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§ 1. Introduction

After Daniels [1] introduced a saddlepoint technique in statistics, this
method is widely discussed for deriving an accurate approximation for the
probability density function of the mean of a random sample. Reid [6] gave
an excellent review in this field, and Davison and Hinkley [3] presented a
non-parametric saddlepoint approximation. See also Jensen [4].

When we want to find an approximation for the distribution function,
several saddlepoint methods are available. Most simple method is to integrate
the approximated probability density function obtained by the saddlepoint
method. However this integration may not be easily carried out. Another
method is based on the inversion formula from the cumulant generat-
ing function to the distribution function. See Lugannani and Rice [5], and
Daniels [2] for a review on the tail probability approximations.

Recall that the saddlepoint is defined by the solution T of the equation
κ'(Γ) = x, where κ(T) is a cumulant generating function. The saddlepoint is
useful for approximating the probability density function. In this article we
consider the equation κ'(T) = x + l/(nΓ) of T. Its solution will be called the
quasi-saddlepoint. Using the quasi-saddlepoint, we propose an alternate ap-
proximation formula for the distribution function by evaluating the inversion
formula (2.1).

§2. Approximation for the distribution function

Let X be a random variable with a distribution function F(x). We
denote its cumulant generating function by

κ(T) = log E{exp(ΓX)} = log ( exp(Tx) dF(x)
\J -oo

Suppose that κ(T) is finite for —a<T<b, where a and b are positive
constants. Our interest is to approximate the distribution function Fn(x) of
the mean Xn of a sample of n independent observations from F(x).
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Put the integral

Λc+ioo

(2.1) /(c) = (2πi)"1

 Qn{«m-ττ} dτ/τ for _ α < c < f t .
Jc—ioo

Then the inversion formula for the distribution function F"(x) of Xn is given by

l-/(c) i foO,

i f c < 0 .

The latter relation of (2.2) is derived by the residue theorem. The simple
approach for evaluating /(c) is given by (i) expanding 1/T around the saddle-
point f and (ii) integrating along the path T = f + iy, where f is the unique
solution of κ'(T) = x. However, this aproximation breaks down at the neigh-
borhood of the mean μ = κ '(O) because f is close to zero when x is near by μ.

We rewrite (2.1) as

at (c>0),

(2.3) 2π/(c)= ~°°

(c<0).
Γ°°

-
J — 0

Our approach is based on the real solution T = c of the equation

(2.4) d{κ(T) -xT- (log T)/n}/dT = κ'(T) -x- l/(nT) = 0 .

Now we may recall that a saddlepoint is the solution of κ'(T) = x. Hence
we say that c is a quasi-saddlepoint. Put g(T) = κ'(T) - l/(nT) for — a <
T <b, T^O. Then g(T) is monotone increasing because g'(T) = κ"(T) +
l/(nT2) and κ"(T) is a variance of a conjugate exponential family. Also
lim r__0 g(T) = + 00 and limr^+0 #(T) = — oo imply that (2.4) has at most
two solutions. We denote the positive and negative solutions by c+ = c+(x)
and c_ = c_(x) respectively, if exist. Note that the saddlepoint f is indepen-
dent of n. On the other hand the quasi-saddlepoints c+ and c_ depend on
n. Further, putting μ = EX = κ'(O), we have

LEMMA. Suppose the equation (2.4) has positive and negative quasi-saddle-
points c+ and c_, respectively, for given x. When x > μ (i.e., f > 0), then it
holds that

c A _ < 0 < f < c + , c_=0(n~1/2) and c+ = f + O(n~l/2) .

When x < μ (i.e., f < 0), then it holds that

c_ < f < 0 < c+ , c_ = f -f O(n~1/2) and c+ = O(n~1/2) .



Saddlepoint approximation for the distribution function 179

Further c+ is a monotone decreasing function of n and c_ is a monotone

increasing function of n.

To approximate I(c) of (2.1), we employ the Taylor expansion of the
exponent of (2.3). When x > μ, then take c = d+ = f + O(n~1/2). Transform-

ing t to u = t/έ, we have

nκ(c + ciu) — nx(c + cίu) - log(l + iu)

(2.5) = nκ(c)-nxc - αV/2 - βiu*/6 + γw4/24 + δiu*/120 - εu6/12Q + o(w6)

= nκ(c)-n3cc-ι;2/2-^3iι;3/6 + >l4y4/24 + λ5iv
5/l2Q - λ6v

6/12Q + o(n~2)

where

i, = αw , α = α(cA) = {ncA2Kw(cA) + I}1/2 = O(n1/2) ,

β = nc3κ(3)(c) - 2 , 7 = n^4κ:(4)(c) + 6 ,

(3 = nc5/c(5)(c) - 24 , ε = ncV6)(cA) + 120 ,

(2.6) λ3 = λ3(c) = {nc3κ(3)(c) - 2}α'3 = O(n~1/2) ,

A4 = Λ4(ί) = {nc4κ(4\c) + 6}α~4 = O^'1) ,

λ5 = A5(ί) = {ncV5)(c) - 24}α~5 = O(n~3/2) ,

λ6 = λ6(c) = {ncV6)(c) + 120}α-6 = O(n~2) .

Thus we obtain the following formal expansion of I(c) as

Λoo

J.2πc

= A1{(2π)-1/2 f" e-
ϋ2/2 e-Λ3ίt;3/6+A4t;4/24+λ^5/5!-^6/6! dv + o(n~2)} ,

J — 00

where

^i = exp{n/c(c) - n3cί}/(2πα2)1/2 .

When 3c<μ, replacing c by c_ (=f + O(n~1/2)) and A^(t) by -yl^c.), we
get the similar results. Further expanding the exponent and taking expecta-
tion we get

THEOREM. Suppose that the equation (2.4) has the positive solution c+
and/or the negative solution c_. When x > μ, we get

I(c+) = AtfJil + a2(c+) + α3(c+) + o(n-2)} ,
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where

1 _5_λ2_

and

x < μ, we geί

/(c_) = -A^.KI + α2(<?_) + α3(έ_) + o(ιΓ2)} ,

where a2 and a^ are defined in the above, and a2, a3 and λj are evaluated at c_.

We note that the coefficients of λj in a2 and in α3, defined in the above

theorem, are the same when we approximate the density function by the

saddlepoint f. (At that time λj is defined by κ(j\f)/{κ"(f)}j/2). When the

equation (2.4) has two solutions c+ and c_, the distribution function of Xn,

expressed by (2.2), is approximated by the following two formulae as

F+W = 1 - A,(c+) Σΰ ak(c+) and Ff(x) = Atf.) Σί=ι "*(£-}

for each j = 1, 2, 3, where a^(-}= 1. From the lemma in the above we

expect that ^+(3c) provides a better approximation than Fj~(x) does when

x > μ. Conversely when x < μ, Ff~ (x) may be superior to F}

+ (x). Also when

3c is close to μ, then T9 c+ and c_ are close to zero. In deriving the relation

(2.5), the magnitude of c is important. To improve the approximation around

the mean μ, we combine two formulae smoothly in the following manner.

Let σ2 be the variance /c"(0) of X, and let x = x0 be the solution of the

equation

(2.7) £+(x)=-£.(x).

From LEMMA following (2.4), the sign of x — x0 determines whether c+ is

greater than |c_| or not when two solutions exist. If X follows a symmetric

distribution with mean μ, x0 coincides with μ. Thus we propose the approxi-

mation formulae:

(2.8) Fj(x) =

Fj~(x) if x < x0 - σ/(2n1/2),

(1 - t)Fj-(x) + ί/)+(x) if x = x0 + (t - l/2)σn-1/2, 0 < t < 1 ,

F:+(x) if x > x0 + σ/(2n112),
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for 7 = 1, 2, 3. The validity of this strategy will be shown in the examples
listed in the section 4.

§3. Asymptotic properties

When x = κ'(O) = μ, quasi-saddlepoints are given by + (nσ2)~1/2 + o(rc~1/2),
where σ2 = κ"(G) is a variance of X. In this case λj of (2.6) is O(l).

As n tends to infinity, by the central limit theorem most of the distribu-
tion lies in the region of |x — μ\ < An~lβ where A is a positive constant.
Therefore we need to consider the case x = μ + δn~l/2 for fixed <5. Then

the solution of κ'(T) - (nT)'1 - (μ + δn~1/2) = 0 is given by c+, c_ =
{δ ± (δ2 + 4σ2)1/2}/{2σV/2} + o(n~1/2). Then λj(£±) = O(l).

In the above two cases, λj(c+) are O(l). This implies that our approxima-
tion may not be good around μ. However in the tail area containing lower
or upper 5% point, (2.8) works sufficiently well.

§ 4. Examples

To check our procedure we give two examples.

Example 1. A gamma distribution with density /(x) = e~* (x > 0)

Let X follow a gamma distribution with density /(x) = e~*. Then its
cumulant generating function κ(T) is given by — log(l — T), T < 1. For x >
0, the saddlepoint and the quasi-saddlepoints are, respectively, given by T =
1 - 1/x and c+, c_ = {u ± (u2 + 4nx)1/2}/(2nx), where u = nx - n - 1. Also
the equation (2.7) has the unique solution x0 = 1 + l/n.

In the TABLE 1, we examine the behaviour of the approxima-
tion. EDGEWORTH denotes an edgeworth series with two terms, and Q(2)

and βLR are calculated by Daniels [2]. The definitions of Q(2) and of βLR

are, respectively, given by (3.11) and (4.9) of Daniels [2]. Our proposed
formulae f)(x) (j = 1, 2, 3) are defined in (2.8).

Example 2. The standard normal distribution

Let X follow the standard normal distribution. Then κ(T) = T2/2.

Hence the saddlepoint is given by f = x. Further the quasi-saddlepoints are
given by c+, c_ = {nx ± (n2x2 + 4n)1/2}/(2n). In this case (2.7) has the solution
x0 = 0. However when we put x = n~1/2y for fixed y, c can be rewritten as

{y ± (y2 + 4)1/2}/(2n1/2). Referring α and λk of (2.6), we know that our approx-
imation for Fn(x) = Pr{n1/2X < n1/2x = y} = Φ(y) does not depend on n be-
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TABLE

nx

0.5

1.0

3.0

5.0

7.0

9.0

1

3

5

10

15

20

25

5

10

15

20

25

30
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1. Approximation for the distribution function of the n-sample mean from

distribution with density f(x) = e~* (x > 0)

n=\

EXACT EDGEWORTH Q
(2)
 ρ

LR
 A(*)

.3935

.6321

.9502

.9
2
326

.9
3
088

.9
3
877

.00366

.1847

.5595

.9707

.9
3
143

.9
4
831

.9
6
733

.0318

.5421

.9301

.9
2
500

.9
3
779

.9
5
288

.3983

.6325

.9384

.98031

.98931

.99205

.00102

.1875

.5595

.9686

.9
3
682

94999

1.0000

.0319

.5445

.9086

.97646

.98929

.99256

.3923

.6330

.9490

.9
2
323

.9
3
092

.9
3
878

.00365

.1844

.5595

.9707

.9
3
143

.9
4
831

.9
6
733

.0318

.5421

.9301

.9
2
500

.9
3
778

.9
5
288

TABLE 2. Approximation

.3957

.6330

.9500

.9
2
319

.9
3
074

.9
3
874

.00365

.1844

.5595

.9707

.9
3
142

.9
4
831

.9
6
732

n= 10

.0318

.5421

.9301

.9
2
500

.9
3
778

.9
5
287

.4091

.6537

.9503

.9
2
294

.9
3
029

.9
3
878

.00371

.1859

.5525

.9712

.9
3
142

.9
4
829

.9
6
729

.0320

.5270

.9323

.9
2
503

.9
3
778

.9
5
284

A(5c)

.3934

.6325

.9489

.9
2
321

.9
3
088

.9
3
877

.00366

.1852

.5615

.9705

.9
3
141

.9
4
830

.9
6
733

.0319

.5448

.9293

.9
2
499

.9
3
778

.9
5
288

the gamma

A(χ)
.3932

.6329

.9508

.9
2
331

.9
3
092

.9
3
877

.00366

.1846

.5622

.9709

.9
3
144

.9
4
831

.9
6
733

.0318

.5454

.9304

.9
2
501

.9
3
779

.9
5
288

for the standard normal distribution

function

X

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Φ(x)

.001350

.006210

.022750

.066807

.158655

.308537

.500000

.691463

.841345

.933193

.977250

.993790

.998650

AM

.001344

.006170

.022815

.065634

.153982

.293877

.500000

.706123

.846018

.934366

.977488

.993830

.998655

AM

.001351

.006219

.022815

.067166

.160095

.312187

.500000

.687813

.839905

.932834

.977185

.993781

.998649

AM
.001350

.006207

.022726

.066680

.158313

.309022

.500000

.690978

.841687

.933320

.977274

.993793

.998650
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cause κ"(T) = 1 and κ(k)(T) = 0 (k = 3, 4, 5, ...). Also κ(T) is an even func-

tion. Hence it holds Fj+(x) - Φ(x) = -{Ff(-x) - Φ(-x)}.
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