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1. Introduction

Marshal and Olkin [6] have introduced the bivariate exponential distribu-
tion (BVED) with survival distribution

P(X 2 x,Y >y) = F(x,y) = exp{—4;x — A,y — Ay max(x, )},

where Ay, 1; and A, are parameters. Let U,, U, and U, be independently
distributed from univariate exponential distributions with failure rates 4,, 4,
and 4,, respectively. Then (X, Y) can be written as X = min(U,, U,) and
Y = min(U,, Uy). Thus X and Y come from the shock times U, and U,,
respectively and are simultaneously governed by the fatal shock causing at
the time U,. For a sample from a BVED the likelihood equation system
for parameters i,, 4, and A, is a simple algebraic one but the solution is
intractable, cf. Arnold [1]. So one has to use some iteration method, e.g.,
the Fisher scoring method to seek the numerical value of the maximum
likelihood estimator (MLE). Arnold introduced the unbiased estimator of the
simple form, which has fairly less relative efficiency to the MLE on a part
of the parameter space. Proschan and Sullo [7] proposed the intuitive estima-
tor with high relative efficiency over all the space, which is not fully efficient.
We give an efficient estimator by the projection method, see Eguchi [4] for
formal derivation and several applications of the method. The estimator form
is less simple than other non-iterative estimators but the construction is neces-
sary as the first stage in the following further analysis.

Ebrahimi [3] has considered a bivariate accelerated life test model, see
also Basu and Ebrahimi [2] for nonparametric approaches and Mann, Shafer
and Singpuwala [5] for general notion as power rule model.

The main purpose of this paper is to establish the projection method of
testing and estimation for the accelerated life test model. Let (X, Y;) be
independently distributed from a BVED for j=1, ..., J with parameters A;,
A1js A,; which satisfy

(1.1) Jj=CVE  (i=0,1,2)

Here V; is a controllable variable which denotes the stress level at the j-th
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stage, C,, C, and C, are unknown parameters associated with the three
types of the shocks and P describes a relation of failure rates with the
stress levels. Thus the parameter structure yields a 4-dimensional surface
with coordinates (C,, C,, C,, P) in the space of all the 3J failure rates 4;’s.
We note that the corresponding surface becomes flat after the log-transforma-
tion of 4;’s. Based on the estimates /Tij of A; via the projection method in
the first stage we project the statistics iu’s into the flat surface through
log-transformation.

In Section 2 we introduce the projection method to the accelerated life
test model as stated above. The goodness-of-fit test and the estimator are
shown to be asymptotically equivalent to the maximum likelihood method.
Section 3 gives a numerical examples for the comparison of the projection
method with the maximum likelihood method or other methods. In Section
4, we discuss the performance of the projection method.

2. The projection method
2.1 Estimation of failure rates
A bivariate exponential random variable (X, Y) has a density function
Ao F(x, y) on L={x=y},
06 9) =4 A2(As + 2)F(x,y)  on D={x>y},
My + A)F(x,y)  on U={x<y}

with respect to the carrier measure u defined by u(B) = u,(B) + ul(BﬂL)/\/i
where g, denotes the k-dimensional Lebesgue measure. For a random sample
(x15 Y1), --vs (xp, y,) from a distribution with density f(x, y), we write

_ 1 _ 1 _
D1 = n Z 1p(xi, vi) D2 = n Z Ly(xi, i), X =

1
y= ;Z,Vi and z =%Zmax(xi’yi),
where 1g denotes the indicator function of a set S. Then the log-likelihood
function is written as
(2.1) IA)=n{polog Ao+ P, log A;(1, +4o)+ P l0g 4, (A, + Ao) — A1 X— 4,7 — Ao Z}

with po=1—p, — P, and A= (4, 45, 49)". The estimating equation system
probably cannot be solved in the form of elementary functions. It follows
from (2.1) that the statistic vector t = (p,, P, X, y,Z)" is minimal sufficient
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with mean vector
m = (L1/Ays AxfAy V(A1 + Ao), V(A2 + Ao), 1/(A1 + Ao) + 1/(A; + 49) — &)

with A, =40 + 41 + 4,.
We extend the family of BVED’s to a 5-dimensional exponential family
equipping with the sufficient statistic ¢ The density is defined as

aoF(x, y) on L={x=y},
f*x, y) =< a, F(x, y) on D={x>y},
a, F(x, y) on U={x<y},
where a, is determined as
g =Ado + Ay + Ay —a; (Ao + A1) — 03 /(Ao + 43)
by the condition of total mass one. Note that the restriction of
2.2) o, = A(A; + 4o) and o, = 4,(4;, + 4p)

reduces the extended family to the original family. If the sample follows
from a distribution with density f*(x, y), then the likelihood is

(23)  la, 4) = n(po log 2y + p; log &, + py logay — 4;X — 4,5 — 402),

from which ¢ is still sufficient. The MLE is easily obtained as

_2 —2 . 1 -
5‘1=_—_p1—_, &z=_—_p2—:, '11=:—_p2_,
w(iz —y) w(z —Y) w z-—X

A 1 p A D p 1
Az=:—_p1_ and ,10=_p2_+_pl_—:,

w w—y z—X z—-y w

where W =X + y — z. In view of the extension we introduce a transformation
s = (1) by

24 s = @(t) = (P1/W, P2/W, Po/W, P1/(Z — ), D./(Z — X)" .

Note that s is also sufficient since ¢ is one-to-one. Furthermore s is the
joint MLE of a parameter vector

0 = (04, 03, 03, 04, 05)7 = (a3 (Ao + A1), @z /(Ao + 43), 0o, Ay + Aoy Ay + Ao)T
since it is satisfied that

s = (51, 52, 53, Sq, 85)7 = (&1/(/10 + 1), &2/(20 + 43), bo, A+ io, Ay + 20T

By substitution of the inverse transformation
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(21, a5 A1, A3, Ao)
= (0,05, 0,04, 0, +0,+03—04, 0y +0,+03—0s, 6, +0,+03—0,—05s)
into (2.3) it holds that the log-likelihood function for ¢ is
I*(o) = n{p, log 63 + p; log 6,05 + P, log 6,6, — (0, + 0, + 03 — 04)X
— (6, 4+ 0, + 03 — 05)y — (06, + 0, + 03 — 04, — 05)Z} .
Thus the observed information matrix is given by

@5 A= -2
’ T 00 00T

1*(0) = diag(p,/s}, P2/53, Po/s3» P1/5> 2/53) -

By theory of parametric estimation it holds that .Z,(s) is strongly a consis-
tent estimator of the Fisher information matrix ¢, = #,(6) of ¢ and that
ﬁ(s — o) has asymptotically a 5-variate normal law with mean 0 and variance
4,71, In view of this %, '(s) is a consistent estimator of the variance matrix
of s.

We now back to the case of BVED. It follows from (2.2) that ¢(m) = A4,
where A= (4, 45, 40)T and

A=

S = O
S O =
- o o
—_— O
_—- O

Thus s is a Fisher-consistent estimator of A4. A weighted sum of squares
is introduced as

D¢ = n(s — AT S, (s)(s — A4),

where Z,(s) is defined in (2.5). The minimizer of DZ with respect to 1 is
given by

(2.6) A=(ATF,A) AT 5 s
and the minimum is
2.7 D% =ns"{F, — F,A(ATF,4) AT 3, }s,

where ﬁ,, = S£,(s). In consequence we can regard A as a generalized least-
square estimator (GLSE) and D¢ as the residual sum of squares (RSS). We
write

*=(ATS,A) S5 .
Since ., — 4, = Op(n""?) and
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¥ — = (ATS,A) AT I (s — A)),

we see that \/n(1 — 1) and /n(4* — ) both have asymptotically a trivariate
normal distribution with mean 0 and variance (4A7.£,4)™!, which is the inverse
matrix of Fisher information. Accordingly we conclude the asymptotic effi-
ciency of the estimator 1.

2.2 Accelerated life test model

We now investigate the case of bivariate accelerated life test model in
Introduction. Let (x;;, y;1), ---5 (Xjn,» Vjn,) b€ @ random sample from (Xj, Y;)
for j=1, ..., J, where (X;, Y;)’s have failure rates 4;’s satisfying (1.1). The
MLE of (C,, C,,C,, P) can be only numerically sought by some iteration
method since it is too complicated to obtain an explicit solution of the system
of likelihood equations, cf. Ebrahimi [3].

We denote s; the corresponding statistic based on the j-th observation
to (2.4) and denote flj and 1331- the GLSE and the RSS based on s; by a
similar way to (2.6) and (2.7), respectively, for j=1, ..., J. Writing

2.8) u; = (log Ao, log 4y, log 4;,)"

and u=(ul,...,ul)T, we see that the statistic u is sufficient and Fisher-
consistent for & = (&,,..., ;) with

& = (log Ajo, log 4, log 4;,)" .
From the assumption (1.1) it is written as that ¢ = X0, where
2.9) 6 = (log Cy, log Cy, log C,, P)
and XT =(X,,..., X;) with

1 0 0 logV
X;= 101 0 logV;| , j=1,...,J.
0 0 1 logV

By a similar way of defining DZ, we introduce a weighted sum of squares
D? = (u — X0)"4,(u — X6),

Here J; = diag(4,, ..., #,) with J, = diag(1)A74,(s;) A diag(i) for j=1,...,J.
The minimizer of D? with respect to 6 or the GLSE is given by

0=X"FX) X" Fu

and the minimum, or the RSS is
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(2.10) D =u"(J, — S X(X"F.X) X" F)u.
We note that
(éo, éu C,, P)= (eXp(91 ), CXP(éz), CXP(és), 94)

minimizes D* with respect to (C,, C;, C,, P) when D? is regarded as a function
in the parameters through the transformation (2.9).

Consider the goodness-of-fit test of the accelerated life test model. The
null hypothesis is composite with nuisance parameter vector (C,, C,, C,, P).

We propose D? as a test statistic. On the other hand, the usual likelihood
ratio is defined 2(l, —1,). Here I, =) 7, max, I(4;) and

Ay, ..., Ay are subject to (1.1)} .

I, = max{ EJ: I(4;)
j=1

By a similar argument in the section 2.1, the limiting distribution of ./ n( — 0)
is 4-variate normal distribution with mean 0 and covariance (X T.ng )~! which
is the inverse of Fisher information matrix of 6. Since it follows that

. 1 1 1
6 — 0)T = diag| —, —, —, 1
( ) mg(co’cl’cz >

X (éo — Co, 61 -Gy, 62 -Gy, P- P) + 0p(n~?)
and the Fisher information matrix of (C,, C;, C,, P) is
diag(C,, C,, C,, l)XTng diag(Cy, C;, C,, 1),
we can see that the estimator (C,, C‘l, C,, P) is asymptotically efficient. ~Alter-

natively the goodness-of-fit test D? is asymptotically a chi-square distribution
with 3J — 4 degrees of freedom because

P(f) =] — E,QI/ZX(XTL%X)_I.,QI/Z
is a symmetric idempotent matrix of rank 3J — 4 and
u(¢) = 5 (u — X0)

has asymptotically the standard (3J-variate) normal distribution. For we have
that

D? = u(®)"P(é)u(é),

and that the effect of substitution of ¢ into & is asymptotically negligible.
Here . denotes the grammian square root of 4. Hence the estimate and
test statistic are shown to be equivalent to the MLE and the likelihood
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ratio. Thus we observe that the methods of projection and maximum likeli-
hood are equal in the asymptotical sense.

3. Numerical examples

We investigate the finite sample behavior of the estimates and test statis-
tics via projection method in a numerical study. We give a numerical experi-
ments with 4 stress levels V;, = 1., V, =2., V3 =4. and V, = 8., assuming the
sample sizes as n; = n, = n; = n, = 50. In the following table, by determining
appropriately true values of parameters (Cy, C,, C,, P), we first estimates the
12 failure rates 4;;’s by two methods of projection and maximum likelihood,
say i,.j’s and Z,»j’s, respectively. Secondly based on i,.j’s the estimates and
goodness-of-fit test by the second projection method are given in addition to

the MLEs and the log-likelihood ratios.

TABLE The estimates and goodness-of-fit tests

Case 1
True value C, = 1.0225 C, = 14294 C, = 1.8383 P =1.2518
Projection .7868 1.4358 2.0093 12714
MLE 71474 1.2901 1.8402 1.3271
Projection test 5.3734 (2.95,0.64,1.41,0.37)

Likelihood Ratio  6.7049 (3.49, 1.35, 1.55, 0.31)

}“01 },11 )‘21 AOZ A’lZ 122 /103 113 }'23 )‘04 )'14 )‘24

True 1.0 14 1.8 24 34 44 5.8 8.1 104 | 138 | 193 | 24.8
Proj. .88 .86 | 2.0 1.7 3.8 53 38 89 99 | 123 | 21.8 | 271
MLE .89 87 | 20 1.7 3.8 54 39 9.2 1100 | 123 | 21.8 | 27.1

Case 2
True value C,= 4314 C, = 29621 C, = 1.6939 P = 0.3802
Projection .3928 3.1699 2.0093 0.3582
MLE .3818 3.0460 1.8837 0.3852
Projection test 11.8964 (1.42,2.07, 5.06, 3.35)

Likelihood Ratio 11.1535 (1.04, 1.37, 4.69, 4.06)

)*01 '111 j'21 102 112 1'22 103 '2'13 }‘23 '104 }'14 124

True 43 30 1.7 .56 39 22 73 5.0 29 95 6.5 37
Proj. .26 33 1.7 .60 4.6 2.6 .76 42 2.4 79 6.6 5.8
MLE 27 34 1.8 .60 4.6 2.6 .76 4.2 2.4 .79 6.6 59
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Case 3

True value C, = 1.0065 C, =2.5276 C, =2.1743 P =22799

Projection 1.0192 2.7342 2.5607 2.1507

MLE 1.0225 2.8114 2.4255 2.1256

Projection test 9.5049 ( .63, 4.38, 1.42, 3.08)

Likelihood Ratio 9.3885 ( .53, 5.17, 1.00, 2.69)

Ao A1x A2 Aoz A1z A2z o3 A3 A23 Aos | s | A2a

True 1.0 25 22 49 122 | 106 | 23.7 | 59.6 | 51.3 | 115.3 | 289.5 | 249.0
Proj. .88 2.5 24 3.9 119 | 157 | 189 | 557 | 39.2 | 1094 | 2454 | 150.7
MLE .92 2.6 2.5 39 119 | 158 | 19.2 | 57.1 | 39.2 | 111.8 | 253.2 | 149.8
Case 4

True value C, = 1.8380 C, = .2326 C, = .5258 P = 22799

Projection 1.7610 2971 .5809 2.1507

MLE 1.7986 .2920 6134 2.1256

Projection test 9.1999 (1.64, 1.46, 2.23, 3.88)

Likelihood Ratio 9.7205 (1.90, 1.50, 2.00, 4.32)

)‘01 '111 }'21 A’OZ '{12 }‘22 '103 )"13 '2'23 '2'04 '114 '124

True 1.8 .23 .53 6.0 75 1.7 193 | 24 56 | 626 | 719 18.0
Proj. 19 43 .65 4.7 .88 1.8 145 | 24 68 [ 733 | 76 | 136
MLE 20 44 .67 48 .88 19 151 | 23 73 | 749 | 76 | 140

4. Discussion

We consider a situation where some j,-th sample violates the condition
(1.1). A way of detecting the j-th sample is proposed by the statistic D. By

the definition (2.10), D? is decomposed into D? = Y 7., D?, where

D? = ul (S, — FX,(X"2.X) ' F)u; .

If the j-th component DAj2 follows from the accelerated life test model, then
it has asymptotically a moment

mj-(Co, Cl’ C2, P) = 3 - 51

with §; = tr{X[ £ X, (X", X)™'}. The term §; is a nonnegative function of
(Co, Cy, C,, P) satisfying ) 7_, 6,=4. In view of this we determine a j, such

that

where 1; = mj(éo, C,, C,, P).

J
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