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1. Introduction

In this paper we study the scalar delay differential equation

(1.1) x'(t) = £ biX(t - rt.)(l - ax(t)) - cx(t)
i=l

n

where rt > 0, b{ > 0 (i = 1, 2, ,rc), a > 0, 6 = £ ^ > 0, c > 0. If we take
i = l

n = 1, 0 = 1 and c > 0, this equation becomes the epidemic model given by

K. L. Cooke in [4, 5], that is

x'(t) = bx(t-τ)(l-x(t))-cx(t).

K. L. Cooke made the following assumptions on his model (in this paper we
also use them.):
(a) The infection is transmitted to man by a vector, such as a mosquito.

Susceptible persons receive the infection from infectious vectors, and susceptible
vectors receive the infection from infectious persons.

(b) The human population in the community under consideration is fixed,
hence we are interested in the solution x(t) of (1.1) which obeys 0 < x(t) < 1.
The infection in humans does not result in death or isolation.

(c) When a susceptible vector is infected by a person, there is a fixed time

during which the infectious agent develops in the vector. At the end of this

time the vector can infect a susceptible human.
(d) Infected humans have a constant recovery rate c. Note that the time
during which the infectious agent develops in vectors of different species may

be different, so the following model which is a special case of (1.1) may be

more reasonable

(1.2) x'(t) = £ btx(t - rt)(l - x(t)) - cx(t) t > 0
ΐ = l

where bt > 0, r{ > 0 (i = 1, 2,••-,«), c > 0 are constants. On the other hand,
when c = 0 and n = 1, (1.1) is the Logistic model given by K. Gopalsamy in

[7].



116 Wu Xiangbao and RUAN Jiong

In this paper, we study more general model

f°
(1.3) x'(ί) = x(t + s)dη(s)(l - ax(ή) - cx(t), t > 0

J -r

where a > 0, b = Var η > 0, c > 0 and r > 0 are constants, and η(s) is
[-r,0]

nondecreasing on [ — r, 0] and may be discontinuous.

Instead of solutions satisfying 0 < x(t) < 1, we are interested in the positive

solution x(t) of (1.1).

2. Preliminary results

Consider the delay differential equation (1.1) with initial condition

(2.1) x0(f) = φ(t), - r < t < 0

where φ(t) is continuous on [— r, 0] and φ(t) > 0, r = max {r^ r2,- ,rn}. At
first, we treat the case c > 0 and we have the following result:

LEMMA 2.1 Consider the problem (1.1)-(2.1) and assume that φ(i) > 0 for

ίe[— r, 0] and φ(ί) ̂  0. Suppose ω > 0 and x(ί) exists on [— r, ω]. Then

the following results hold:

(a) x(ί)>0 for all ίe[0, ω];

(b) x(ί) is bounded;
(c) Any nontrivial solution x(ί) is positive.

Proof, (a) If it is not true, then the set S = {t: t > 0 and x(t) < 0} is
not empty. Let m — inf 5, we have m > 0, x(m) = 0 and x(ί) > 0 for
ίe[—r, 0]. For any ε > 0 which satisfies 0<ε<r5 | c = min {rί9r29 9rn}, there
exists a ίεe(0, ε) such that x(m + ίε) < 0. From (1.1) we conclude that

n

(2.2) x'(m + tε) = Σ biX(m + tε - r£)(l - flx(w + ίε) - cx(m + ίε)) > 0.
i = l

So there exists a left neighborhood N of m + tε with

(2.3) x(m + ί) < x(m 4- ίε)

(2.4) x'(m + ί)>0 for ίeΛΓ

Let ί* = inf {t: tεN}. Clearly ί* > 0, x(m -h ί*) < 0 and x'(m + t*) = 0.
However, from (1.1) we have

n

(2.5) x'(m + ί*) = X fr£x(wι + ί* - Γi)(l - αx(m + ί*)) - cx(m + ί*) > 0
ί=l
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and this leads to a contradiction. Hence the set S is empty, i.e. x(ί) > 0 for
ί>0.

(b) Suppose x(t) is a solution of the problem (1.1)-(2.1). We will prove
x(t) is bounded. If it is not true, then there exists a time ί0 such that

(2.6) x(f0) = M > max { sup x(ί), 1/α} and x'(f0) > 0
-r<f<0

for a suitable constant M > 1 /a. Noting x(ί0 — r f) > 0, i = 1, 2, ,π and from
(1.1) we have x'(f 0)<0, which is a contradiction. Hence x(ί) is bounded.

(c) Let x(ί) be a nontrival solution of the problem (1.1)-(2.1). Now
using the results (a) and (b), we can find a constant M > 0 such that

(2.7) x'(ί)> -(abM + c)x(t)

As x(£) is a nontrivial solution of (1.1), we may chose a t1 > 0 such that
> 0 and

x(ί) > x(ίι) exp {-(abM + c)(t - tj} > 0, t>tί.

Now we consider the following RFDE

(2.8) *'(ί) =/(*,) ί > 0

where x,eC = C([- r, 0], R").
To discuss asymptotic behavior of (1.1), we pick some results from the

book [2].

THEOREM 2.1 ([2]. p. 280] Suppose that /: C -> R and v is a continuously
differentiate function and G ̂  C is a closed and positively invariant set with
respect to (2.8) with property that

v'(φ) < 0 for all φeG such that v(φ(ty) = max v(φ(s)).

Then for any φeG such that x(φ) is bounded on (— r, +00), we have
Ω(φ) c MV(G) c EV(G). Hence x,(φ) -> MV(G) as ί -̂  oo, here we define

Eυ(G) = {φεG: _max v(x(t + s, φ)) = _max v(φ(s)) for all ί > 0}

and denote MV(G) the largest subset of EV(G) that is invariant with respect
to (2.8).

3. Some results

THEOREM 3.1 If b > c > 0, then every eventually positive solution x(t) of
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(1.1) satisfies x(t) -> (b - c)/ab as t -> + oo.

THEOREM 3.2 If b < c and c > 0, then any eventually positive solution

x(t) of (1.1) satisfies x(ί)->0 as f-> + oo.

COROLLARY 1 If b > c > 0, then any eventually positive solution of (1.2)

satisfies lim x(t) = 1 — c/b. If b < c and c > 0, then any eventually positive
f-» oo

solution of (1.2) satisfies x(ί)->0 as f-> oo. That is when the infectious rate
b is greater than the recovery rate c, infectious persons and susceptible persons

will tend to an equilibrium for large time. If the infectious rate b is less than

or equal to the recovery rate c, the disease will disappear.

THEOREM 3.3 Suppose c = 0 in (1.3). Then any eventually positive

solution x(t) satisfies lim x(t) = I/a if a > 0.
r-»oo

THEOREM 3.4 Suppose c > 0 and b = Var η > 0 in (1.3). Then every

eventully positive solution x(t) of (1.3) satisfies lim x(t) = if b > c and
'-*«> ab

lim x(t) = 0 if b < c.
f-»αo

COROLLARY 2 Suppose c = 0 in (1.2). Then any eventually positive

solution x(t) of (1.2) satisfies lim x(t) = 1. That is, if recovery rate is zero,
ί->oo

then all susceptible persons will be infected.

4. Some preliminary knowledges for Theorem 2.1

In the equation (2.8), we suppose that f:C-+R and / satisfies a local
Lipschitz condition.

DEFINITION 1. An element ψeC belongs to the ω-limit set Ω(φ) of φ, if
x(φ) is defined on (—r, + oo) and there is a sequence {tn} -> oo with

\\Xtn(<P)-ψ\\ ->0 as rc->oo.
Clearly Ω(φ) is connected.

DEFINITION 2. A set M ^ C is positively invariant if for each φ e M,

xt(φ)eM for all t > 0.

Thus, if v is a continuously differentiable function, then

2.8)= Σ τ
i = ι CλXϊ

is a functional even though y is a function.
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If v is a continuously differentiable function and G ̂  C, define

EV(G) = ίφeG: max v(x(t + s, φ)) = max v(φ(s)) for all ί > 0}
— r<s<0 — r < s < 0

and let Mv (G) denote the largest subset of Ev (G) that is invariant with respect
to (2.8).

Notice that for a continuously differentiable function v and any φeEv(G),
we have

t/[X(φ)] = 0, where t > 0 satisfied v[x(t, φ)] = max u[φ(s)].
-r<s<0

(ϋ must attain a relative maximum for such ί.)

5. Proof of main results

(1). The proof of Theorem 3.1:

Let y = x — (b - c)/ab. From (1.1) we have

(5.1) /(ί) = - by(t) + (c/b) £ biy(t - η) - ay(t) Σ ̂  (ί - )̂
i = l i = l

As we are only interested in the initial condition φ(s) where φ(s) > 0 for
se[— r, 0] and x(t) > 0 for equation (1.1), we only consider the initial condition
φ(s) with φ(s) > - (b - c)/ab and y(t) > - (b - c)/ab for model (5.1).
Let G - {φ(s)eC([- r, 0] -» R): φ(s) >(c- b)/ab, - r < s < 0}, v(y) = y2/2.
From Lemma 2.1, we have that G ̂  C is a closed and positively invariant
set with respect to (5.1). We will argue that

MV(G) = {φι(s) = 0, φ2(s) = (c- b)/ab, for se[- r, 0]}

Clearly, φ1(s) and φ2(s) belong to My(G), so Mυ(G) is not empty. For

any φeEv(G), we have φeG and 1 1 ^ 1 1 = 11^(^)11 for all ί > 0. Let
7(ί) = y(φ)(t) and ί* > 0 such that \y(t*)\ = 11^(^)11. we conclude that

(5.2) ^[^(^)]l(5.i) = - by\t*) + (c/b)
i

- ay2(t*) t ft,.y(t
i = l

Noting that \y(t* — r£)| < |y(ί*)|, from (5.2) we can obtain that

Σ biV(t* - rj < 0.
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If Σ biy(t* - r£) = 0, from (5.2) we have y(t*) = 0 and y^(φ) = 0 and

yt*(φ)eC. As φεEv(G), we have yt(φ) = 0 for ί > ί*. So φ = 0 and φ^s) = 0

and
n

If Σ &£)>(** - f j ) < 0 and y(t*) Φ 0, from (5.2) we have
i = l

(5.3) \by(t*)\ = I £ bιy(t* - rί)\ \c/b - αy(t*)|.
i = l

n

As y(ί* - Γj) > (c - fr)/αfc, we have fe + α £ ̂ (ί* - rj > c> 0. From (5.2)
i = l

we may conclude that

(5.4) (c/b)y(t*) Σ fc^(ί* - Γj = y2(ί*) (fo + fl Σ M* - ^))
i = l i = l

and y(ί*) < 0. On the other hand, we have

Σ bty(t* - rf) < Σ &ιb(ί* ~ ^)l < b\y(t*)\.
i=l i = l

Here, there are two different cases:

(a) the case | Σ bty(t* - η)| < b\y(t*)\;
i=l

From (5.3) we have 1 < \c/b - ay(t*)\ = c/b - ay(t*) and y(t*) <(c-b)/ab
which contradics to y(t) >(c — b)/ab.

(b) the case \Σ bty(t*-rj\ = b\y(t*)\.
i=l

From (5.3) we have 1 = c/b — ay(t*)9 hence y(t*) = (c — b)/ab. From (c)
of Lemma 2.1, we know y^(φ) = (c — b)/ab and yt(φ) = (c — b)/ab for

c — b
t > ί*. As φeEv(G), we conclude that φ = (c — b)/ab, that is φ2(s) =

a-b
Hence

MV(G) = EV(G) = {9l(s) = 0, φ2(s) = (c - b)/ab, for - r < s < 0}.

On the other hand, if max v(φ(s)) = v(φ(Q)), then we have || φ \\ = \φ(0)\ and
-r<s<0

(c/b) Σ bιφ(0)φ(- r t ) - aφ2(0) X b,φ(- rt)
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As φ(— rt) >(c — b)/ab, hence v'(5 ί } ( φ ) < 0 for φεG. From Theorem 2.1, we
conclude that for any φεG, yt(φ) -» Ω(φ) ̂  MV(G) as ί -> -f oo. Because ί2(φ)
is connected, we have Ω(φ) = φ^s) or Ω(φ) = φ2(s) for any given φεG. And

hence y,(φ) -»φ^s) or yί(φ)^Φ2(
s) as ί-> -f oo. To complete the proof of

our theorem, we need argue that any eventually positive solution x(ί) of (1.1)
does not tend to zero as ί tends to infinity.

Suppose x(ί) is an eventually positive solution of (1.1) satisfying
" f f

lim x(ί) = 0. Let w(ί) = x(ί) + £ bΛ x(s)ds. Clearly, w(ί)^0 as ί-> + oo,
fί

Σ M
i = 1 Jt-n

but w(ί) > 0 and w'(ί) = [b — c — a £ ^x(£ - η)]x(ί) > 0 for large t > 0, this
i = l

leads to a contradiction. Hence for any φεG, we have yt(φ)-*Q as f->oo

as long as yt(φ) Φ(c — b)/ab, that is x(ί) -> (b — c)/ab as ί -̂  oo.
Note: The proof of Theorem 3.2 is similar to that of Theorem 3.1. In

this case we have MV(G) = {φι(s) = 0, for — r < s < 0}.

Before proving Theorem 3.3, we give a Lemma at first.

LEMMA 5.1 Suppose limx(ί) = a exists and x'(ί) is continuous uniformly
f-* OO

on [0, + oo), then lim x'(ί) = 0.
f-*αo

PROOF. If the conclusion is not true, then there are a ε0 > 0 and a

sequence {tn} -> oo (n = 1, 2, ) as n^> + oo such that |x'(fΛ)| > ε0. Noting
that x'(ί) is uniformly continuous on (0, + oo), we may choose a δ > 0 such

that as long as \tί - t2\ < δ we have Ix'^) - x'(ί2)l < e0/2. On the other
hand, we have

|x(ίπ + δ) - x(tn)\ = δ\x'(ξn)\ for some ξnε(tn, tn + δ)

and \x'(ξn) - x'(tn)\ < ε0/2. Hence

|x^π)| > \x'(tn)\ - |x'(O - x'(ξn)\ > ε0/2

and \x'(tn + δ) — x(tn)\ > <5ε0/2. We obtain a contradiction by letting n -> oo

and this completes the proof of the lemma.

(2). The proof of Theorem 3.3:

Suppose x(ί) is an eventually positive solution of equation (1.3) with c = 0.

(a) If there is a T> 0 such that x(ί) > I/a for all t > T9 then from (1.3)

we have x'(ί) < 0 for t > T and hence lim x(ί) exists, say limx(ί) = A. From
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(1.3) we conclude that lim xf(t) exists and x'(t) is continuous uniformly on
ί->oo

[0, + oo). By Lemma 5.1 we obtain Q = Ab(l-aA). Hence A = 0 or
A = I/a. Similarly to the proof of Theorem 3.1, we may argue that A / 0,

here we choose w(ί) as

w(ί) = x(t) + a Γ Γ Γ *x(s + θ)ds~\dη(θ),

and we only have A = I/a.
(b) If there is a T> 0 such that 0 < x(t) < 1 /a for all t > T9 then from

(1.3) we have x'(t) > 0. Hence lim x(t) = B exists. Similarly to (a), we may
ί-»00

conclude B = I/a.
(c) If x(t) is oscillatory about the equilibria x* = 1/0, then we can choose

a sequence {ί_| -> + oo as n -> oo such that x'(tn) = 0 and lim x(tn) = ίιmx(ί).
ί->00 ί-»00

From (1.3) we obtain that

0 - Γ
~ J-rXt"

and x(ίn) = 1/0. Hence Πmx(ί)= 1/0. Similarly we may prove that limx(ί) =
ί->oo ί-»oo

1/0 and we obtain that l imx(ί)=l/0. This completes the proof of our
f->00

theorem.
Note: The proof of Theorem 3.4 is similar to that of Theorem 3.1 and
Theorem 3.2. In this case we have that

(5.5) /(ί) = - by(t) + (c/b) Γ y(t + 0)dιj(0) - 0j;(ί) Γ y(t

) f°
J —

θ)dη(θ)

Γ
and

φ(θ)dη(θ)
r° , r°) φ(θ)dη(θ) — aφ (0) <
J-, J-r

- α f ° φ(θ)dη(θ) ] \\φ\\.
J —r

Here we omit the details of the proofs.
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