Infinite families of non-principal prime ideals

P. RIBENBOIM, F.R.S.C.

(Received December 25, 1990)

Abstract. Bouvier [2] has shown that if A is a Krull domain, then the set of non-principal prime ideals of height one of A is either empty or infinite. Here we prove a similar result under less restrictive hypotheses.

Let A be a domain and let \mathscr{P} be a family of prime ideals of A, satisfying the following conditions:

1) $\bigcap_{n=0}^{\infty} A_P P^n = 0$ for every $P \in \mathscr{P}$.

2) $\bigcap_{P \in \mathcal{A}} A_P = A.$

3) If $f \in A$, $f \neq 0$, there exist only finitely many ideals $P \in \mathscr{P}$ such that $f \in P$.

4) If n > 1 and P_1, \ldots, P_n are distinct prime ideals in the family \mathcal{P} , there exists f such that $f \in P_1 \setminus P_1^2$, $f \notin P_2 \cup \cdots \cup P_n$.

For example, we may take \mathcal{P} to be the family of prime ideals of height one of a Krull domain, as it was done by Bouvier.

Following suggestions of W. Heinzer, we indicate other examples of domains and families of prime ideals satisfying conditions (1)-(4).

The family of all prime ideals of height one of a noetherian domain, in which every principal ideal has no embedded primes, satisfies the conditions (1)-(4). These are precisely the prime ideals of height one of domains satisfying the S-sub-2-condition of Serre, and include the Cohen-Macaulay domains.

In a still unpublished paper, Barucci, Gabelli & Roitman [1] study the semi-Krull domains, introduced earlier by Matlis [3]: the family of prime ideals of height one satisfies also conditions (1)-(4).

We note that condition (4) implies:

4') If $P, P' \in \mathcal{P}, P \neq P'$, then P, P' are incomparable by inclusion.

LEMMA. If P is a prime ideal of A satisfying condition (1) and A_PP is a principal ideal, then A_P is the ring of a discrete valuation of height one of the field of quotients of A.

PROOF. If $x \in A_P$, $x \neq 0$, let $v_P(x) = n$ be the unique integer such that $x \in A_P P^n \setminus A_P P^{n+1}$; let also $v_P(0) = \infty$. If $x, y \in A_P$ it is obvious that $v_P(x + y) \ge \infty$.

 $\min\{v_P(x), v_P(y)\}$. If $v_P(x) = n$, $v_P(y) = m$, if $A_P P = A_P t$, then $x = rt^n$, $y = st^m$, with $r, s \in A_P \setminus A_P t$. Hence $rs \notin A_P P$, $xy = rst^{n+m}$, and this proves that $v_P(xy) = n + m$.

Therefore, v_P may be extended canonically to a discrete valuation of height one, still denoted v_P , of the field of quotients of A_P . Finally, if x, $y \in A_P$, $y \neq 0$ and $v_P(x/y) \ge 0$, then $x = rt^n$, $y = st^m$, with $n \ge m$, $r, s \in A_P \setminus A_P P$. Hence r, s are invertible elements of the ring A_P and $x/y = (rt^{n-m})/s \in A_P$. This proves the lemma.

PROPOSITION. Assume that \mathscr{P} contains a non-principal prime ideal P_1 such that $A_{P_1}P_1$ is principal and P_1^2 is a primary ideal. Then \mathscr{P} contains infinitely many nonprincipal ideals.

PROOF. We assume that P_1, \ldots, P_n are the only non-principal ideals in the family \mathcal{P} .

Let $\mathcal{Q} = \mathscr{P} \setminus \{P_1, \dots, P_n\}$; a priori it is not excluded that \mathcal{Q} be empty.

If $Q \in \mathcal{Q}$ then Q is a principal ideal; let $g_Q \in A$ be a generator of $Q: Q = Ag_Q$. Let f be such that $f \in P_1 \setminus P_1^2$, $f \notin P_2 \cup \cdots \cup P_n$, hence $f \neq 0$. It follows from (1) that for every $P \in \mathscr{P}$ there exists a unique integer $n_P(f) \ge 0$ such that $f \in A_P P^{n_P(f)} \setminus A_P P^{n_P(f)+1}$.

It follows from (3) that $n_P(f) = 0$, except for finitely many ideals $P \in \mathcal{P}$, because $A_P P \cap A = P$.

Let h = f/g where

$$g = \begin{cases} 1 & \text{if } \mathcal{Q} = \emptyset \\ \prod_{\mathcal{Q} \in \mathcal{Q}} g_{\mathcal{Q}}^{n_{\mathcal{Q}}(f)} & \text{if } \mathcal{Q} \neq \emptyset \end{cases}$$

(this is a finite product).

If $Q \in \mathcal{Q}$, it follows from (4') that $g_Q \notin P_i$ for i = 1, ..., n. Hence $h \in A_{P_1}P_1$ and $h \in A_{P_i} \setminus A_{P_i}P_i$ for i = 2, ..., n. If $Q, Q' \in \mathcal{Q}, Q \neq Q'$, then we have also $g_{Q'} \notin Q$, by (4'). Hence, for every $Q \in \mathcal{Q}$

$$\prod_{\substack{Q' \in \mathcal{Q} \\ Q' \neq Q}} \frac{1}{g_{Q'}^{n_{Q'}(f)}} \in A_Q;$$

by definition $f \in A_Q g_Q^{n_Q(f)} \setminus A_Q g_Q^{n_Q(f)+1}$, hence

$$\frac{f}{g_Q^{n_Q(f)}} \in A_Q \setminus A_Q Q \; .$$

Therefore $h \in A_Q$. From (2) it follows that $h \in A$, hence $h \in A_{P_1}P_1 \cap A = P_1$, i.e. $Ah \subseteq P_1$.

Now we show that $Ah = P_1$, which is contrary to the hypothesis. Let

 $k \in P_1$, hence

$$\frac{k}{h} = \frac{k}{f} \prod_{\mathcal{Q} \in \mathcal{Q}} g_{\mathcal{Q}}^{n_{\mathcal{Q}}(f)} \in \left(\bigcap_{i=2}^{n} A_{\mathcal{P}_{i}}\right) \cap \left(\bigcap_{\mathcal{Q} \in \mathcal{Q}} A_{\mathcal{Q}}\right),$$

because

$$\frac{f}{g_O^{n_Q(f)}} \notin A_Q Q \; .$$

Moreover, $\prod_{Q \in \mathscr{Q}} g_Q^{n_Q(f)} \in A$ and we show that $k/f \in A_{P_1}$. Indeed, $f \in P_1 \setminus P_1^2$, hence $f \notin A_{P_1}P_1^2$, otherwise $f \in A_{P_1}P_1^2 \cap A = P_1^2$, because P_1^2 is a primary ideal. By hypothesis $A_{P_1}P_1$ is a principal ideal. By the lemma, we may consider the valuation v_{P_1} associated to P_1 , we have $v_{P_1}(k) \ge 1$, $v_{P_1}(f) = 1$, hence $v_{P_1}(k/f) \ge 0$, thus $k/f \in A_{P_1}$. It follows that $k/h \in A_{P_1}$, hence from (2), $k/h \in A$. This shows that $P_1 = Ah$, a contradiction.

References

- [1] V. Barucci, S. Gabelli & M. Roitman, On semi-Krull domains, preprint, 1990.
- [2] A. Bouvier, Sur les idéaux premiers de hauteur 1 d'un anneau de Krull, C. R. Acad. Sci. Paris 284 (1977), 727-729.
- [3] E. Matlis, Some properties of commutative ring extensions, Ill. J. Math. 31 (3) (1987), 374-418.

Department of Mathematics and Statistics Queen's University Kingston, Ontario, Canada K7L 3N6