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1. Introduction

Marshal and Olkin [6] have introduced the bivariate exponential distribu-
tion (BVED) with survival distribution

P(X > x9Y > y) = F(x9 y) = exp{ — λ1x — λ2y — λ0 max(x, y)},

where /10, λί and λ2 are parameters. Let l/0, l/t and 172 be independently
distributed from univariate exponential distributions with failure rates A0, λl

and λ2, respectively. Then (X9 Y) can be written as X = mm(Ul9U0) and
Y = min((72, t/0). Thus X and 7 come from the shock times U1 and l/2,
respectively and are simultaneously governed by the fatal shock causing at
the time l/0. For a sample from a BVED the likelihood equation system
for parameters λθ9 λ± and λ2 is a simple algebraic one but the solution is
intractable, cf. Arnold [1]. So one has to use some iteration method, e.g.,
the Fisher scoring method to seek the numerical value of the maximum
likelihood estimator (MLE). Arnold introduced the unbiased estimator of the
simple form, which has fairly less relative efficiency to the MLE on a part
of the parameter space. Proschan and Sullo [7] proposed the intuitive estima-
tor with high relative efficiency over all the space, which is not fully efficient.
We give an efficient estimator by the projection method, see Eguchi [4] for
formal derivation and several applications of the method. The estimator form
is less simple than other non-iterative estimators but the construction is neces-
sary as the first stage in the following further analysis.

Ebrahimi [3] has considered a bivariate accelerated life test model, see
also Basu and Ebrahimi [2] for nonparametric approaches and Mann, Shafer
and Singpuwala [5] for general notion as power rule model.

The main purpose of this paper is to establish the projection method of
testing and estimation for the accelerated life test model. Let (XJ9 Yj) be
independently distributed from a BVED for j = 1, ..., J with parameters λ0j9

λίj, λ2j which satisfy

(1.1) λij^CtVf (ΐ = 0, 1, 2)

Here V 3 is a controllable variable which denotes the stress level at the '-th
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stage, C0, Q and C2 are unknown parameters associated with the three
types of the shocks and P describes a relation of failure rates with the
stress levels. Thus the parameter structure yields a 4-dimensional surface
with coordinates (C0,C19C29P) in the space of all the 3J failure rates Ay's.
We note that the corresponding surface becomes flat after the log-transforma-
tion of Ay's. Based on the estimates >ίy of λtj via the projection method in
the first stage we project the statistics ly's into the flat surface through
log-transformation.

In Section 2 we introduce the projection method to the accelerated life
test model as stated above. The goodness-of-fit test and the estimator are
shown to be asymptotically equivalent to the maximum likelihood method.
Section 3 gives a numerical examples for the comparison of the projection
method with the maximum likelihood method or other methods. In Section
4, we discuss the performance of the projection method.

2. The projection method

2.1 Estimation of failure rates

A bivariate exponential random variable (X, Y) has a density function

λ0F(x, y) on L = {x = y} ,

f(χ,y) = λ2(λ, + λ0)F(x, y) on D = {x > y} ,

λ,(λ2 + λ0)F(x, y) on U = {x < y}

with respect to the carrier measure μ defined by μ(B) = μ2(B) 4- μ1(BΠL)/.v/2,
where μk denotes the fc-dimensional Lebesgue measure. For a random sample

frijJΊλ •••» (χ

n>yn) fr°m a distribution with density /(x, y), we write

PI = - Σ ID(XΪ> yt)> P2 = ~Σ M*i» tt) > * = - Σ **

y = ~ Σ yt and * = - Σ maxfo, yj ,

where ls denotes the indicator function of a set S. Then the log-likelihood
function is written as

(2.1) I(λ) = n{p0 log ΛO + P! log λ2(λ^ +λ0) + p2 log λ1(λ2-\-λ0)-λ1x-λ2y-λ0z}

with p0 = 1 — p1 - p2 and λ = (λl9 λ29 λ0)
τ. The estimating equation system

probably cannot be solved in the form of elementary functions. It follows
from (2.1) that the statistic vector t = (pί9 p2, x, y, z)τ is minimal sufficient
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with mean vector

HI = (AI/ΛJIJ, Λ 2/Xj|

with λj. = λ0 + λί + A 2.

We extend the family of BVED's to a 5-dimensional exponential family

equipping with the sufficient statistic t. The density is defined as

α0F(x, y) on L = {x = y} ,

o^Fίx, y) on D = {x > j;},

α2F(x,)>) on U = {x < y} ,

where α0 is determined as

by the condition of total mass one. Note that the restriction of

(2.2) o^ = λ2(λι + Λ,0) and α2 = λί(λ2 H- λ0)

reduces the extended family to the original family. If the sample follows

from a distribution with density /*(x, j;), then the likelihood is

(2.3) /(α, λ) = n(p0 log α0 + p^ log α2 + p2 log α t - λ^x - λ2y - λ0z),

from which t is still sufficient. The MLE is easily obtained as

_ _

w(z —
A -Oc —-2 — _ _ - — ,

w(z — >;)
ί 2
AI = — — — - — ,

w z — x

Pi
2 = — — ii — -

w w — y
,and P2 Pi

z — x z — y

1—
w

where w = x + y — z. In view of the extension we introduce a transformation

5 = φ(t) by

(2.4) 5 = φ(t) = (Pi/w, p2/w, po/w, pj(z - y), p2/(z - x))τ .

Note that s is also sufficient since φ is one-to-one. Furthermore s is the

joint MLE of a parameter vector

+ A2), α0, A! + A0, A2 + ^o)Γσ = (σ l9 σ2, σ3, σ4, σ5)
Γ = (α^^o + A

since it is satisfied that

s = (sl9 s29 s3, 54, s5)
Γ = (άι/(A0 + ^ι)» ά2/(ί0

By substitution of the inverse transformation
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( α l> α 2> A!, Λ2, Λ0)

= (0^ (T5, cτ2(74, GI H- (T2 -h (T3 — <T4, i

into (2.3) it holds that the log-likelihood function for σ is

/*(σ) = n{p0 log σ3 + px log a^a5 + p2 log σ2σ4 - (σt + σ2 + σ3 - σ4)x

/ \~ ( ± _L. \?\

Thus the observed information matrix is given by

1 3
(2.5) • P2/SS).

By theory of parametric estimation it holds that <#σ(s) is strongly a consis-
tent estimator of the Fisher information matrix J0 = </σ(σ) of σ and that
y/n(s — σ) has asymptotically a 5-variate normal law with mean 0 and variance

t^"1. In view of this ^^(s) is a consistent estimator of the variance matrix
of 5.

We now back to the case of BVED. It follows from (2.2) that φ(m) = Aλ,

where λ = (λl9 λ2, λ0)
τ and

A =

0 1 0 1 0

1 0 0 0 1

0 0 1 1 1

Thus s is a Fisher-consistent estimator of Aλ. A weighted sum of squares
is introduced as

Dξ = n(s-Aλ)τSσ(s)(s-Aλ),

where Jσ(s) is defined in (2.5). The minimizer of D$ with respect to λ is
given by

(2.6) λ = (AτJσAΓlAτJσs

and the minimum is

(2.7) Dl = nsτ{Sσ - SσA(AτJσAΓlAτJσ}s ,

where Jσ = (̂5). In consequence we can regard λ as a generalized least-
square estimator (GLSE) and DQ as the residual sum of squares (RSS). We
write

1* =

Since Jσ~ Jσ = Op(n~1/2) and
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l*-λ = (AτSσAΓlAτSσ(s-Aλ),

we see that ^/n(λ — λ) and >/n(l* — λ) both have asymptotically a trivariate
normal distribution with mean 0 and variance (Aτ^σA)~l, which is the inverse
matrix of Fisher information. Accordingly we conclude the asymptotic effi-
ciency of the estimator λ.

2.2 Accelerated life test model

We now investigate the case of bivariate accelerated life test model in

Introduction. Let ( x j l 9 y j ι ) 9 ..., (*/*,., X/n,.) be a random sample from (XJ9 Yj)
for j = 1, ..., J, where (XJ9 l})'s have failure rates Λ,f/s satisfying (1.1). The
MLE of (C0, C1 ?C2,P) can be only numerically sought by some iteration
method since it is too complicated to obtain an explicit solution of the system
of likelihood equations, cf. Ebrahimi [3].

We denote ^ the corresponding statistic based on the j-th observation
to (2.4) and denote λj and DQJ the GLSE and the RSS based on Sj by a
similar way to (2.6) and (2.7), respectively, for j = 1, ..., J. Writing

(2.8) Uj = (logλj0,logλn,logλj2)
τ

and u = (u[,..., w J)τ, we see that the statistic u is sufficient and Fisher-
consistent for ξ = (ξί9..., ξj) with

ξj = (log λjθ9 log λjί9 log λj2)
τ .

From the assumption (1.1) it is written as that ξ = Xθ, where

(2.9) θ = (log C0, log C l f log C2, P)

and Xτ = (Xί9..., Xj) with

1 0 0 l o g 1

0 1 0 log 1

0 0 1 log 1

By a similar way of defining DQ, we introduce a weighted sum of squares

D2 = (u - XΘ)τSξ(u - Xθ),

Here Sξ = diag(Λ, - -, Λ) with ^ = diagM^J^A diag(>ί) for j = 1,..., J.
The minimizer of D2 with respect to θ or the GLS£ is given by

and the minimum, or the RSS is
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(2.10)

We note that

(C0, C1? C2, P) = (expβ), exp(02), exp(03), 04)

minimizes D2 with respect to (C0, C1? C2, P) when D2 is regarded as a function

in the parameters through the transformation (2.9).

Consider the goodness-of-fit test of the accelerated life test model. The

null hypothesis is composite with nuisance parameter vector (C0, Cl9 C2, P).

We propose D2 as a test statistic. On the other hand, the usual likelihood

ratio is defined 2(11 — /2). Here l^ = ΣJ=I maxλ,

J

,§ λι,...9λj are subject to (1.1)

By a similar argument in the section 2.1, the limiting distribution of ^/n(θ — θ)

is 4-variate normal distribution with mean 0 and covariance (XT^X)~^ which

is the inverse of Fisher information matrix of θ. Since it follows that

l A *
0 Ci C2

x (Co - Co, Q - C19 C2 - C2, P - P) + Op(n~1/2)

and the Fisher information matrix of (C0, C l5 C2,P) is

diag(C0, C15 C2, l)XτSξX diag(C0, C l f C2, 1) ,

we can see that the estimator (C0, Cί9 C2, P) is asymptotically efficient. Alter-

natively the goodness-of-fit test D2 is asymptotically a chi-square distribution

with 3 J — 4 degrees of freedom because

P(ξ) = / -

is a symmetric idempotent matrix of rank 3 J — 4 and

u(ξ) = ̂ 1/2(« - Xθ)

has asymptotically the standard (3 J-variate) normal distribution. For we have

that

D2 = u(ξ)τP(ξ)u(ξ) ,

and that the effect of substitution of ξ into ξ is asymptotically negligible.

Here J^1/2 denotes the grammian square root of Jξ. Hence the estimate and

test statistic are shown to be equivalent to the MLE and the likelihood
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ratio. Thus we observe that the methods of projection and maximum likeli-
hood are equal in the asymptotical sense.

3. Numerical examples

We investigate the finite sample behavior of the estimates and test statis-
tics via projection method in a numerical study. We give a numerical experi-
ments with 4 stress levels V± = 1., V2 = 2.9 V3 = 4. and V4 = 8., assuming the
sample sizes as n^ = n2 = n3 = n4 = 50. In the following table, by determining
appropriately true values of parameters (C0, C l 9 C2, P), we first estimates the
12 failure rates λy's by two methods of projection and maximum likelihood,
say λ^s and I '̂s, respectively. Secondly based on if/s the estimates and
goodness-of-fit test by the second projection method are given in addition to
the MLEs and the log-likelihood ratios.

Case 1

True value

Projection

MLE

Projection test

Likelihood Ratio

TABLE The estimates and goodness-of-fit tests

Q = 1.4294 C2 = 1.8383 P = 1.2518

.7868 1.4358 2.0093 1.2714

.7474 1.2901 1.8402 1.3271

5.3734 (2.95, 0.64, 1.41, 0.37)

6.7049 (3.49,1.35,1.55,0.31)

True

Proj.

MLE

*oι

1.0

.88

.89

*11

1.4

.86

.87

A
21

1.8

2.0

2.0

0̂2

2.4

1.7

1.7

λ
ί2

3.4

3.8

3.8

λ
22

4.4

5.3

5.4

*03

5.8

3.8

3.9

λ
ί3

8.1

8.9

9.2

^23

10.4

9.9

10.0

Λ-04

13.8

12.3

12.3

*14

19.3

21.8

21.8

λ
24

24.8

27.1

27.1

Case 2

True value C0 =

Projection

MLE

Projection test

Likelihood Ratio

.4314 d = 2.9621 C2 = 1.6939

.3928 3.1699 2.0093

.3818 3.0460 1.8837

11.8964 (1.42,2.07,5.06,3.35)

11.1535 (1.04,1.37,4.69,4.06)

P = 0.3802

0.3582

0.3852

True

Proj.

MLE

Λ oi

.43

.26

.27

*11

3.0

3.3

3.4

*21

1.7

1.7

1.8

Λ>2

.56

.60

.60

λί2

3.9

4.6

4.6

λ22

2.2

2.6

2.6

^03

.73

.76

.76

^13

5.0

4.2

4.2

^23

2.9

2.4

2.4

•̂04

.95

.79

.79

*14

6.5

6.6

6.6

λ24

3.7

5.8

5.9
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Case 3

True value

Projection

MLE

Projection test

Likelihood Ratio

C0 = 1.0065 Q = 2.5276 C2 = 2.1743 P = 2.2799

1.0192 2.7342 2.5607 2.1507

1.0225 2.8114 2.4255 2.1256

9.5049 ( .63, 4.38,1.42, 3.08)

9.3885 ( .53, 5.17,1.00, 2.69)

True

Proj.

MLE

Λ oi

1.0

.88

.92

An

2.5
2.5
2.6

λ2l

2.2
2.4
2.5

Λ-02

4.9
3.9
3.9

A1 2

12.2

11.9

11.9

λ22

10.6

15.7

15.8

Λ-03

23.7

18.9

19.2

*13

59.6

55.7

57.1

^23

51.3

39.2

39.2

Λ-04

115.3

109.4

111.8

*14

289.5

245.4

253.2

A24

249.0

150.7

149.8

Case 4

True value C0 = 1.8380 Q = .2326 C2 =

Projection 1.7610 .2971

MLE 1.7986 .2920

Projection test 9.1999 (1.64, 1.46, 2.23, 3.88)

Likelihood Ratio 9.7205 (1.90, 1.50, 2.00, 4.32)

.5258

.5809

.6134

P = 2.2799

2.1507

2.1256

True

Proj.

MLE

Λ-oi

1.8

1.9

2.0

All

.23

.43

.44

λ
2ί

.53

.65

.67

Λ-02

6.0

4.7

4.8

λ
ί2

.75

.88

.88

A
22

1.7

1.8

1.9

Λ-03

19.3

14.5

15.1

Ai3

2.4

2.4

2.3

*23

5.6

6.8

7.3

Λ-04

62.6

73.3

74.9

*14

7.9

7.6

7.6

2̂4

18.0

13.6

14.0

4. Discussion
We consider a situation where some 70-th sample violates the condition

(1.1). A way of detecting the '-th sample is proposed by the statistic D. By

the definition (2.10), D2 is decomposed into D2 = Σί=ι^/>

If the 7-th component D2 follows from the accelerated life test model, then
it has asymptotically a moment

with δj = tr{Xj'SjXj(XτSξX)~ί}. The term δj is a nonnegative function of

(C0, C1? C2, P) satisfying ΣJ=I ^/ = 4. In view of this we determine a Ό such
that

where m = Q, Cl9 C2, P).
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