Infinite families of non-principal prime ideals

P. Ribenboim, F.R.S.C.

(Received December 25, 1990)

Abstract

Bouvier [2] has shown that if A is a Krull domain, then the set of non-principal prime ideals of height one of A is either empty or infinite. Here we prove a similar result under less restrictive hypotheses.

Let A be a domain and let \mathscr{P} be a family of prime ideals of A, satisfying the following conditions:

1) $\bigcap_{n=0}^{\infty} A_{P} P^{n}=0$ for every $P \in \mathscr{P}$.
2) $\bigcap_{P \in \mathscr{P}} A_{P}=A$.
3) If $f \in A, f \neq 0$, there exist only finitely many ideals $P \in \mathscr{P}$ such that $f \in P$.
4) If $n>1$ and P_{1}, \ldots, P_{n} are distinct prime ideals in the family \mathscr{P}, there exists f such that $f \in P_{1} \backslash P_{1}^{2}, f \notin P_{2} \cup \cdots \cup P_{n}$.

For example, we may take \mathscr{P} to be the family of prime ideals of height one of a Krull domain, as it was done by Bouvier.

Following suggestions of W. Heinzer, we indicate other examples of domains and families of prime ideals satisfying conditions (1)-(4).

The family of all prime ideals of height one of a noetherian domain, in which every principal ideal has no embedded primes, satisfies the conditions (1)-(4). These are precisely the prime ideals of height one of domains satisfying the S-sub-2-condition of Serre, and include the Cohen-Macaulay domains.

In a still unpublished paper, Barucci, Gabelli \& Roitman [1] study the semi-Krull domains, introduced earlier by Matlis [3]: the family of prime ideals of height one satisfies also conditions (1)-(4).

We note that condition (4) implies:
$\left.4^{\prime}\right)$ If $P, P^{\prime} \in \mathscr{P}, P \neq P^{\prime}$, then P, P^{\prime} are incomparable by inclusion.
Lemma. If P is a prime ideal of A satisfying condition (1) and $A_{P} P$ is a principal ideal, then A_{P} is the ring of a discrete valuation of height one of the field of quotients of A.

Proof. If $x \in A_{P}, x \neq 0$, let $v_{P}(x)=n$ be the unique integer such that $x \in A_{P} P^{n} \backslash A_{P} P^{n+1}$; let also $v_{P}(0)=\infty$. If $x, y \in A_{P}$ it is obvious that $v_{P}(x+y) \geq$
$\min \left\{v_{P}(x), v_{P}(y)\right\}$. If $v_{P}(x)=n, v_{P}(y)=m$, if $A_{P} P=A_{P} t$, then $x=r t^{n}, y=$ $s t^{m}$, with $r, s \in A_{P} \backslash A_{P} t$. Hence $r \notin A_{P} P, x y=r s t^{n+m}$, and this proves that $v_{P}(x y)=n+m$.

Therefore, v_{P} may be extended canonically to a discrete valuation of height one, still denoted v_{P}, of the field of quotients of A_{P}. Finally, if x, $y \in A_{P}, y \neq 0$ and $v_{P}(x / y) \geq 0$, then $x=r t^{n}, y=s t^{m}$, with $n \geq m, r, s \in A_{P} \backslash A_{P} P$. Hence r, s are invertible elements of the ring A_{P} and $x / y=\left(r t^{n-m}\right) / s \in A_{P}$. This proves the lemma.

Proposition. Assume that \mathscr{P} contains a non-principal prime ideal P_{1} such that $A_{P_{1}} P_{1}$ is principal and P_{1}^{2} is a primary ideal. Then \mathscr{P} contains infinitely many nonprincipal ideals.

Proof. We assume that P_{1}, \ldots, P_{n} are the only non-principal ideals in the family \mathscr{P}.

Let $\mathscr{Q}=\mathscr{P} \backslash\left\{P_{1}, \ldots, P_{n}\right\}$; a priori it is not excluded that \mathscr{Q} be empty.
If $Q \in \mathscr{Q}$ then Q is a principal ideal; let $g_{Q} \in A$ be a generator of $Q: Q=$ $A g_{Q}$. Let f be such that $f \in P_{1} \backslash P_{1}^{2}, f \notin P_{2} \cup \cdots \cup P_{n}$, hence $f \neq 0$. It follows from (1) that for every $P \in \mathscr{P}$ there exists a unique integer $n_{P}(f) \geq 0$ such that $f \in A_{P} P^{n_{P}(\cap)} \backslash A_{P} P^{n_{P}(\cap)+1}$.

It follows from (3) that $n_{P}(f)=0$, except for finitely many ideals $P \in \mathscr{P}$, because $A_{P} P \cap A=P$.

Let $h=f / g$ where

$$
g= \begin{cases}1 & \text { if } \mathscr{2}=\varnothing \\ \prod_{Q \in \mathscr{Q}} g_{Q}^{n_{Q}(f)} & \text { if } \mathscr{2} \neq \varnothing\end{cases}
$$

(this is a finite product).
If $Q \in \mathscr{Q}$, it follows from (4') that $g_{Q} \notin P_{i}$ for $i=1, \ldots, n$. Hence $h \in A_{P_{1}} P_{1}$ and $h \in A_{P_{i}} \backslash A_{P_{i}} P_{i}$ for $i=2, \ldots, n$. If $Q, Q^{\prime} \in \mathscr{Q}, Q \neq Q^{\prime}$, then we have also $g_{Q^{\prime}} \notin Q$, by (4^{\prime}). Hence, for every $Q \in \mathscr{Q}$

$$
\prod_{\substack{Q^{\prime} \in Q \\ Q^{\prime} \neq Q}} \frac{1}{g_{Q^{\prime}}^{n_{Q}(f)}} \in A_{Q}
$$

by definition $f \in A_{Q} g_{Q}^{n_{Q}(f)} \backslash A_{Q} g_{Q}^{n_{Q}(f)+1}$, hence

$$
\frac{f}{g_{Q}^{n_{Q}(f)}} \in A_{Q} \backslash A_{Q} Q
$$

Therefore $h \in A_{Q}$. From (2) it follows that $h \in A$, hence $h \in A_{P_{1}} P_{1} \cap A=P_{1}$, i.e. $A h \subseteq P_{1}$.

Now we show that $A h=P_{1}$, which is contrary to the hypothesis. Let
$k \in P_{1}$, hence

$$
\frac{k}{h}=\frac{k}{f} \prod_{Q \in Q} g_{Q}^{n_{Q}(f)} \in\left(\bigcap_{i=2}^{n} A_{P_{i}}\right) \cap\left(\bigcap_{Q \in Q} A_{Q}\right),
$$

because

$$
\frac{f}{g_{Q}^{n_{Q}(f)}} \notin A_{Q} Q .
$$

Moreover, $\prod_{Q \in \mathcal{2}} g_{Q}^{n_{Q}(f)} \in A$ and we show that $k / f \in A_{P_{1}}$. Indeed, $f \in P_{1} \backslash P_{1}^{2}$, hence $f \notin A_{P_{1}} P_{1}^{2}$, otherwise $f \in A_{P_{1}} P_{1}^{2} \cap A=P_{1}^{2}$, because P_{1}^{2} is a primary ideal. By hypothesis $A_{P_{1}} P_{1}$ is a principal ideal. By the lemma, we may consider the valuation $v_{P_{1}}$ associated to P_{1}, we have $v_{P_{1}}(k) \geq 1, v_{P_{1}}(f)=1$, hence $v_{P_{1}}(k / f) \geq 0$, thus $k / f \in A_{P_{1}}$. It follows that $k / h \in A_{P_{1}}$, hence from (2), $k / h \in A$. This shows that $P_{1}=A h$, a contradiction.

References

[1] V. Barucci, S. Gabelli \& M. Roitman, On semi-Krull domains, preprint, 1990.
[2] A. Bouvier, Sur les idéaux premiers de hauteur 1 d'un anneau de Krull, C. R. Acad. Sci. Paris 284 (1977), 727-729.
[3] E. Matlis, Some properties of commutative ring extensions, Ill. J. Math. 31 (3) (1987), 374-418.

Department of Mathematics and Statistics
Queen's University
Kingston, Ontario, Canada K7L 3N6

