently distributed, each with a *p*-variate normal having covariance matrix

$$\Psi = Q\Sigma Q' = \begin{bmatrix} \Psi_{11} & \Psi_{12} & \Psi_{13} \\ \Psi_{21} & \Psi_{22} & \Psi_{23} \\ \Psi_{31} & \Psi_{32} & \Psi_{33} \end{bmatrix}$$
(2.3)

and means

$$E\begin{pmatrix} \tilde{Y}\\ Y \end{pmatrix} = \begin{pmatrix} \mu\\ \tilde{A}\Xi & O \end{pmatrix}, \qquad (2.4)$$

where $\mu = H'_1 A[\Xi, O] + H'_1 Z \Theta Q'$ and $\tilde{A} = H'_2 A$. We can express the hypothesis H_{0c} as

Tests for random-effects covariance structures

$$H_{0c}: \Psi_{11} = \varDelta_c + \sigma_c^2 I_c , \qquad \Psi_{1(23)} = O ,$$

and $\Psi_{(23)(23)} = \sigma_c^2 I_{p-c} ,$ (2.5)

where

$$\Psi_{1(23)} = [\Psi_{12}, \Psi_{13}], \qquad \Psi_{(23)(23)} = \begin{pmatrix} \Psi_{22} & \Psi_{23} \\ \Psi_{32} & \Psi_{33} \end{pmatrix}.$$
(2.6)

Since the elements of μ are free parameters, it can be easily seen that the LR statistic for H_{0c} is equal to the LR statistic formed by considering only the density of

$$Y = H'_2 X Q' = [Y_1, Y_2, Y_3] = [Y_{(12)}, Y_3]$$

The model for $Y: n \times p$ is

$$Y \sim N_{n \times p}([\tilde{A}\Xi, O], \Psi \otimes I_n), \tag{2.7}$$

where n = N - r. Let $L(\Xi, \Psi)$ be the likelihood function of Y. The maximum of $L(\Xi, \Psi)$ when Ξ and Ψ are unrestricted was first obtained by Khatri [5] and can be written as

$$\max L(\Xi, \Psi) = (2\pi)^{-pn/2} \left| \frac{1}{n} S_{(1\,2)(1\,2)\cdot 3} \right|^{-n/2} \times \left| \frac{1}{n} Y_3' Y_3 \right|^{-n/2} \exp\left(-\frac{1}{2} np\right), \quad (2.8)$$

where $S_{(12)(12)\cdot 3} = S_{(12)(12)} - S_{(12)3}S_{33}^{-1}S_{3(12)}$ and

$$S = Y'(I_n - \tilde{A}(\tilde{A}'\tilde{A})^{-1}\tilde{A}')Y = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{32} & S_{33} \end{pmatrix}.$$
 (2.9)

The result (2.8) is also obtained by considering the conditional density of $Y_{(12)}$ given Y_3 . In order to express S_{ij} in terms of the original notations, let

$$V = [X, Z, A]'[X, Z, A] = \begin{pmatrix} V_{xx} & V_{xz} & V_{xa} \\ V_{zx} & V_{zz} & V_{za} \\ V_{ax} & V_{az} & V_{aa} \end{pmatrix}.$$
 (2.10)

Noting that $H_2H'_2 = I_N - Z(Z'Z)^{-1}Z'$, it can be shown that

$$Y'_{i}Y_{j} = Q_{i}V_{xx\cdot z}Q'_{j}, \qquad S_{ij} = Q_{i}V_{xx\cdot za}Q'_{j},$$
 (2.11)

where $V_{xx \cdot z} = V_{xx} - V_{xz} V_{zz}^{-1} V_{zx}$, and

$$V_{xx \cdot za} = V_{xx} - \begin{bmatrix} V_{xz}, V_{xa} \end{bmatrix} \begin{bmatrix} V_{zz} & V_{za} \\ V_{az} & V_{aa} \end{bmatrix}^{-1} \begin{bmatrix} V_{zx} \\ V_{ax} \end{bmatrix},$$

which is equal to $V_{xx \cdot z} - V_{xa \cdot z} V_{aa \cdot z}^{-1} V_{ax \cdot z}$.

197

3. Test for H_{00}

Khatri [6] obtained the LR test for H_{00} in the model (1.1). Therefore, using the canonical reduction in Section 2, we can obtain the LR test for H_{00} in the model (1.2). On the other hand, it is easily seen that

$$\max_{H_{00}} L(\Xi, \sigma_0^2 I_p) = (2\pi)^{-pn/2} \exp\left(-\frac{1}{2}np\right) \times \left\{\frac{1}{np} (\operatorname{tr} S_{(12)(12)} + \operatorname{tr} Y_3' Y_3)\right\}^{-np/2}$$
(3.1)

Therefore, from (2.8) we can write the LR statistic for H_{00} as

$$\lambda_{0} = \frac{|S_{(12)(12) \cdot 3}| |Y'_{3}Y_{3}|}{\left\{\frac{1}{p} (\operatorname{tr} S_{(12)(12)} + \operatorname{tr} Y'_{3}Y_{3})\right\}^{p}} .$$
(3.2)

The statistic λ_0 can be written as

$$\lambda_0 = \frac{|W_1||W_2|}{\left\{\frac{1}{p}(\operatorname{tr} W_1 + \operatorname{tr} W_2 + \operatorname{tr} W_3)\right\}^p},$$
(3.3)

where $W_1 = S_{(12)(12)\cdot 3}$, $W_2 = Y'_3 Y_3$ and $W_3 = S_{(12)3}S_{33}^{-1}S_{3(12)}$. It is easy to verify that under H_{00} , W_1 , W_2 and W_3 are independent, $W_1 \sim W_q(n-k-(p-q), \sigma_0^2 I_q)$, $W_2 \sim W_{p-q}(n, \sigma_0^2 I_{p-q})$ and $W_3 \sim W_q(p-q, \sigma_0^2 I_q)$. Khatri [6] has given the *h*th moment of this statistic. However, his result should be corrected as follows:

$$E(\lambda_0^h) = p^{ph} \frac{\Gamma_q(\frac{1}{2}(m-p+q)+h)\Gamma_{p-q}(\frac{1}{2}(m+k)+h)\Gamma(\frac{1}{2}\{mp+k(p-q)\})}{\Gamma_q(\frac{1}{2}(m-p+q))\Gamma_{p-q}(\frac{1}{2}(m+k))\Gamma(\frac{1}{2}\{mp+k(p-q)\}+ph)}, \quad (3.4)$$

where m = n - k and $\Gamma_p(n/2) = \pi^{p(p-1)/4} \prod_{j=1}^p \Gamma((n-j+1)/2)$. From this, we can obtain an asymptotic expansion of the null distribution of $-(m+k)\rho \log \lambda_0$ by expanding its characteristic function. For the method, see, e.g., Anderson [1].

THEOREM 3.1. When the hypothesis H_{00} : $\Sigma = \sigma_0^2 I_p$ is true, the distribution function of $-(m+k)\rho \log \lambda_0$ can be expanded for large $M = \rho(m+k)$ as

 $P(-(m+k)\rho \log \lambda_0 \le x) = P(\chi_f^2 \le x) + O(M^{-2}),$

where $f = \frac{1}{2}(p-1)(p+2)$, m = N - r - k and ρ is defined by

$$f(m+k)(1-\rho) = \frac{1}{12p}(p-1)(p+2)(2p^2+p+2)$$
$$+ \frac{1}{2p}q\{2p^2+p-qp-2+(p-q)k\}k$$

198

Tests for random-effects covariance structures

In a special case q = p,

$$\rho = 1 - \frac{1}{6(m+k)p} \{2p^2 + (6k+1)p + 2\}.$$

4. Test for H_{0c}

For testing the hypothesis H_{0c} in (1.4), we may start from the model (2.7) for Y, in which the hypothesis is equivalent to (2.5). Under H_{0c} ,

$$Y_{1} \sim N_{n \times c} (\tilde{A} \Xi_{1}, \Psi_{11} \otimes I_{n}),$$

$$Y_{(23)} \sim N_{n \times (p-c)} ([\tilde{A} \Xi_{2}, O], \sigma_{c}^{2} I_{p-c} \otimes I_{n}),$$
(4.1)

where $\Psi_{11} = \Delta_c + \sigma_c^2 I_c$ and $\Xi = [\Xi_1, \Xi_2], \Xi_1: k \times c$. The log-likelihood after maximizing with respect to Ξ can be written as

$$l^{*}(\Psi_{11}, \sigma_{c}^{2}) = -\frac{n}{2} \left[p \log(2\pi) + \log|\Psi_{11}| + \operatorname{tr} \Psi_{11}^{-1} \frac{1}{n} S_{11} + (p-c) \left\{ \log \sigma_{c}^{2} + \frac{1}{\sigma_{c}^{2}} \cdot \frac{1}{n(p-c)} (\operatorname{tr} S_{22} + \operatorname{tr} Y_{3}' Y_{3}) \right\} \right]. \quad (4.2)$$

As is seen later on, the maximization of (4.2) in the space

$$\omega = \{ (\Psi_{11}, \sigma_c^2); \, \Psi_{11} - \sigma_c^2 I_c \ge 0, \, \sigma_c^2 > 0 \}$$
(4.3)

is complicated. For simplicity, we consider the maximization of (4.2) in the space $\tilde{\omega} = \{(\Psi_{11}, \sigma_c^2); \Psi_{11} > 0, \sigma_c^2 > 0\}$. This is equivalent to considering the LR test for a modified hypothesis

$$\tilde{H}_{0c}$$
: $\Psi_{11} > O$, $\Psi_{1(23)} = O$ and $\Psi_{(23)(23)} = \sigma_c^2 I_{p-c}$. (4.4)

The maximum is achieved at

$$\hat{\Psi}_{11} = \frac{1}{n} S_{11}$$
, $\hat{\sigma}_c^2 = \frac{1}{n(p-c)} (\text{tr } S_{22} + \text{tr } Y_3' Y_3)$. (4.5)

Therefore, we can suggest a test statistic

$$\tilde{\lambda}_{c} = \frac{|S_{(12)(12)\cdot 3}||Y'_{3}Y_{3}|}{|S_{11}|\left\{\frac{1}{p-c}(\operatorname{tr} S_{22} + \operatorname{tr} Y'_{3}Y_{3})\right\}^{p-c}}$$
(4.6)

for testing H_{0c} against alternatives $H_{1c} \neq H_{0c}$. Rao [9] proposed this statistic in a special case k = 1, r = 0 and p = q. We can decompose $\tilde{\lambda}_c$ as

$$\tilde{\lambda}_c = \tilde{\lambda}_c^{(1)} \tilde{\lambda}_c^{(2)} , \qquad (4.7)$$

where

$$\tilde{\lambda}_{c}^{(1)} = \frac{|S_{11\cdot(23)}|}{|S_{11}|} = \frac{|S_{11\cdot(23)}|}{|S_{11\cdot(23)} + S_{1(23)}S_{(23)(23)}^{-1}S_{(23)1}|}$$

and

$$\tilde{\lambda}_{c}^{(2)} = \frac{|S_{22\cdot3}||Y'_{3}Y_{3}|}{\left\{\frac{1}{p-c}(\operatorname{tr} S_{22\cdot3} + \operatorname{tr} Y'_{3}Y_{3} + \operatorname{tr} S_{23}S_{33}^{-1}S_{32})\right\}^{p-c}}$$

The statistics $\tilde{\lambda}_c^{(1)}$ and $\tilde{\lambda}_c^{(2)}$ are the LR statistics for $\Psi_{1(23)} = 0$ and $\Psi_{(23)(23)} = \sigma_c^2 I_{p-c}$, respectively.

LEMMA 4.1. When the hypothesis H_{0c} is true, it holds that

(i) $\tilde{\lambda}_{c}^{(1)}$ and $\tilde{\lambda}_{c}^{(2)}$ are independent,

(ii)
$$E({\tilde{\lambda}_c^{(1)}}^h) = \frac{\Gamma_c(\frac{1}{2}(m-p+c)+h)\Gamma_c(\frac{1}{2}m)}{\Gamma_c(\frac{1}{2}(m-p+c))\Gamma_c(\frac{1}{2}m+h)},$$

(iii)
$$E(\{\tilde{\lambda}_{c}^{(2)}\}^{h}) = (p-c)^{(p-c)h} \frac{\Gamma_{q-c}(\frac{1}{2}(m-p+q)+h)}{\Gamma_{q-c}(\frac{1}{2}(m-p+q))} \times \frac{\Gamma_{p-q}(\frac{1}{2}(m+k)+h)\Gamma(\frac{1}{2}\{m(p-c)+k(p-q)\})}{\Gamma_{p-q}(\frac{1}{2}(m+k))\Gamma(\frac{1}{2}\{m(p-c)+k(p-q)\}+(p-c)h)},$$

where m = n - k.

PROOF. It is easy to verify that under H_{0c} , $S_{11\cdot(23)} \sim W_c(n-k-(p-c))$, Ψ_{11} , $S_{1(23)}S_{(23)(23)}^{-1}S_{(23)1} \sim W_c(p-c, \Psi_{11})$, $S_{22\cdot3} \sim W_{q-c}(n-k-(p-q), \sigma_c^2 I_{q-c})$, $Y'_3 Y_3 \sim W_{p-q}(n, \sigma_c^2 I_{p-q})$ and $S_{23}S_{33}^{-1}S_{32} \sim W_{q-c}(p-q, \sigma_c^2 I_{q-c})$. Further, these five statistics are independent. Therefore, $\tilde{\lambda}_c^{(1)}$ and $\tilde{\lambda}_c^{(2)}$ are independent. The *h*th moment of $\tilde{\lambda}_c^{(1)}$ is obtained from that $\tilde{\lambda}_c^{(1)}$ is distributed as a lambda distribution $\Lambda_{c,p-c,n-k-(p-c)}$. The *h*th moment of $\tilde{\lambda}_c^{(2)}$ is obtained from the one of λ_0 by changing *p* and *q* as p-c and q-c, respectively.

Using Lemma 4.1, we can obtain an asymptotic expansion of $-(m+k)\rho_c \log \tilde{\lambda}_c$.

THEOREM 4.1. When the hypothesis H_{0c} is true, the distribution function of $-(m+k)\rho_c \log \tilde{\lambda}_c$ can be expanded for large $M = (m+k)\rho_c$ as

$$P(-(m+k)\rho_c\log \tilde{\lambda}_c \leq x) = P(\chi_{f_c}^2 \leq x) + O(M^{-2}),$$

where $f_c = c(p-c) + \frac{1}{2}(p-c-1)(p-c+2)$, m = n-k and ρ_c is given by

200

$$f_{c}(m+k)(1-\rho_{c}) = \frac{1}{12(p-c)} [(p-c-1)(p-c+2) \{2(p-c)^{2}+p-c+2\} + 6c(p+1)(p-c)^{2}] + \frac{1}{2(p-c)} \{2q(p-c)^{2} - (q-c-1)(q-c)(p-c)-2(q-c)+(q-c)(p-q)k\} k$$

Next we obtain the exact LR criterion $\lambda_c^{n/2}$ for H_{0c} , based on the distribution of Y. For the case $\hat{\Psi}_{11} - \hat{\sigma}_c^2 I_c \ge 0$, the LR statistic λ_c is equal to $\tilde{\lambda}_c$. However, if it is not the case, we need to obtain the maximum of (4.2) in the space ω . This is equivalent to solving the problem of minimizing

$$g(\Delta_c, \sigma_c^2) = \log|\Delta_c + \sigma_c^2 I_c| + \operatorname{tr}(\Delta_c + \sigma_c^2 I_c)^{-1} \hat{\Psi}_{11} + (p-c) \left(\log \sigma_c^2 + \hat{\sigma}_c^2 / \sigma_c^2\right).$$
(4.8)

Let $\delta_1 \geq \cdots \geq \delta_c \ (\geq \sigma_c^2)$ and $t_1 > \cdots > t_c$ be the characteristic roots of $\Delta_c + \sigma_c^2 I_c$ and $\hat{\Psi}_{11}$, respectively. Then, from Anderson, Anderson and Olkin [2] it is seen that

$$\min_{\Delta_c \ge 0, \ \sigma_c^2 > 0} g(\Delta_c, \ \sigma_c^2) = \min_{\delta_1 \ge \cdots \ge \delta_c \ge \delta^* > 0} \left[\sum_{i=1}^c \left(\log \delta_i + \frac{t_i}{\delta_i} \right) + (p-c) \left(\log \delta^* + \frac{t^*}{\delta^*} \right) \right],$$
(4.9)

where $\delta^* = \sigma_c^2$ and $t^* = \hat{\sigma}_c^2$. If $t_c \ge t^*$, then the minimum is achieved at $\delta_i = t_i$, i = 1, ..., c and $\delta^* = t^*$, and hence $\lambda_c = \tilde{\lambda}_c$. For the case $t^* > t_c$, such a minimum may be found in a boundary-value situation, but becomes very complicated. As a simple bound for λ_c , consider

$$\bar{\lambda}_{c} = \begin{cases} \tilde{\lambda}_{c} & (t_{c} \ge t^{*}), \\ \frac{|S_{(12)(12) \cdot 3}| |Y'_{3}Y_{3}|}{|S_{11}| \{nt_{c} \exp(t^{*}/t_{c} - 1)\}^{p-c}} & (t^{*} > t_{c}). \end{cases}$$
(4.10)

We note that $\overline{\lambda}_c$ is obtained by letting $\delta_i = t_i$, i = 1, ..., c, and $\delta^* = t_c$ in (4.9) if $t^* > t_c$. Then, from (4.9) and $\omega \subset \widetilde{\omega}$ we have

$$\bar{\lambda}_c \le \lambda_c \le \bar{\lambda}_c \,. \tag{4.11}$$

References

- T. W. Anderson, An Introduction to Multivariate Statistical Analysis 2nd ed., New York: Wiley, 1984.
- [2] B. M. Anderson, T. W. Anderson and I. Olkin, Maximum likelihood estimators and likelihood ratio criteria in multivariate components of variance, Ann. Statist., 14 (1986), 405-417.
- [3] V. M. Chinchilli and R. K. Elswick, A mixture of the MANOVA and GMANOVA models, Commun. Statist.-Theor. Meth., 14(12), (1985), 3075-3089.

- [4] S. Geisser, Growth curve analysis. In Handbook of Statistics, Analysis of Variance, Vol. I, (P. R. Krishnaiah, ed.), New York: North-Holland, 1980, 89-115.
- [5] C. G. Khatri, A note on a MANOVA model applied to problems in growth curve, Ann. Inst. Statist. Math., 18 (1966), 75-86.
- [6] C. G. Khatri, Testing some covariance structures under a growth curve model, J. Multivariate Anal., 3 (1973), 102-116.
- [7] N. Lange and N. M. Laird, The effect of covariance structure on variance estimation in balanced growth-curve models with random parameters, J. Amer. Statist. Assoc., 84 (1989), 241-247.
- [8] R. F. Potthoff and S. N. Roy, A generalized multivariate analysis of variance model useful especially for growth curve problems, Biometrika, 51 (1964), 313-326.
- [9] C. R. Rao, The theory of least squares when the parameters are stochastic and its application to the analysis of growth curves, Biometrika, 52 (1965), 447-458.
- [10] C. R. Rao, Simultaneous estimation of parameters in different linear models and applications to biometric problems, Biometrics, 31 (1975), 545-554.
- [11] N. H. Timm, Multivariate analysis of variance of repeated measurements. In Handbook of Statistics, Analysis of Variance, Vol. I, (P. R. Krishnaiah, ed.), New York: North-Holland, 1980, 41-87.
- [12] R. F. Woolson, Growth curve analysis of complete and incomplete longitudinal data, Commun. Statist.-Theor. Meth., A9 (14), (1980), 1491-1513.

Department of Mathematics, Faculty of Science, Hiroshima University