The explicit representation of the determinant of Harish-Chandra's C-function in $\operatorname{SL}(\mathbf{3}, R)$ and $\boldsymbol{S L}(4, R)$ cases

Masaaki Eguchi and Shohei Tanaka
(Received April 10, 1990)

§ 1. Introduction

Let G be a semisimple Lie group with finite center, K a maximal compact subgroup of G. Let θ be the Cartan involution of G fixing K. Let P be a cuspidal parabolic subgroup and $P=M A N$ its Langlands decomposition.

Let $\pi_{P, \sigma, v}=\operatorname{ind}_{M A N}^{G} \sigma \otimes v \otimes 1(\sigma$ in \hat{M}, v a character of $A)$ be the representation of the generalized principal series induced from P to G and $H^{P, \sigma, v}$ be its representation space. Then the operator $A(\bar{P}: P: \sigma: v)$ defined by the integral

$$
(A(\bar{P}: P: \sigma: v) f)(x)=\int_{\bar{N}} f(x \bar{n}) d \bar{n}, \quad\left(f \in H^{P, \sigma, v}\right)
$$

is an intertwining operator between $\pi_{P, \sigma, \nu}(g)$ and $\pi_{\bar{P}, \sigma, \nu}(g)(g \in G)$, where $\bar{P}=\theta P$.

In the following we assume that P is a minimal parabolic subgroup of G. For γ in \hat{K} we denote by $H_{\gamma}^{P, \sigma, v}$ the γ-isotypic component of $H^{P, \sigma, v}$. Let V^{γ} and H^{σ} be the representation spaces of γ and σ respectively. Following Wallach [11], we consider the bijective map $v \otimes A \rightarrow L_{P}(A, v, v)$ $\left(v \in V^{\gamma}, A \in \operatorname{Hom}_{M}\left(V^{\gamma}, H^{\sigma}\right)\right) \quad$ from $\quad V^{\gamma} \otimes \operatorname{Hom}_{M}\left(V^{\gamma}, H^{\sigma}\right) \quad$ to $\quad H_{\gamma}^{P, \sigma, v}$, where $L_{P}(A, v, v)$ is defined by

$$
L_{P}(A, v, v)(k a n)=e^{-(v+\rho)(\log a)} A\left(\pi_{\gamma}\left(k^{-1}\right) v\right), \quad(k \in K, a \in A, n \in N)
$$

and the operator defined by the integral

$$
B_{\gamma}(\bar{P}: P: v)=\int_{\bar{N}} \pi_{\gamma}(\kappa(\bar{n}))^{-1} e^{-(v+\rho)(H(\bar{n}))} d \bar{n}
$$

Then the operator $B_{\gamma}(\bar{P}: P: v)$ satisfies

$$
A_{\gamma}(\bar{P}: P: \sigma: v) L_{P}(A, v, v)=L_{\bar{P}}\left(A \circ B_{\gamma}(\bar{P}: P: v), v, v\right) .
$$

Moreover, $B_{\gamma}(\bar{P}: P: v)$ commutes with $\pi_{\gamma}(m)(m \in M)$ and we can restrict B_{γ} to $V_{\sigma}^{\gamma}, V_{\sigma}^{\gamma}$ denoting the σ-isotypic component of V^{γ}. We denote by B_{γ}^{σ} the restriction of B_{γ} to V_{σ}^{γ}. Wallach [11] has shown that $B_{\gamma}(\bar{P}: P: v)$ is holo-
morphic in a certain half-space of $\mathfrak{a}_{\boldsymbol{C}}^{*}$ and meromorphic in $\mathfrak{a}_{\boldsymbol{C}}^{*}$. In the relation with the intertwining operator $A_{\gamma}(\bar{P}: P: \sigma: v)$, it is important to study the nature of the B_{γ}^{σ}-function as a meromorphic function, such as its zeroes, poles and their order.

Concerning this problem, Cohn [1] has proved that the determinant of the C-function is a product of some quotient of Γ-factors and gives a conjecture on the rational numbers which appear in these factors.

Our main theorems give the determinant of the B_{γ}^{σ}-function explicitly in $S L(3, R)$ and $S L(4, R)$ cases. In another paper, we shall give an application of the results to the analytical argument of the reducibility of the generalized principal series representation (cf. Speh-Vogan [9]).

In making the conjecture of our results we have used the software "REDUCE" for computers.

§ 2. Notation and preliminaries

Let G be a semisimple Lie group with finite center and \mathfrak{g} its Lie algebra. Let \mathfrak{f} be a maximal compact subalgebra of $\mathfrak{g}, \mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ the corresponding Cartan decomposition and θ the Cartan involution defining the decomposition. We introduce an inner product B_{θ} on g in the standard way such that $B_{\theta}(X, Y)=-B(X, \theta Y)$, where B is the Killing form on g. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p}. We fix an order in the dual space \mathfrak{a}^{*} of \mathfrak{a} and put $\mathfrak{n}=\sum_{\alpha>0} \mathfrak{g}_{\alpha}$, where \mathfrak{g}_{α} denoting the root space for the \mathfrak{a}-root α. Then we have an Iwasawa decomposition $\mathfrak{g}=\mathfrak{f}+\mathfrak{a}+\mathfrak{n}$ of \mathfrak{g}. Let $\mathfrak{v}=\theta \mathfrak{n}$ and $\mathfrak{m}=$ $Z_{\mathrm{t}}(\mathfrak{a})$, the cetralizer of \mathfrak{a} in \mathfrak{f}.

We now let $K=N_{G}(\mathfrak{f})$ be the normalizer of \mathfrak{f} in $G, M=Z_{K}(\mathfrak{a})$ the centralizer of \mathfrak{a} in K and $M^{\prime}=N_{K}(\mathfrak{a})$ the normalizer of \mathfrak{a} in K. Let A, N_{0}, and V_{0} be the analytic subgroups of G corresponding to $\mathfrak{a}, \mathfrak{n}$ and \mathfrak{v} respectively. Let $P=M A N$. The conjugates of P are called minimal parabolic subgroups of G. Let $\mathscr{P}(A)$ be the set of all parabolic subgroups P of G such that A is the split component of P. The elements in $\mathscr{P}(A)$ are in obvious one-to-one correspondence with Weyl chambers in a and the Weyl group $W=M^{\prime} / M$ permutes the Weyl chambers transitively. For each w in W, λ a character of A and ξ a representation of M, put

$$
w \lambda(a)=\lambda\left(w^{-1} a w\right), \quad w \xi(m)=\xi\left(w^{-1} m w\right) .
$$

Then W acts on characters of A and classes of representation of M.
Let \hat{K} and \hat{M} be the set of all equivalence classes of the irreducible unitary representations of K and M respectively. For each $\sigma \in \hat{M}$ we fix a
representation $\left(\tilde{\sigma}, H^{\tilde{\sigma}}\right)$ in σ and, abusing notation, we use also σ for $\tilde{\sigma}$. For each γ in \hat{K} we fix an element $\left(\pi_{\gamma} H^{\gamma}\right)$ in γ. Put $\rho=\rho_{P_{0}}=\frac{1}{2} \sum_{\alpha>0}\left(\operatorname{dim} g_{\alpha}\right) \alpha$.

We recall the generalized principal series representations. Let σ be in \hat{M} and v in \mathfrak{a}_{c}^{*} (the complexfication of \mathfrak{a}^{*}). Let $C_{\sigma, v}(G)$ be the space of all continuous functions f from G to H^{σ} such that

$$
f(x m a n)=e^{-(v+\rho)(\log a)} \sigma(m)^{-1} f(x) \quad(x \in G) .
$$

Let $H^{P_{0}, \sigma, v}$ be the completion of $C_{\sigma, v}(G)$ by the norm

$$
\|f\|^{2}=\int_{K}\|f(k)\|_{\sigma}^{2} d k, \quad\left(f \in C_{\sigma, v}(G)\right) .
$$

The representation $\pi_{P_{0}, \sigma, v}$ is given by

$$
\pi_{P_{0}, \sigma, v}(g) f(x)=f\left(g^{-1} x\right), \quad(g \in G) .
$$

What we have just described is the "induced picture" for $\pi_{P_{0}, \sigma, v}$.
The "compact picture" is the restriction of the induced picture to K. Here the corresponding dense subspace $C_{\sigma}(K)$ is

$$
\left\{f: K \rightarrow H^{\sigma} \mid f \text { is continuous and } f(k m)=\sigma(m)^{-1} f(k)\right\}
$$

and is independent of v. According to the Iwasawa decomposition $G=$ $K A N_{0}$, each $g \in G$ is written as

$$
g=\kappa(g)(\exp H(g)) n_{0}(g), \quad\left(\kappa(g) \in K, H(g) \in \mathfrak{a}, n_{0}(g) \in N_{0}\right) .
$$

Then the representation is given by

$$
\pi_{P_{0}, \sigma, v}(g) f(k)=e^{-(v+\rho)\left(H\left(g^{-1} k\right)\right)} f\left(\kappa\left(g^{-1} k\right)\right) .
$$

If γ is in \hat{K}, the projection operator E_{γ} is defined by

$$
E_{\gamma} f=d(\gamma) \bar{\chi}_{\gamma^{*}} f, \quad\left(f \in C_{\sigma}(K)\right),
$$

where $d(\gamma)$ and χ_{γ} denote the dimension and the character of γ respectively. For $\gamma \in \hat{K}$, we put

$$
H_{\gamma}^{P_{0}, \sigma, v}=\left\{f \in H^{P_{0}, \sigma, v} \mid E_{\gamma} f=f\right\} .
$$

§3. C-functions and intertwining operators

In this section we recall the Harish-Chandra C-functions, intertwining operators and the relation between them. Let P_{0} be as above. Let γ be in \hat{K}, σ in \hat{M} and A in $\operatorname{Hom}_{M}\left(V^{\gamma}, H^{\sigma}\right)$, where V^{γ} denotes the representation space of π_{γ}. For v in $\mathfrak{a}_{\boldsymbol{C}}^{*}, v$ in V^{γ}, let

$$
L_{P_{0}}(A, v, v)(k a n)=e^{-(\rho+v)(\log a)} A\left(\pi_{\gamma}\left(k^{-1}\right) v\right), \quad\left(k \in K, a \in A, n \in N_{0}\right) .
$$

Then an easy computation shows that $L_{P_{0}}(A, v, v)$ is in $H_{\gamma}^{P_{0}, \sigma, v}$. Furthermore the map $V^{\gamma} \otimes \operatorname{Hom}_{M}\left(V^{\gamma}, H^{\sigma}\right) \rightarrow H_{\gamma}^{P_{0}, \sigma, v}$ given by $v \otimes A \rightarrow L_{P_{0}}(A, v, v)$ is a bijective K-intertwining operator.

We introduce formal expressions, often divergent, for operators that implement equivalences among some of these representations. For now, we work in the induced picture. Let $P_{1}=M A N_{1}, P_{2}=M A N_{2}$ be in $\mathscr{P}(A)$. For f in $H^{P_{1}, \sigma, v}$, set

$$
A\left(P_{2}: P_{1}: \sigma: v\right) f(x)=\int_{V_{1} \cap N_{2}} f(x v) d v
$$

where $V_{1}=\theta N_{1}$ and $d v$ is the normalized Haar measure on $V_{1} \cap N_{2}$ by

$$
\int_{V_{1} \cap N_{2}} e^{-\rho_{1}(H(v))} d v=1
$$

where $\rho_{1}=\rho_{P_{1}}$.
The following result is well known (see e.g. [6]).
Proposition 3.1. When the indicated integrals are convergent,

$$
A\left(P_{2}: P_{1}: \sigma: v\right) \pi_{P_{1}, \sigma, v}(g)=\pi_{P_{2}, \sigma, v}(g) A\left(P_{2}: P_{1}: \sigma: v\right)
$$

for all g in G.
For w in M^{\prime}, let $R(w) f(x)=f(x w)$. Then it follows from Proposition 3.1 that

$$
A_{P_{1}}(w, \sigma, v)=R(w) A\left(w^{-1} P_{1} w: P_{1}: \sigma: v\right)
$$

satisfies

$$
\pi_{P_{1}, w \sigma, w v}(\cdot) A_{P_{1}}(w, \sigma, v)=A_{P_{1}}(w, \sigma, v) \pi_{P_{1}, \sigma, v}(\cdot),
$$

whenever the indicated integrals are convergent.
We denote by $A_{\gamma}\left(P_{2}: P_{1}: \sigma: v\right)$ the restriction of the map $A\left(P_{2}: P_{1}: \sigma: v\right)$ to the space $H_{\gamma}^{P_{1}, \sigma, v}$. Then we have that $A_{\gamma}\left(P_{2}: P_{1}: \sigma: v\right)$ is in $\operatorname{Hom}_{K}\left(H_{\gamma}^{P_{1}, \sigma, v}, H_{\gamma}^{P_{2}, \sigma, \nu}\right)$. The inner product B_{θ} on \mathfrak{g} induces an inner product on \mathfrak{a}^{*}, which we denote by $\langle\cdot, \cdot\rangle$.

Proposition 3.2. If v is in $\mathfrak{a}_{\boldsymbol{C}}^{*},\langle\operatorname{Re} v, \alpha\rangle>0$ for all $\alpha>0$ then

$$
A_{\gamma}\left(P_{1}: P_{0}: \sigma: v\right) L_{P_{0}}(A, v, v)=L_{P_{1}}\left(A \circ B_{\gamma}\left(P_{1}: P_{0}: v\right), v, v\right),
$$

where

$$
B_{\gamma}\left(P_{1}: P_{0}: v\right)=\int_{V_{0} \cap N_{1}} \pi_{\gamma}(\kappa(v))^{-1} e^{-(v+\rho)(H(v))} d v
$$

Furthermore, $B_{\gamma}\left(P_{1}: P_{0}: v\right)$ satisfies the following conditions,
(1) $B_{\gamma}\left(P_{1}: P_{0}: v\right)$ is absolutely convergent.
(2) $B_{\gamma}\left(P_{1}: P_{0}: v\right)$ is in $\operatorname{End}\left(V^{\gamma}\right)$ and satisfies

$$
\begin{equation*}
B_{\gamma}\left(P_{1}: P_{0}: v\right) \pi_{\gamma}(m)=\pi_{\gamma}(m) B_{\gamma}\left(P_{1}: P_{0}: v\right) \quad(m \in M) . \tag{3.1}
\end{equation*}
$$

Proof. These assertions but (2) are proved by an analogous argument to the proof of 8.11.5 in [11]. We shall prove (3.1). We have

$$
\begin{aligned}
\pi_{\gamma}(m) B_{\gamma}\left(P_{1}: P_{0}: v\right) & =\pi_{\gamma}(m) \int_{V_{0} \cap N_{1}} \pi_{\gamma}(\kappa(v))^{-1} e^{-(v+\rho)(\boldsymbol{H}(v))} d v \\
& =\int_{V_{0} \cap N_{1}} \pi_{\gamma}\left(\kappa(v) m^{-1}\right)^{-1} e^{-(v+\rho)(H(v))} d v
\end{aligned}
$$

Since $H\left(v m^{-1}\right)=H(v), \kappa\left(v m^{-1}\right)=\kappa(v) m^{-1}$ and the measure $d v$ is invariant under $v \rightarrow m v m^{-1}$ (note that M is compact), the last expression is

$$
\begin{aligned}
& =\int_{V_{0} \cap N_{1}} \pi_{\gamma}\left(\kappa\left(v m^{-1}\right)\right)^{-1} e^{-(v+\rho)\left(H\left(v m^{-1}\right)\right)} d v \\
& =\int_{V_{0} \cap N_{1}} \pi_{\gamma}(\kappa(m v))^{-1} e^{-(v+\rho)(H(m v))} d v \\
& =\int_{V_{0} \cap N_{1}} \pi_{\gamma}(m \kappa(v))^{-1} e^{-(v+\rho)(H(v))} d v \\
& =B_{\gamma}\left(P_{1}: P_{0}: v\right) \pi_{\gamma}(m) .
\end{aligned}
$$

This proves (3.1).
If σ is in \hat{M}, we denote the σ-component of V^{γ} by V_{σ}^{γ}. Let

$$
B_{\gamma}^{\sigma}\left(P_{1}: P_{0}: v\right)=\left.B_{\gamma}\left(P_{1}: P_{0}: v\right)\right|_{V_{\alpha}^{y}} .
$$

Then $B_{\gamma}^{\sigma}\left(P_{1}: P_{0}: v\right)$ is in $\operatorname{End}\left(V_{\sigma}^{\gamma}\right)$. Setting $\bar{P}=\theta P\left(=\theta P_{0}\right), v \rightarrow B_{\gamma}^{\sigma}(\bar{P}: P: v)$ is called Harish-Chandra's C-function, as is well known, which is continued to $\mathfrak{a}_{\boldsymbol{C}}^{*}$ meromorphically.

Corollary 3.3. If w is in M^{\prime}, v in $\mathfrak{a}_{\boldsymbol{C}}^{*},\langle\operatorname{Re} v, \alpha\rangle>0$ for all $\alpha>0$ then

$$
A_{P_{0}}(w, \sigma, v) L(A, v, v)=L\left(A \circ B_{\gamma}(w, v) \pi_{\gamma}(w)^{-1}, v, v\right),
$$

where

$$
B_{\gamma}(w, v)=B_{\gamma}\left(w^{-1} P_{0} w: P_{0}: v\right) .
$$

§4. The C-function for the $\operatorname{SL}(3, R)$ case

In this section we shall specialize to $S L(3, R)$ the notation described in the previous sections. Our notation is as follows. Let G be $S L(3, R)$, the group of 3-by-3 real matrices of determinant one. Let

$$
\begin{aligned}
\theta & =-\operatorname{transpose} \\
K & =\operatorname{SO}(3) \\
\mathfrak{a} & =\left\{\operatorname{diag}\left(x_{1}, x_{2}, x_{3}\right) \mid x_{i} \in R, x_{1}+x_{2}+x_{3}=0\right\} \\
M & =\left\{\left[\begin{array}{lll}
-1 & & \\
& -1 & \\
& & \\
A
\end{array}\right],\left[\begin{array}{lll}
1 & & \\
& -1 & \\
& & \\
& & \\
\hline
\end{array}\right],\left[\begin{array}{lll}
-1 & & \\
& 1 & \\
& & \\
& & \\
\hline
\end{array}\right],\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & \\
& & 1
\end{array}\right]\right\} \\
N & =\{g \in G \\
P & =M A N
\end{aligned}
$$

and define linear functions $e_{i}(1 \leq i \leq 3)$ on a_{C} by

$$
e_{i}\left(\operatorname{diag}\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{i}
$$

Then each v in $\mathfrak{a}_{\boldsymbol{C}}^{*}$ can be written in the form

$$
v=v_{1} e_{1}+v_{2} e_{2}+v_{3} e_{3} \quad\left(v_{i} \in \boldsymbol{C}, 1 \leq i \leq 3\right),
$$

and we sometimes write $\left(v_{1}, v_{2}, v_{3}\right)$ for v. The a-roots of g are $\pm\left(e_{1}-e_{2}\right)$, $\pm\left(e_{2}-e_{3}\right), \pm\left(e_{1}-e_{3}\right)$, and the simple a-roots are $e_{1}-e_{2}, e_{2}-e_{3}$. Let

$$
w_{1}=\left(\begin{array}{rrr}
0 & 1 & \\
-1 & 0 & \\
& & 1
\end{array}\right), \quad w_{2}=\left(\begin{array}{rrr}
1 & & \\
& 0 & 1 \\
& -1 & 0
\end{array}\right)
$$

Their adjoint actions on \mathfrak{a} are corresponding to the simple reflections. We set $w_{0}=w_{1} w_{2} w_{1}$. Then we have

$$
A(\bar{P}: P: \sigma: v)=R\left(w_{0}\right) A_{P}\left(w_{0}, \sigma, v\right) .
$$

By the relation

$$
A_{P}\left(w_{0}, \sigma, v\right)=A_{P}\left(w_{1}, w_{2} w_{1} \sigma, w_{2} w_{1} v\right) A_{P}\left(w_{2}, w_{1} \sigma, w_{1} v\right) A_{P}\left(w_{1}, \sigma, v\right)
$$

and Corollary 3.3, we have for γ in \hat{K}

$$
B_{\gamma}(\bar{P}: P: v)=B_{\gamma}\left(w_{1}, v\right) \pi_{\gamma}\left(w_{1}\right) B_{\gamma}\left(w_{2}, w_{1} v\right) \pi_{\gamma}\left(w_{2}\right) B_{\gamma}\left(w_{1}, w_{2} w_{1} v\right) \pi_{\gamma}\left(w_{1}\right) \pi_{\gamma}\left(w_{0}\right) .
$$

Lemma 4.1. If v is in $\mathfrak{a}_{C}^{*},\langle\operatorname{Re} v, \alpha\rangle>0$ for all $\alpha>0$, we have

$$
\begin{aligned}
& B_{\gamma}\left(w_{1}, v\right)=\text { Const } \cdot \int_{-\infty}^{\infty} f(x)^{-\left(v_{1}-v_{2}\right)-1} \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{rrr}
1 & -x & \\
x & 1 & \\
& & f(x)
\end{array}\right]\right]^{-1} d x, \\
& B_{\gamma}\left(w_{2}, v\right)=\text { Const } \cdot \int_{-\infty}^{\infty} f(x)^{-\left(v_{2}-v_{3}\right)-1} \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{lll}
f(x) & & \\
& 1 & -x \\
& x & 1
\end{array}\right]\right]^{-1} d x,
\end{aligned}
$$

where $f(x)=\left(1+x^{2}\right)^{1 / 2}$.
Since the results are obtained by an easy computation, we leave the proof to the reader.

We shall recall irreducible unitary representations of K.
Lemma 4.2. Set

$$
X_{1}=\frac{\sqrt{-1}}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad X_{2}=\frac{1}{2}\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad X_{3}=\frac{\sqrt{-1}}{2}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then $\left\{X_{i}\right\}_{1 \leq i \leq 3}$ is a basis of $\mathfrak{s u (2)}$ and satisfies the following relations

$$
\left[X_{1}, X_{2}\right]=X_{3}, \quad\left[X_{2}, X_{3}\right]=X_{1}, \quad\left[X_{3}, X_{1}\right]=X_{2} .
$$

By the basis of $\mathfrak{s u}(2)$ given in Lemma 4.2, ($\operatorname{SU}(2), \mathrm{Ad})$ can be considered to be the universal covering group of K. If n is a nonnegative even integer, we set

$$
V^{n}=\left\{p \in C\left[z_{1}, z_{2}\right] \mid p \text { is a homogeneous polynomial of degree } n\right\} .
$$

Then V^{n} is a Hilbert space of dimension $n+1$ equipped with the inner product $\left(p_{1}, p_{2}\right)$ defined by

$$
\left(\sum_{k=0}^{n} a_{k} z_{1}^{k} z_{2}^{n-k}, \sum_{k=0}^{n} b_{k} z_{1}^{k} z_{2}^{n-k}\right)=\sum_{k=0}^{n} k!(n-k)!a_{k} \bar{b}_{k} .
$$

For each $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S U(2)$, we assign

$$
\left(\tilde{\pi}_{n}(g) p\right)\left(z_{1}, z_{2}\right)=p\left(a z_{1}+c z_{2}, b z_{1}+d z_{2}\right) \quad\left(f \in V^{n}\right) .
$$

Then it is known that $\left(\tilde{\pi}_{n}, V^{n}\right)(n \geq 0)$ are irreducible representations of $S U(2)$ and exaust $S U(2)^{\wedge}$. Moreover, as is well known (see e.g. [10]), for each γ in \hat{K} there exists a unique nonnegative even integer n satisfying

$$
\begin{equation*}
\tilde{\pi}_{n} \simeq \pi_{\gamma} \circ \mathrm{Ad}, \quad \text { (unitarily equivalent) } \tag{4.1}
\end{equation*}
$$

Lemma 4.3. Suppose γ is in \hat{K}, n is the nonnegative even integer satisfying (4.1) and V^{n} is defined as above. Let

$$
\begin{gathered}
v_{i}=z_{1}^{n-i} z_{2}^{i} \quad(0 \leq i \leq n), \\
C=2^{-1 / 2} \sqrt{-1}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \in S U(2) .
\end{gathered}
$$

Then we have
(1) $\quad \pi_{\gamma}\left[f(x)^{-1}\left[\begin{array}{rrr}1 & -x & \\ x & 1 & \\ & & f(x)\end{array}\right]\right]^{-1} v_{i}=\left(\frac{1-\sqrt{-1} x}{f(x)}\right)^{n / 2-i} v_{i}$,
(2) $\quad \pi_{\gamma}(\operatorname{Ad}(C)) \pi_{\gamma}\left[f(x)^{-1}\left[\begin{array}{llr}f(x) & & \\ & 1 & -x \\ & x & 1\end{array}\right]\right]^{-1} \pi_{\gamma}(\mathrm{AD}(C))$

$$
=\pi_{\gamma}\left[f(x)^{-1}\left[\begin{array}{rrr}
1 & -x & \\
x & 1 & \\
& & f(x)
\end{array}\right]\right]^{-1}
$$

Proof. We first prove formula (1). From Proposition 4.2, we have

$$
\operatorname{Ad}\left(\exp t X_{3}\right)=\left[\begin{array}{ccc}
\cos t & -\sin t & \\
\sin t & \cos t & \\
& & 1
\end{array}\right], \quad(t \in \boldsymbol{R})
$$

and by an easy computation, we obtain

$$
\tilde{\pi}_{n}\left(\exp t X_{3}\right)=e^{(n / 2-i) \sqrt{-1} t} v_{i}, \quad(0 \leq i \leq n)
$$

Therefore we have

$$
\pi_{\gamma}\left[\left(\begin{array}{ccc}
\cos t & -\sin t & \tag{3.2}\\
\sin t & \cos t & \\
& & 1
\end{array}\right]\right) v_{i}=e^{(n / 2-i) \sqrt{-1} t} v_{i}, \quad(0 \leq i \leq n)
$$

If we put $\cos t=f(x)^{-1}, \sin t=x / f(x)$, (3.2) is equal to

$$
\pi_{\gamma}\left[f(x)^{-1}\left[\begin{array}{ccc}
1 & -x & \\
x & 1 & \\
& & f(x)
\end{array}\right]\right] v_{i}=\left(\frac{1+\sqrt{-1} x}{f(x)}\right)^{n / 2-i} v_{i} \quad(0 \leq i \leq n)
$$

Therefore we have

$$
\pi_{\gamma}\left[f(x)^{-1}\left[\begin{array}{rrr}
1 & -x & \\
x & 1 & \\
& & f(x)
\end{array}\right]\right]^{-1} v_{i}=\left(\frac{1-\sqrt{-1} x}{f(x)}\right)^{n / 2-i} v_{i} \quad(0 \leq i \leq n)
$$

We next prove (2). We note that

$$
\begin{aligned}
C^{-1} X_{1} C & =X_{3} \\
\operatorname{Ad}\left(\exp t X_{1}\right) & =\left[\begin{array}{llc}
1 & & \\
& \cos t & -\sin t \\
& \sin t & \cos t
\end{array}\right]
\end{aligned}
$$

We thus have

$$
\begin{aligned}
\pi_{\gamma}\left[\left(\left[\begin{array}{ccc}
1 & & \\
& \cos t & -\sin t \\
& \sin t & \cos t
\end{array}\right]\right)\right. & =\pi_{\gamma}\left(\operatorname{Ad}\left(\exp t X_{1}\right)\right) \\
& =\pi_{\gamma}\left(\operatorname{Ad}\left(C^{-1}\left(\exp t X_{3}\right) C\right)\right)
\end{aligned}
$$

Since $\operatorname{Ad}\left(C^{2}\right)$ is equal to the identity, $\operatorname{Ad}(C)^{-1}=\operatorname{Ad}(C)$ and the last expression equals

$$
\pi_{\gamma}(\operatorname{Ad}(C)) \pi_{\gamma}\left[\left(\begin{array}{rrr}
\cos t & -\sin t & \\
\sin t & \cos t & \\
& & 1
\end{array}\right]\right) \pi_{\gamma}(\operatorname{Ad}(C))
$$

Therefore we have

$$
\begin{aligned}
& \pi_{\gamma}\left[\left[\begin{array}{ccc}
1 & & \\
& \cos t & -\sin t \\
& \sin t & \cos t
\end{array}\right]\right]^{-1} \\
& \quad=\pi_{\gamma}(\operatorname{Ad}(C)) \pi_{\gamma}\left[\left[\begin{array}{ccc}
\cos t & -\sin t \\
\sin t & \cos t & \\
& & 1
\end{array}\right]\right]^{-1} \pi_{\gamma}(\operatorname{Ad}(C))
\end{aligned}
$$

Putting $\cos t=f(x)^{-1}, \sin t=x / f(x)$, we obtain (2).
As is easily seen, the element $\operatorname{Ad}(C)$ in K normalizes $\mathfrak{a}_{\boldsymbol{C}}^{*}$. Thus $\operatorname{Ad}(C)$ is in M^{\prime}. Then we have the following

Corollary 4.4. Suppose v is an element in $\mathfrak{a}_{\boldsymbol{C}}^{*}$ such that $\langle\operatorname{Re} v, \alpha\rangle>0$ for all $\alpha>0$ and let γ, n be as in Lemma 4.3. Then

$$
\begin{equation*}
B_{\gamma}\left(w_{1}, v\right)=\alpha\left(v_{1}-v_{2}, n\right), \tag{1}
\end{equation*}
$$

where $\alpha(s, n)=\operatorname{diag}\left(\alpha_{0}(s, n), \ldots, \alpha_{n}(s, n)\right)(s \in C)$ with respect to the basis $\left\{v_{i}\right\}_{0 \leq i \leq n}$ of V^{n} and for $0 \leq i \leq n$,

$$
\alpha_{i}(s, n)=\frac{\sqrt{\pi} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-(n / 2-i)}{2}\right) \Gamma\left(\frac{s+1+(n / 2-i)}{2}\right)}
$$

We have also

$$
\begin{equation*}
\pi_{\gamma}(\operatorname{Ad}(C)) B_{\gamma}\left(w_{2}, v\right) \pi_{\gamma}(\operatorname{Ad}(C))=B_{\gamma}\left(w_{1},-(\operatorname{Ad}(C) \cdot v)\right), \tag{2}
\end{equation*}
$$

where $\operatorname{Ad}(C) \cdot v$ is the element in \mathfrak{a}_{C}^{*} defined by

$$
(\operatorname{Ad}(C) \cdot v)(H)=v\left(\operatorname{Ad}(C)^{-1} H\right), \quad\left(H \in \mathfrak{a}_{\boldsymbol{c}}\right)
$$

Proof. (2) is a direct consequence of Lemma 4.3 (2). We shall prove (1). From Lemma 4.1, we have

$$
B_{\gamma}\left(w_{1}, v\right) v_{i}=\int_{-\infty}^{\infty} f(x)^{-\left(v_{1}-v_{2}\right)-1} \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{rrr}
1 & -x & \\
x & 1 & \\
& & 1
\end{array}\right]\right) v_{i} d x
$$

by Lemma 4.3

$$
=\int_{-\infty}^{\infty} f(x)^{-\left(v_{1}-v_{2}\right)-1}\left(\frac{1-\sqrt{-1} x}{f(x)}\right)^{n / 2-i} d x v_{i}
$$

by A. 3

$$
=\alpha_{i}\left(v_{1}-v_{2}, n\right) v_{i}
$$

This proves (1).

§ 5. The M-isotypic components of γ

In this section we shall describe the M-isotypic components of γ in \hat{K}. Let n be a nonnegative even integer satisfying (4.1) and V^{n} be the space defined in $\S 4$. For any integer ξ, we write $\xi \equiv 0$ (resp. $\xi \equiv 1$) if ξ is even (resp. odd). Let

$$
\begin{aligned}
& V_{(0,+)}^{n}=\sum_{\substack{k=0(2) \\
0 \leq k \leq n}} C\left(z_{1}^{n-k} z_{2}^{k}+z_{1}^{k} z_{2}^{n-k}\right), \\
& V_{(0,-)}^{n}=\sum_{\substack{k=0(2) \\
0 \leq k \leq n}} C\left(z_{1}^{n-k} z_{2}^{k}-z_{1}^{k} z_{2}^{n-k}\right),
\end{aligned}
$$

$$
\begin{aligned}
& V_{(1,+)}^{n}=\sum_{\substack{k=1(2) \\
0 \leq k \leq n}} C\left(z_{1}^{n-k} z_{2}^{k}+z_{1}^{k} z_{2}^{n-k}\right), \\
& V_{(1,-)}^{n}=\sum_{\substack{k=1(2) \\
0 \leq k \leq n}} C\left(z_{1}^{n-k} z_{2}^{k}-z_{1}^{k} z_{2}^{n-k}\right) .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
V^{n}=V_{(0,+)}^{n}+V_{(0,-)}^{n}+V_{(1,+)}^{n}+V_{(1,-)}^{n}, \tag{5.1}
\end{equation*}
$$

(orthogonal direct).
Lemma 5.1. Let C be the matrix defined in §4. Then we have

$$
\begin{equation*}
V_{(0,+)}^{n} \xrightarrow{\tilde{\pi}_{n}(C)} V_{(0,+)}^{n} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
V_{(0,-)}^{n} \longrightarrow V_{(1,+)}^{n} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
V_{(1,+)}^{n} \longrightarrow V_{(0,-)}^{n} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
V_{(1,-)}^{n} \longrightarrow V_{(1,-)}^{n} \tag{4}
\end{equation*}
$$

Proof. For any integer $r \geq 0$, we observe that

$$
\begin{align*}
& \left(z_{1}+z_{2}\right)^{r}+\left(z_{1}-z_{2}\right)^{r}=2 \sum_{\substack{0 \leq p \leq r \\
p \equiv 0(2)}}\binom{r}{p} z_{1}^{r-p_{2}^{p}}, \tag{5.2}\\
& \left(z_{1}+z_{2}\right)^{r}-\left(z_{1}-z_{2}\right)^{r}=2 \sum_{\substack{0 \leq p \leq r \\
p \equiv 1(2)}}\binom{r}{p} z_{1}^{r-p_{2}^{p}} . \tag{5.3}
\end{align*}
$$

Suppose $n-2 k \geq 0$. Then we have

$$
\begin{aligned}
\tilde{\pi}_{n}(C) & \left(z_{1}^{n-k} z_{2}^{k}+z_{1}^{k} z_{2}^{n-k}\right) \\
& =\text { Const } \cdot\left(\left(z_{1}+z_{2}\right)^{n-k}\left(z_{1}-z_{2}\right)^{k}+\left(z_{1}+z_{2}\right)^{k}\left(z_{1}-z_{2}\right)^{n-k}\right) \\
& =\text { Const } \cdot\left(z_{1}^{2}-z_{2}^{2}\right)^{k}\left(\left(z_{1}+z_{2}\right)^{n-2 k}+\left(z_{1}-z_{2}\right)^{n-2 k}\right) .
\end{aligned}
$$

By (5.2) we have

$$
\left(z_{1}+z_{2}\right)^{n-2 k}+\left(z_{1}-z_{2}\right)^{n-2 k} \in V_{(0,+)}^{n-2 k} .
$$

Therefore, for the proof of (1) and (3), it is enough to show the following relations

$$
\begin{equation*}
\left(z_{1}^{2}-z_{2}^{2}\right)^{k} \cdot V_{(0,+)}^{n-2 k} \subset V_{(0,+)}^{n} \quad \text { for } k \equiv 0(2) \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(z_{1}^{2}-z_{2}^{2}\right)^{k} \cdot V_{(0,+)}^{n-2 k} \subset V_{(0,-)}^{n} \quad \text { for } k \equiv 1(2) . \tag{5.5}
\end{equation*}
$$

Now for each interger $s \geq 0$ such that $s \equiv 0$ (2), we have

$$
\begin{aligned}
\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{1}^{r-s} z_{2}^{s}+z_{1}^{s} z_{2}^{r-s}\right)= & \left(z_{1}^{(r+2)-s} z_{2}^{s}-z_{1}^{s+2} z_{2}^{(r+2)-s}\right) \\
& +\left(z_{1}^{s+2} z_{2}^{(r+2)-(s+2)}-z_{1}^{(r+2)-(s+2)} z_{2}^{s+2}\right) .
\end{aligned}
$$

Therefore for an even integer $r \geq 0$, we have

$$
\left(z_{1}^{2}-z_{2}^{2}\right) \cdot V_{(0,+)}^{r} \subset V_{(0,-)}^{r+2}
$$

In the same way as above, for an even integer $r \geq 0$, we have

$$
\left(z_{1}^{2}-z_{2}^{2}\right) \cdot V_{(0,-)}^{r} \subset V_{(0,+)}^{r+2}
$$

This proves (5.4), (5.5). Namely (1) and (3) are proved. Similarly, we can prove (2) and (4).

Let

$$
m_{1}=\left[\begin{array}{ccc}
-1 & & \\
& -1 & \\
& & 1
\end{array}\right], \quad m_{2}=\left[\begin{array}{lll}
1 & & \\
& -1 & \\
& & -1
\end{array}\right]
$$

Then M is generated by m_{1}, m_{2} and we have
and

$$
m_{1}=\operatorname{Ad}\left(\exp \pi X_{3}\right)=\operatorname{Ad}\left(\left(\begin{array}{ll}
\sqrt{-1} & \tag{5.6}\\
& -\sqrt{-1}
\end{array}\right)\right)
$$

$$
m_{2}=\operatorname{Ad}\left(\exp \pi X_{1}\right)=\operatorname{Ad}(C) \operatorname{Ad}\left(\left(\begin{array}{ll}
\sqrt{-1} & \tag{5.7}\\
& -\sqrt{-1}
\end{array}\right)\right) \operatorname{Ad}(C)
$$

Since M is abelian and m_{1}, m_{2} are of order two, for each γ in \hat{K}, its representation space V^{γ} is decomposed as

$$
\begin{equation*}
V^{\gamma}=V_{(+,+)}^{\gamma}+V_{(+,-)}^{\gamma}+V_{(-,+)}^{\gamma}+V_{(-,-)}^{\gamma} \tag{5.8}
\end{equation*}
$$

(orthogonal direct), where

$$
\begin{array}{ll}
\left.\pi_{\gamma}\left(m_{1}\right)\right|_{V_{(+,+)}^{\gamma}}=1, & \left.\pi_{\gamma}\left(m_{2}\right)\right|_{V_{(+,+)}^{\gamma}}=1, \\
\left.\pi_{\gamma}\left(m_{1}\right)\right|_{V_{(+,-)}^{\gamma}}=1, & \left.\pi_{\gamma}\left(m_{2}\right)\right|_{V_{(+,-)}^{\gamma}}=-1, \\
\left.\pi_{\gamma}\left(m_{1}\right)\right|_{V_{(-,+)}^{\gamma}}=-1, & \left.\pi_{\gamma}\left(m_{2}\right)\right|_{V_{(-,+)}^{\gamma}}=1, \\
\left.\pi_{\gamma}\left(m_{1}\right)\right|_{V_{(-,-)}^{\gamma}}=-1, & \left.\pi_{\gamma}\left(m_{2}\right)\right|_{V_{(-,-)}^{\gamma}}=-1 .
\end{array}
$$

Lemma 5.2. There is an M-intertwining correspondence between (5.1) and (5.8), that is, whenever $n / 2$ is odd,

$$
\begin{aligned}
& V_{(0,+)}^{n} \rightarrow V_{(-,-)}^{\gamma}, \\
& V_{(0,-)}^{n} \rightarrow V_{(-,+)}^{\gamma}, \\
& V_{(1,+)}^{n} \rightarrow V_{(+,-)}^{\gamma}, \\
& V_{(1,-)}^{n} \rightarrow V_{(+,+)}^{\gamma},
\end{aligned}
$$

whenever $n / 2$ is even,

$$
\begin{aligned}
& V_{(0,+)}^{n} \rightarrow V_{(+,+)}^{\gamma}, \\
& V_{(0,-)}^{n} \rightarrow V_{(+,-)}^{\gamma}, \\
& V_{(1,+)}^{n} \rightarrow V_{(-,+)}^{\gamma}, \\
& V_{(1,-)}^{n} \rightarrow V_{(-,-)}^{\gamma} .
\end{aligned}
$$

Proof. According to (4.1) and (5.6), we have

$$
\begin{aligned}
\pi_{\gamma}\left(m_{1}\right)\left(z_{1}^{n-k} z_{2}^{k}\right) & =\tilde{\pi}_{n}\left(\left(\begin{array}{ll}
\sqrt{-1} & -\sqrt{-1}
\end{array}\right)\right)\left(z_{1}^{n-k} z_{2}^{k}\right) \\
& =(-1)^{n / 2+k} z_{1}^{n-k} z_{2}^{k} .
\end{aligned}
$$

The signature of $\pi_{\gamma}\left(m_{1}\right)$ is determined by $n / 2+k$. Combining this fact with (5.7) and Lemma 5.1, we have the desired results.

For simplicity, we denote $V_{(\cdot, \cdot)}^{\gamma}$ by (\cdot, \cdot).
Lemma 5.3. Let $w_{i}(i=1,2)$ be as in §4. Then $\pi_{\gamma}(\operatorname{Ad}(C))$ and $\pi_{\gamma}\left(w_{i}\right)$ satisfy the following diagram.

$$
\begin{aligned}
&(+,+) \xrightarrow{\pi_{\gamma}(\operatorname{Ad}(C))}(+,+) \\
&(+,-) \longrightarrow(-,+) \\
&(-,+) \longrightarrow(+,-) \\
&(-,-) \longrightarrow(-,-) \\
&(+,+) \xrightarrow{\pi_{\gamma}\left(w_{1}\right)}(+,+)(+,+) \xrightarrow{\pi_{\gamma}\left(w_{2}\right)}(+,+) \\
&(+,-) \longrightarrow(+,-)(+,-) \longrightarrow(-,-) \\
&(-,+) \longrightarrow(-,-)(-,+) \longrightarrow) \\
&(-,-) \longrightarrow(-,+)(-,-) \longrightarrow)
\end{aligned}
$$

Since the proof is simple, we leave it to the reader.

§6. The determinant of the \boldsymbol{C}-function

In this section, we shall give an explicit formula of the determinant of $B_{\gamma}^{\sigma}(\bar{P}: P: v)$. Let

$$
\pi_{\gamma}^{\sigma}(w)=\left.\pi_{\gamma}(w)\right|_{V_{g}^{\gamma}}, \quad\left(w \in M^{\prime}\right)
$$

and for v in \mathfrak{a}_{c}^{*},

$$
\begin{aligned}
& \alpha^{+,+}(v, \gamma)=\prod_{\substack{n / 2 \\
0 \leq k \leq n / 2}} \frac{\sqrt{\pi} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-(n / 2-k)}{2}\right) \Gamma\left(\frac{s+1+(n / 2-k)}{2}\right)}, \\
& \alpha^{+,-}(v, \gamma)=\prod_{\substack{n / 2 \\
0 \leq k<n / 2}} \frac{\sqrt{\pi} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-(n / 2-k)}{2}\right) \Gamma\left(\frac{s+1+(n / 2-k)}{2}\right)}, \\
& \alpha^{-,+}(v, \gamma)=\prod_{\substack{n / 2 \\
0 \leq k \leq n / 2}} \frac{\sqrt{\pi} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-(n / 2-k)}{2}\right) \Gamma\left(\frac{s+1+(n / 2-k)}{2}\right)}, \\
& \alpha^{-,-}(v, \gamma)=\prod_{\substack{n / 2 \\
0 \leq k<n=1 \\
0}} \frac{\sqrt{\pi} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-(n / 2-k)}{2}\right) \Gamma\left(\frac{s+1+(n / 2-k)}{2}\right)},
\end{aligned}
$$

where $s=v_{1}-v_{2}$, and n is a nonnegative even integer satisfying (4.1).
Lemma 6.1. Suppose γ is in \hat{K} and σ is in \hat{M} such that $V_{\sigma}^{\gamma} \neq\{0\}$. Then we have

$$
\operatorname{det}\left(B_{\gamma}^{\sigma}\left(w_{1}, v\right)\right)=\alpha^{\sigma}(v, \gamma)
$$

The assertion of the lemma is an immediate consequence of Corollary 4.4 (1) and Lemma 5.2. The proof is left to the reader.

Theorem 6.2. Suppose γ is in \hat{K} and σ is in \hat{M} such that $V_{\sigma}^{\gamma} \neq\{0\}$. Then we have
(1) if $\sigma=(+,+)$,

$$
\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)=\text { Const } \cdot \alpha^{+,+}\left(w_{2} w_{1} v, \gamma\right) \alpha^{+,+}\left(w_{1} v, \gamma\right) \alpha^{+,+}(v, \gamma),
$$

(2) if $\sigma=(+,-)$,

$$
\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)=\text { Const } \cdot \alpha^{-,-}\left(w_{2} w_{1} v, \gamma\right) \alpha^{-,+}\left(w_{1} v, \gamma\right) \alpha^{+,-}(v, \gamma),
$$

(3) if $\sigma=(-,+)$,

$$
\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)=\text { Const } \cdot \alpha^{+,-}\left(w_{2} w_{1} v, \gamma\right) \alpha^{-,-}\left(w_{1} v, \gamma\right) \alpha^{-,+}(v, \gamma),
$$

(4) if $\sigma=(-,-)$,

$$
\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)=\text { Const } \cdot \alpha^{-,+}\left(w_{2} w_{1} v, \gamma\right) \alpha^{+,-}\left(w_{1} v, \gamma\right) \alpha^{-,-}(v, \gamma),
$$

Proof. We shall prove (2). By Lemma 5.3 we have

$$
\begin{align*}
B_{\gamma}^{(+,-)}(\bar{P}: P: v)= & B_{\gamma}^{(+,-)}\left(w_{1}, v\right) \pi_{\gamma}^{(+,-)}\left(w_{1}\right) B_{\gamma}^{(+,-)}\left(w_{2}, w_{1} v\right) \pi_{\gamma}^{(-,-)}\left(w_{2}\right) \\
& \cdot B_{\gamma}^{(-,-)}\left(w_{1}, w_{2} w_{1} v\right) \pi_{\gamma}^{(-,+)}\left(w_{1}\right) \pi_{\gamma}^{(+,-)}\left(w_{0}\right) . \tag{6.1}
\end{align*}
$$

By Corollary 4.4 (2) and Lemma 5.3 we obtain

$$
B_{\gamma}^{(+,-)}\left(w_{2}, w_{1} v\right)=\pi_{\gamma}(\operatorname{Ad}(C)) B_{\gamma}^{(-,+)}\left(w_{1},-\left(\operatorname{Ad}(C) \cdot w_{1} v\right)\right) \pi_{\gamma}(\operatorname{Ad}(C)) .
$$

Therefore (6.1) is equal to

$$
\begin{align*}
& B_{\gamma}^{(+,-)}\left(w_{1}, v\right) \pi_{\gamma}^{(+,-)}\left(w_{1}\right) \pi_{\gamma}^{(-,+)}(\operatorname{Ad}(C)) \\
& \cdot B_{\gamma}^{(-,+)}\left(w_{1},-\left(\operatorname{Ad}(C) \cdot w_{1} v\right)\right) \pi_{\gamma}^{(+,-)}(\operatorname{Ad}(C)) \pi_{\gamma}^{(-,-)}\left(w_{2}\right) \\
& \cdot B_{\gamma}^{(-,-)}\left(w_{1}, w_{2} w_{1} v\right) \pi_{\gamma}^{(-,+)}\left(w_{1}\right) \pi_{\gamma}^{(+,-)}\left(w_{0}\right) . \tag{6.2}
\end{align*}
$$

Let $i=0$ or 1 and σ^{\prime} in M^{\prime}. We extend $B_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right)$ to an operator $\tilde{B}_{\gamma}^{\sigma}\left(w_{i}, \cdot\right)$ of V^{γ} by

$$
\tilde{B}_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right)= \begin{cases}B_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right) & \text { on } V_{\sigma^{\prime}}^{\gamma} \tag{6.3}\\ \text { identity } & \text { otherwise }\end{cases}
$$

and define

$$
\begin{align*}
B_{\gamma}^{\sigma}(\bar{P}: P: v)= & \widetilde{B}_{\gamma}^{(+,-)}\left(w_{1}, v\right) \pi_{\gamma}\left(w_{1}\right) \pi_{\gamma}(\operatorname{Ad}(C)) \\
& \cdot \widetilde{B}_{\gamma}^{(-,+)}\left(w_{1},-\left(\operatorname{Ad}(C) \cdot w_{1} v\right)\right) \pi_{\gamma}(\operatorname{Ad}(C)) \pi_{\gamma}\left(w_{2}\right) \\
& \cdot \widetilde{B}_{\gamma}^{(-,-)}\left(w_{1}, w_{2} w_{1} v\right) \pi_{\gamma}\left(w_{1}\right) \pi_{\gamma}\left(w_{0}\right) . \tag{6.4}
\end{align*}
$$

Then from (6.2) we have

$$
\begin{equation*}
\left.\widetilde{B}_{\gamma}^{\sigma}(\bar{P}: P: v)\right|_{V_{\gamma}^{\sigma}}=B_{\gamma}^{\sigma}(\bar{P}: P: v) \tag{6.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)=d_{1} \cdot \operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right),\right. \tag{6.6}
\end{equation*}
$$

where d_{1} is a nonzero constant which is independent of v. On the other hand, from (6.3) and (6.4) we have

$$
\begin{align*}
\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)= & d_{2} \cdot \operatorname{det}\left(B_{\gamma}^{(+,-)}\left(w_{1}, v\right)\right) \operatorname{det}\left(B_{\gamma}^{(-,+)}\left(w_{1},-\left(\operatorname{Ad}(C) \cdot w_{1} v\right)\right)\right) \\
& \cdot \operatorname{det}\left(B_{\gamma}^{(-,-)}\left(w_{1}, w_{2} w_{1} v\right)\right. \tag{6.7}
\end{align*}
$$

where d_{2} is a constant such that $\left|d_{2}\right|=1$. By Lemma 6.1 and (6.6), (6.7), we can prove (2). Similarly, we can prove the others.

§7. The \boldsymbol{C}-function for $\operatorname{SL}(4, R)$

Let G be $S L(4, R)$, the group of 4-by-4 real matrices of determinant one. Let

$$
\begin{aligned}
\theta & =-\operatorname{transpose}, \\
K & =\operatorname{SO}(4), \\
\mathfrak{a} & =\left\{\operatorname{diag}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{i} \in R, \sum_{i=1}^{4} x_{i}=0\right\}, \\
M & =Z_{K}(\mathfrak{a}), \\
N & =\left\{g \in G \left\lvert\, g=\left\{\begin{array}{llll}
1 & * & * & * \\
& 1 & * & * \\
& & 1 & * \\
& & & 1
\end{array}\right]\right.\right\}, \\
P & =M A N,
\end{aligned}
$$

and define linear functions $e_{i}(1 \leq i \leq 4)$ on a_{C} by

$$
e_{i}\left(\operatorname{diag}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=x_{i}
$$

Then each v in $\mathfrak{a}_{\boldsymbol{c}}^{*}$ can be written in the form

$$
v=v_{1} e_{1}+v_{2} e_{2}+v_{3} e_{3}+v_{4} e_{4} \quad\left(v_{i} \in C, 1 \leq i \leq 4\right),
$$

and we write $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ for v. The \mathfrak{a}-roots of \mathfrak{g} are $e_{i}-e_{j}(1 \leq i, j \leq 4, i \neq j)$ and the simple a-roots are $e_{1}-e_{2}, e_{2}-e_{3}, e_{3}-e_{4}$. Let

$$
\begin{gathered}
w_{1}=\left[\begin{array}{rrrr}
0 & 1 & & \\
-1 & 0 & & \\
& & 1 & \\
& & & 1
\end{array}\right], \quad w_{2}=\left[\begin{array}{rrrr}
1 & & & \\
& 0 & 1 & \\
& -1 & 0 & \\
& & & 1
\end{array}\right], \\
w_{3}=\left[\begin{array}{lrrr}
1 & & & \\
& 1 & & \\
& & 0 & 1 \\
& & -1 & 0
\end{array}\right] .
\end{gathered}
$$

Their adjoint actions on \mathfrak{a} are corresponding to the simple reflections. We set $w_{0}=w_{1} w_{2} w_{1} w_{3} w_{2} w_{1}$, then we have

$$
A(\bar{P}: P: \sigma: v)=R\left(w_{0}\right) A_{P}\left(w_{0}, \sigma, v\right) .
$$

By the relation

$$
\begin{aligned}
A_{P}\left(w_{0}, \sigma, v\right)= & A_{P}\left(w_{1}, w_{2} w_{1} w_{3} w_{2} w_{1} \sigma, w_{2} w_{1} w_{3} w_{2} w_{1} v\right) \\
& \cdot A_{P}\left(w_{2}, w_{1} w_{3} w_{2} w_{1} \sigma, w_{1} w_{3} w_{2} w_{1} v\right) A_{P}\left(w_{1}, w_{3} w_{2} w_{1} \sigma, w_{3} w_{2} w_{1} v\right) \\
& \cdot A_{P}\left(w_{3}, w_{2} w_{1} \sigma, w_{2} w_{1} v\right) A_{P}\left(w_{2}, w_{1} \sigma, w_{1} v\right) A_{P}\left(w_{1}, \sigma, v\right)
\end{aligned}
$$

and Corollary 3.3, we have

$$
\begin{align*}
B_{\gamma}(\bar{P}: P: v)= & B_{\gamma}\left(w_{1}, v\right) \pi_{\gamma}\left(w_{1}\right) B_{\gamma}\left(w_{2}, w_{1} v\right) \pi_{\gamma}\left(w_{2}\right) B_{\gamma}\left(w_{3}, w_{2} w_{1} v\right) \pi_{\gamma}\left(w_{3}\right) \\
& \cdot B_{\gamma}\left(w_{1}, w_{3} w_{2} w_{1} v\right) \pi_{\gamma}\left(w_{1}\right) B_{\gamma}\left(w_{2}, w_{1} w_{3} w_{2} w_{1} v\right) \pi_{\gamma}\left(w_{2}\right) \\
& \cdot B_{\gamma}\left(w_{1}, w_{2} w_{1} w_{3} w_{2} w_{1} v\right) \pi_{\gamma}\left(w_{1}\right) \pi_{\gamma}\left(w_{0}\right) . \tag{7.1}
\end{align*}
$$

Lemma 7.1. If v is in $\mathfrak{a}_{C}^{*},\langle\operatorname{Re} v, \alpha\rangle>0$ for all $\alpha>0$, we have

$$
\begin{align*}
& B_{\gamma}\left(w_{1}, v\right)=\int_{-\infty}^{\infty} f(x)^{-\left(v_{1}-v_{2}\right)-1} \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{llll}
1 & -x & & \\
x & 1 & & \\
& & f(x) & \\
& & & f(x)
\end{array}\right]\right]^{-1} d x, \tag{1}\\
& B_{\gamma}\left(w_{2}, v\right)=\int_{-\infty}^{\infty} f(x)^{-\left(v_{2}-v_{3}\right)-1} \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{llll}
f(x) & & \\
& 1 & -x & \\
& x & 1 & \\
& & & f(x)
\end{array}\right]\right]^{-1} d x, \tag{2}\\
& B_{\gamma}\left(w_{3}, v\right)=\int_{-\infty}^{\infty} f(x)^{-\left(v_{3}-v_{4}\right)-1} \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{lll}
f(x) & & \\
& f(x) & \\
& & 1 \\
& & \\
& & 1
\end{array}\right]\right]^{-1} d x, \tag{3}
\end{align*}
$$

where $f(x)=\left(1+x^{2}\right)^{1 / 2}$.
Since the results are obtained by an easy computation, we leave the proof to the reader.

We shall recall irreducible unitary representations of K. Let \boldsymbol{H} be the field of quaternion numbers, the algebra over \boldsymbol{R} with basis $1, i, j, k$ and multiplication law $i^{2}=j^{2}=k^{2}=-1, i j=k, k i=j, j k=i$. If $z=z_{1}+i z_{2}+$ $j z_{3}+k z_{4}$, we set $\bar{z}=z_{1}-i z_{2}-j z_{3}-k z_{4}$ and $|z|^{2}=z \bar{z}$. Then we have

$$
|z|^{2}=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}
$$

Let $S p(1)$ be the group of all quaternion numbers such that $|z|^{2}=1$.
We identify $S p(1)$ with $S U(2)$ as follows. Each element $z=z_{1}+i z_{2}+$ $j z_{3}+k z_{4}$ in $S p(1)$ can be written as

$$
z=x+j y, \quad\left(x=z_{1}+i z_{2}, y=z_{3}-i z_{4}\right)
$$

Using the above notation, we set

$$
\varphi(z)=\left(\begin{array}{cc}
x & -\bar{y} \\
y & \bar{x}
\end{array}\right) \in S U(2)
$$

Then φ is an isomorphism from $S p(1)$ to $S U(2)$.
We identify \boldsymbol{H} with \boldsymbol{R}^{4} by the map $w \rightarrow\left(w_{1}, w_{2}, w_{3}, w_{4}\right),\left(w=w_{1}+i w_{2}+\right.$ $\left.j w_{3}+k w_{4}\right)$. For each $\left(z, z^{\prime}\right)$ in $S P(1) \times S P(1)$ and $\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ in \boldsymbol{R}^{4}, we define a map ψ from $S p(1) \times S p(1)$ to K by

$$
\psi\left(z, z^{\prime}\right)\left(\left(w_{1}, w_{2}, w_{3}, w_{4}\right)\right)=z \cdot w \cdot z^{\prime-1}
$$

Then $(S p(1) \times S p(1), \psi)$ is the universal covering group of K.
We set

$$
l=\psi \cdot\left(\varphi^{-1} \times \varphi^{-1}\right)
$$

LEMMA 7.2. $\quad(S U(2) \times S U(2), \quad i)$ is the universal covering group of K. Furthermore, for each γ in \widehat{K} there exist unique nonnegative integers m, n satisfying the following relations,

$$
\begin{equation*}
m+n \equiv 0 \tag{7.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n} \simeq \pi_{\gamma} \circ l, \quad \text { (unitarily equivalent) } \tag{7.3}
\end{equation*}
$$

where $\tilde{\pi}_{n}(n \geq 0)$ are defined in $\S 4$ and $\hat{\otimes}$ denotes the exterior tensor product.

We identify V^{γ} with $V^{m} \otimes V^{n}$ by Lemma 7.2.

Lemma 7.3. Suppose γ is in \hat{K}, m, n are nonnegative inegers satisfying (7.2) and (7.3) and V^{m}, V^{n} are the spaces defined in §4. Let

$$
u_{i}=z_{1}^{m-i} z_{2}^{i} \quad(0 \leq i \leq m), \quad v_{j}=z_{1}^{n-j_{z}^{j}} \quad(0 \leq j \leq n)
$$

Then for x in \boldsymbol{R} we have the following relations,
(1) $\quad \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{cccc}1 & -x & & \\ x & 1 & & \\ & & f(x) & \\ & & & f(x)\end{array}\right]\right)^{-1}\left(u_{i} \otimes v_{j}\right)$

$$
=\left(\frac{1-\sqrt{-1} x}{f(x)}\right)^{(m-n) / 2-(i-j)}\left(u_{i} \otimes v_{j}\right)
$$

(2) $\quad \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{lllr}f(x) & & & \\ & f(x) & & \\ & & 1 & -x \\ & & x & 1\end{array}\right]\right]^{-1}\left(u_{i} \otimes v_{j}\right)$

$$
=\left(\frac{1-\sqrt{-1} x}{f(x)}\right)^{(m+n) / 2-(i+j)}\left(u_{i} \otimes v_{j}\right), \quad(0 \leq i \leq m, 0 \leq j \leq n) .
$$

Proof. We shall prove (1). Let $\left\{X_{i}\right\}_{1 \leq i \leq 3}$ be the basis of $\mathfrak{s u}(2)$ given in Lemma 4.2. We then have for t in \boldsymbol{R}

$$
\begin{align*}
& \tilde{\pi}_{m} \otimes \tilde{\pi}_{n}\left(\exp t X_{3}, \exp -t X_{3}\right)\left(u_{i} \otimes v_{j}\right) \\
& \quad= \tilde{\pi}_{m}\left(\exp t X_{3}\right) u_{i} \otimes \tilde{\pi}_{n}\left(\exp -t X_{3}\right) v_{j} \\
&=\left(e^{(m / 2-i) \sqrt{-1} t} u_{i}\right) \otimes\left(e^{-(n / 2-j) \sqrt{-1} t} v_{j}\right) \\
&=e^{((m-n) / 2-(i-j))} \sqrt{-1} t \tag{7.4}\\
& u_{i} \otimes v_{j}, \quad(0 \leq i \leq m, 0 \leq j \leq n)
\end{align*}
$$

and by an easy computation, we obtain

$$
\begin{align*}
\imath\left(\exp t X_{3}, \exp -t X_{3}\right) & =\left[\begin{array}{cccc}
\cos t & -\sin t & & \\
\sin t & \cos t & & \\
& & & 1 \\
\\
& & & \\
\hline
\end{array}\right], \tag{7.5}\\
l\left(\exp t X_{3}, \exp t X_{3}\right) & =\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \cos t & -\sin t \\
& & \sin t & \cos t
\end{array}\right] \tag{7.6}
\end{align*}
$$

From (7.4), (7.5) and Lemma 7.2 we have

$$
\begin{aligned}
& \pi_{\gamma}\left[\begin{array}{cccc}
\cos t & -\sin t & & \\
\sin t & \cos t & & \\
& & 1 & \\
& & & 1
\end{array}\right] u_{i} \otimes v_{j} \\
& =e^{((m-n) / 2-(i-j)) \sqrt{-1} t} u_{i} \otimes v_{j}, \quad(0 \leq i \leq m, 0 \leq j \leq n) .
\end{aligned}
$$

Putting $\cos t=f(x)^{-1}, \sin t=x / f(x)$, we obtain (1). (2) can be proved similarly.

We put

$$
C=2^{-1 / 2} \sqrt{-1}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \in S U(2)
$$

Then we have the following
Lemma 7.4. In the setting of the last lemma we have for x in \boldsymbol{R}

$$
\begin{aligned}
& \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{llll}
f(x) & & & \\
& 1 & -x & \\
& x & 1 & \\
& & & f(x)
\end{array}\right]\right]^{-1} \\
& \quad=\pi_{\gamma}(l(C, C)) \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{ccc}
1 & -x & \\
x & 1 & \\
& & f(x) \\
& & \\
& & f(x)
\end{array}\right]\right]^{-1} \pi_{\gamma}(l(C, C))^{-1} .
\end{aligned}
$$

Proof. We note that

$$
\begin{equation*}
C^{-1} X_{1} C=X_{3}, \tag{7.7}
\end{equation*}
$$

and we have for t in \boldsymbol{R}

$$
\begin{align*}
\tilde{\pi}_{m} & \hat{\otimes} \tilde{\pi}_{n}\left(\exp -t X_{1}, \exp -t X_{1}\right) \\
& =\tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}\left(C\left(\exp -t X_{3}\right) C^{-1}, C\left(\exp -t X_{3}\right) C^{-1}\right) \\
& =\tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}(C, C) \tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}\left(\exp -t X_{3}, \exp -t X_{3}\right) \tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}(C, C)^{-1} \tag{7.8}
\end{align*}
$$

By an easy computation we obtain for t in \mathbb{R}

$$
l\left(\exp -t X_{1}, \exp -t X_{1}\right)=\left[\begin{array}{llll}
1 & & & \tag{7.9}\\
& \cos t & -\sin t & \\
& \sin t & \cos t & \\
& & & 1
\end{array}\right]
$$

Therefore, from (7.6), (7.8) and (7.9) we have

$$
\pi_{\gamma}\left[\left[\begin{array}{ccc}
1 & & \\
\cos t & -\sin t \\
\sin t & \cos t \\
& & 1
\end{array}\right]\right]=\pi_{\gamma}(l(C, C)) \pi_{\gamma}\left[\left[\begin{array}{rrr}
1 & & \\
& 1 & \\
& & \cos t \\
& & \sin t \\
& & -\sin t \\
& \cos t
\end{array}\right]\right) \pi_{\gamma}(l(C, C))^{-1} .
$$

Puting $\cos t=f(x)^{-1}, \sin t=x / f(x)$, we obtain the desired relation, and this proves the assertion of the lemma.

Let m, n be nonnegative integers and s in C. For each integer i, j such that $0 \leq i \leq m, 0 \leq j \leq n$, we set

$$
\begin{aligned}
& \alpha_{i, j}(s,(m, n)) \\
& \quad=\frac{\sqrt{\pi} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-((m-n) / 2-(i-j))}{2}\right) \Gamma\left(\frac{s+1+((m-n) / 2-(i-j))}{2}\right)}
\end{aligned}
$$

$\beta_{i, j}(s,(m, n))$

$$
=\frac{\sqrt{\pi} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-((m+n) / 2-(i+j))}{2}\right) \Gamma\left(\frac{s+1+((m+n) / 2-(i+j))}{2}\right)} .
$$

As is easily seen, the element $l(C, C)$ in K normalizes $\mathfrak{a}_{\boldsymbol{C}}^{*}$. Thus $l(C, C)$ is in M^{\prime}. We then have the following

Lemma 7.5. Suppose v is in a_{c}^{*} such that $\langle\operatorname{Re} v, \alpha\rangle>0$ for all $\alpha>0$ and let γ, m and n be as in Lemma 7.3. Then

$$
\begin{align*}
& B_{\gamma}\left(w_{1}, v\right)\left(u_{i} \otimes v_{j}\right)=\alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right)\left(u_{i} \otimes v_{j}\right), \tag{1}\\
& B_{\gamma}\left(w_{3}, v\right)\left(u_{i} \otimes v_{j}\right)=\beta_{i, j}\left(v_{3}-v_{4},(m, n)\right)\left(u_{i} \otimes v_{j}\right), \tag{7.10}
\end{align*}
$$

($0 \leq i \leq m, 0 \leq j \leq n)$.

$$
\begin{equation*}
\pi_{\gamma}(l(C, C)) B_{\gamma}\left(w_{2}, v\right) \pi_{\gamma}(l(C, C))^{-1}=B_{\gamma}\left(w_{3},-(l(C, C) \cdot v)\right), \tag{2}
\end{equation*}
$$

where $l(C, C) \cdot v$ is the element in $\mathfrak{a}_{\boldsymbol{C}}^{*}$ defined by

$$
\imath(C, C) \cdot v(H)=v\left(\imath(C, C)^{-1} \cdot H \cdot \imath(C, C)\right), \quad\left(H \in \mathfrak{a}_{\boldsymbol{c}}\right)
$$

Proof. We shall prove (1). We have

$$
\begin{aligned}
& B_{\gamma}\left(w_{1}, v\right)\left(u_{i} \otimes v_{j}\right) \\
& \quad=\int_{-\infty}^{\infty} f(x)^{-\left(v_{1}-v_{2}\right)-1} \pi_{\gamma}\left[\frac{1}{f(x)}\left[\begin{array}{cccc}
1 & -x & & \\
x & 1 & & \\
& & f(x) & \\
& & & f(x)
\end{array}\right]\right]^{-1}\left(u_{i} \otimes v_{j}\right) d x,
\end{aligned}
$$

and by Lemma 7.3 (1)

$$
=\int_{-\infty}^{\infty} f(x)^{-\left(v_{1}-v_{2}\right)-1}\left(\frac{1-\sqrt{-1} x}{f(x)}\right)^{(m-n) / 2-(i-j)}\left(u_{i} \otimes v_{j}\right) d x
$$

and by A. 3

$$
=\alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right)\left(u_{i} \otimes v_{j}\right)
$$

This proves (7.10). In the same way, we can prove (7.11). This proves (1). Furthermore, (2) is a direct consequence of Lemma 7.4.

§ 8. The M-isotypic components of γ

In this section we shall describe the M-isotypic components of γ in \hat{K}. Let m, n be the nonnegative integers given in Lemma 7.2 and $k=0$ or 1. If $i, j(i, j \in N)$ satisfy $(m-n) / 2-(i-j) \equiv k$, we write $(i, j) \equiv k$ for the above relation.

$$
\begin{aligned}
& V_{(k,+,+)}^{(m, n)}=\sum_{\substack{(i, j) k \\
0 \leq i \leq m, 0 \leq j \leq n}} C\left(z_{1}^{m-i} z_{2}^{i}+z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j} z_{2}^{j}+z_{1}^{j} z_{2}^{n-j}\right), \\
& V_{(k,+,-),-)}^{(m, n)}=\sum_{\substack{(i, j)=k \\
0 \leq i \leq m, 0 \leq j \leq n}} C\left(z_{1}^{m-i} z_{2}^{i}+z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j} z_{2}^{j}-z_{1}^{j} z_{2}^{n-j}\right), \\
& V_{(k,-,+)}^{(m, n)}=\sum_{\substack{(i, j)=k \\
0 \leq i \leq m, 0 \leq j \leq n}} C\left(z_{1}^{m-i} z_{2}^{i}-z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j} z_{2}^{j}+z_{1}^{j} z_{2}^{n-j}\right), \\
& V_{(k,-,,-)}^{(m, n)}=\sum_{\substack{(i, j) k \\
0 \leq i \leq m, 0 \leq j \leq n}} C\left(z_{1}^{m-i} z_{2}^{i}-z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j} z_{2}^{j}-z_{1}^{j} z_{2}^{n-j}\right) .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
V^{m} \otimes V^{n}=\sum_{k=0}^{1} V_{(k,+,+)}^{(m, n)}+V_{(k,+,-)}^{(m, n)}+V_{(k,-,+)}^{(m, n)}+V_{(k,-,-)}^{(m, n)}, \tag{8.1}
\end{equation*}
$$

(orthogonal direct).
Let

$$
\begin{gathered}
m_{1}=\left[\begin{array}{llll}
-1 & & & \\
& -1 & & \\
& & 1 & \\
& & & 1
\end{array}\right], \quad m_{2}=\left[\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & & 1
\end{array}\right] \\
m_{3}=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & -1 & \\
& & & -1
\end{array}\right]
\end{gathered}
$$

Then M is generated by m_{1}, m_{2}, m_{3} and, from (7.5), (7.6) and (7.7), we have

$$
\begin{align*}
& m_{1}=l\left(\exp \pi X_{3}, \exp -\pi X_{3}\right) \\
& =\imath\left(\left(\begin{array}{ll}
\sqrt{-1} & \\
& -\sqrt{-1}
\end{array}\right),\left(\begin{array}{l}
\sqrt{-1} \\
\\
\\
\end{array}\right)^{-1}\right), \tag{8.2}\\
& m_{2}=l\left(\exp -\pi X_{1}, \exp -\pi X_{1}\right) \\
& =l(C, C) \imath\left(\left(\begin{array}{ll}
\sqrt{-1} & \\
& \left.-\sqrt{-1})^{-1},\left(\begin{array}{l}
\sqrt{-1} \\
\\
\\
\\
\end{array}\right)^{-1}\right) l(C, C)^{-1},
\end{array}\right.\right. \tag{8.3}
\end{align*}
$$

and

$$
m_{3}=i\left(\left(\begin{array}{ll}
\sqrt{-1} & \tag{8.4}\\
& -\sqrt{-1}
\end{array}\right),\left(\begin{array}{ll}
\sqrt{-1} & \\
& -\sqrt{-1}
\end{array}\right)\right) .
$$

Since M is abelian and m_{1}, m_{2}, m_{3} are of order two, for each γ in \hat{K} its representation space V^{γ} is decomposed as

$$
\begin{align*}
V^{\gamma}= & V_{(+,+,+)}^{\gamma}+V_{(+,+,-)}^{\gamma}+V_{(+,-,+)}^{\gamma}+V_{(+,-,-)}^{\gamma} \\
& +V_{(-,+,+)}^{\gamma}+V_{(-,+,-)}^{\gamma}+V_{(-,-,+)}^{\gamma}+V_{(-,-,-)}^{\gamma}, \tag{8.5}
\end{align*}
$$

(orthogonal direct), where

$$
\begin{array}{ll}
\left.\pi_{\gamma}\left(m_{1}\right)\right|_{V(+\ldots,)} ^{\gamma}=1, & \left.\pi_{\gamma}\left(m_{1}\right)\right|_{V(\ldots, \ldots)} ^{(\}}=-1, \\
\left.\pi_{\gamma}\left(m_{2}\right)\right|_{V(\ldots, \ldots)} ^{(}=1, & \left.\pi_{\gamma}\left(m_{2}\right)\right|_{V(\ldots, \ldots)} ^{(}=-1, \\
\left.\pi_{\gamma}\left(m_{3}\right)\right|_{V(\ldots,+)} ^{\gamma}=1, & \left.\pi_{\gamma}\left(m_{3}\right)\right|_{V(\ldots, \ldots)} ^{\gamma}=-1,
\end{array}
$$

* denoting + or - .

Lemma 8.1. Suppose γ is in \hat{K}, m, n are nonnegative integers given in Lemma 7.2. Then there is an M-intertwining correspondence between (8.1) and (8.5), that is, whenever $(m-n) / 2$ and n are even

$$
\begin{gathered}
V_{(0,+,+)}^{(m, n)}+V_{(0,-,-)}^{(m, n)} \rightarrow V_{(+,+,+)}^{\gamma}, \\
V_{(0,+,-)}^{(m, n)}+V_{(0,-,+)}^{(m, n)} \rightarrow V_{(+,-,+)}^{\gamma}, \\
\\
V_{(1,+,+)}^{(m, n)}+V_{(1,-,-)}^{(m, n)} \rightarrow V_{(-,+,-)}^{\gamma}, \\
\\
V_{(1,+,-)}^{(m, n)}+V_{(1,-,+)}^{(m, n)} \rightarrow V_{(-,-,-)}^{\gamma}, \\
V_{(+,+,-)}^{\gamma}= \\
V_{(+,-,-)}^{\gamma}=V_{(-,+,+)}^{\gamma}=V_{(-,-,+)}^{\gamma}=\{0\} ;
\end{gathered}
$$

whenever $(m-n) / 2$ is odd and n even

$$
\begin{gathered}
V_{(0,+,+)}^{(m, n)}+V_{(0,-,-)}^{(m, n)} \rightarrow V_{(+,-,+)}^{\gamma}, \\
V_{(0,+,-)}^{(m, n)}+V_{(0,-,+)}^{(m, n)} \rightarrow V_{(+,+,+)}^{\gamma}, \\
V_{(1,+,+)}^{(m, n)}+V_{(1,+,+)}^{(m, n)} \rightarrow V_{(-,-,-)}^{\gamma}, \\
V_{(1,+,-)}^{(m, n)}+V_{(1,-,+)}^{(m, n)} \rightarrow V_{(-,+,-)}^{\gamma}, \\
V_{(+,+,-)}^{\gamma}=V_{(+,-,-)}^{\gamma}=V_{(-,+,+)}^{\gamma}=V_{(-,-,+)}^{\gamma}=\{0\} ;
\end{gathered}
$$

whenever $(m-n) / 2$ is even and n odd

$$
\begin{gathered}
V_{(0,+,+)}^{(m, n)}+V_{(0,-,-)}^{(m, n)} \rightarrow V_{(+,-,-)}^{\gamma}, \\
V_{(0,+,-)}^{(m, n)}+V_{(0,-,+)}^{(0, n)} \rightarrow V_{(+,+,-)}^{\gamma}, \\
\\
V_{(1,+,+)}^{(m, n)}+V_{(1,+,+)}^{(m, n)} \rightarrow V_{(-,-,+)}^{\gamma}, \\
V_{(1,+,-)}^{(m, n)}+V_{(1,-,+)}^{(m, n)} \rightarrow V_{(-,+,+)}^{\gamma}, \\
V_{(+,+,+)}^{\gamma}=V_{(+,-,+)}^{\gamma}=V_{(-,+,-)}^{\gamma}=V_{(-,-,-)}^{\gamma}=\{0\} ;
\end{gathered}
$$

whenever $(m-n) / 2$ and n are odd

$$
\begin{gathered}
V_{(0,+,+)}^{(m, n)}+V_{(0,-,-)}^{(m, n)} \rightarrow V_{(+,+,-)}^{\gamma}, \\
\\
V_{(0,+,-)}^{(m, n)}+V_{(0,-,+)}^{(m, n)} \rightarrow V_{(+,-,-)}^{\gamma}, \\
\\
V_{(1,+,+)}^{(m, n)}+V_{(1,+,+)}^{(m, n)} \rightarrow V_{(-,+,+)}^{\gamma}, \\
\\
V_{(1,+,-)}^{(m, n)}+V_{(1,-,+)}^{(m, n)} \rightarrow V_{(-,-,+)}^{\gamma}, \\
V_{(+,+,+)}^{\gamma}= \\
V_{(+,-,+)}^{\gamma}=V_{(-,+,-)}^{\gamma}=V_{(-,-,-)}^{\gamma}=\{0\} .
\end{gathered}
$$

Proof. Let m, n be as in the lemma and i, j integers such that $0 \leq i \leq m$, $0 \leq j \leq n$. According to Lemma 7.2 and (8.2), we have

$$
\begin{aligned}
& \pi_{\gamma}\left(m_{1}\right)\left(z_{1}^{m-i} z_{2}^{i} \otimes z_{1}^{n-j_{z}^{j}}\right) \\
& \quad=\tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}\left(\binom{\sqrt{-1}}{\quad-\sqrt{-1}},\binom{\sqrt{-1}}{\quad-\sqrt{-1})^{-1}}\left(z_{1}^{m-i} z_{2}^{i} \otimes z_{1}^{n-j} z_{2}^{j}\right)\right. \\
& \quad=\left(\sqrt{-1} z_{1}\right)^{m-i}\left(-\sqrt{-1} z_{2}\right)^{i} \otimes\left(-\sqrt{-1} z_{1}\right)^{n-j}\left(\sqrt{-1} z_{2}\right)^{j} \\
& \quad=(-1)^{(m-n) / 2+(i-j)} z_{1}^{m-i} z_{2}^{i} \otimes z_{1}^{n-j_{2}^{j}}, \quad(0 \leq i \leq m, 0 \leq j \leq n)
\end{aligned}
$$

and the signature of $\pi_{\gamma}\left(m_{1}\right)$ is determined by $(m-n) / 2-(i-j)$. Furthermore, by Lemma 7.2 and (8.4) we have

$$
\begin{aligned}
& \pi_{\gamma}\left(m_{3}\right)\left(z_{1}^{m-i} z_{2}^{i} \otimes z_{1}^{n-j_{2}^{j}}\right) \\
& \quad=\tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}\left(\binom{\sqrt{-1}}{-\sqrt{-1}},\binom{\sqrt{-1}}{-\sqrt{-1}}\right)\left(z_{1}^{m-i} z_{2}^{i} \otimes z_{1}^{n-j} z_{2}^{j}\right) \\
& = \\
& =\tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}\left(\binom{\sqrt{-1}}{\quad-\sqrt{-1}},(-1) \times\left(\begin{array}{r}
\sqrt{-1} \\
\left.\quad-\sqrt{-1})^{-1}\right)\left(z_{1}^{m-i} z_{2}^{i} \otimes z_{1}^{n-j} z_{2}^{j}\right) \\
\\
(-1)^{n}(-1)^{(m-n) / 2+(i-j)} z_{1}^{m-i} z_{2}^{i} \otimes z_{1}^{n-j} z_{2}^{j}, \quad(0 \leq i \leq m, 0 \leq j \leq n)
\end{array}\right.\right.
\end{aligned}
$$

and the signature of $\pi_{\gamma}\left(m_{3}\right)$ is determined by that of $\pi_{\gamma}\left(m_{1}\right)$ and n. On the other hand, by Lemma 7.2 and (8.3) we have

$$
\begin{gathered}
\pi_{\gamma}\left(m_{2}\right)\left(\left(z_{1}^{m-i} z_{2}^{i}+z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j} z_{2}^{j}+z_{1}^{j} z_{2}^{m-j}\right)\right) \\
=\tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}(C, C) \tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}\left(\left(\begin{array}{l}
\sqrt{-1} \\
-\sqrt{-1})^{-1},\binom{\sqrt{-1}}{\left.-\sqrt{-1})^{-1}\right)} \\
\tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}(C, C)^{-1}\left(\left(z_{1}^{m-i} z_{2}^{i}+z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j_{z}^{j}}+z_{1}^{j} z_{2}^{n-j}\right)\right) .
\end{array} .\right.\right.
\end{gathered}
$$

We may assume $m-i \geq i, n-j \geq j$ without any loss of generality. Thus the last expression equals

$$
\begin{aligned}
\tilde{\pi}_{m} \hat{\otimes} & \tilde{\pi}_{n}(C, C) \tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}\left(\binom{\sqrt{-1}}{-\sqrt{-1}}^{-1},\left(\begin{array}{r}
\sqrt{-1} \\
\left.-\sqrt{-1})^{-1}\right)
\end{array}\right.\right. \\
& \left(\left(2^{-1 / 2} \cdot \sqrt{-1}\right)^{m+n}\left(\left(z_{1}+z_{2}\right)^{m-i}\left(z_{1}-z_{2}\right)^{i}+\left(z_{1}+z_{2}\right)^{i}\left(z_{1}-z_{2}\right)^{m-i}\right)\right. \\
\otimes & \left.\left(\left(z_{1}+z_{2}\right)^{n-j}\left(z_{1}-z_{2}\right)^{j}+\left(z_{1}+z_{2}\right)^{j}\left(z_{1}-z_{2}\right)^{n-j}\right)\right) \\
= & \tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}(C, C) \tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}\left(\left(\begin{array}{r}
\sqrt{-1} \\
-\sqrt{-1})^{-1},\left(\begin{array}{r}
\sqrt{-1} \\
\left.-\sqrt{-1})^{-1}\right)
\end{array}\right. \\
\\
\\
\quad\left((2 ^ { - 1 / 2 } \cdot \sqrt { - 1 }) ^ { m + n } \left(\left(z_{1}^{2}-z_{2}^{2}\right)^{i}\left(\left(z_{1}+z_{2}\right)^{m-2 i}+\left(z_{1}-z_{2}\right)^{m-2 i}\right)\right.\right. \\
\otimes
\end{array}\right)\left(z_{1}^{2}-z_{2}^{2}\right)^{j}\left(\left(z_{1}+z_{2}\right)^{n-2 j}+\left(z_{1}-z_{2}\right)^{n-2 j}\right)\right),
\end{aligned}
$$

by (5.2) and (5.3)

$$
\begin{aligned}
= & \tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}(C, C) \tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}\left(\binom{\sqrt{-1}}{-\sqrt{-1}}^{-1},\left(\begin{array}{c}
\sqrt{-1} \\
\left.-\sqrt{-1})^{-1}\right) \\
\\
\\
\\
\left((- 2 ^ { - 1 / 2 } \cdot \sqrt { - 1 }) ^ { m + n } \cdot \left(\left(z_{1}^{2}-z_{2}^{2}\right)^{i} \sum_{\substack{0 \leq p \leq m-2 i \\
p \equiv 0}} 2\binom{m-2 i}{p} z_{1}^{m-2 i-p} z_{2}^{p}\right.\right.
\end{array}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\otimes\left(\left(z_{1}^{2}-z_{2}^{2}\right)^{j} \sum_{\substack{0 \leq q \leq n-2 j \\
q=0}} 2\binom{n-2 j}{q} z_{1}^{n-2 j-q_{2}^{q}} z_{2}\right)\right) \\
& =(-1)^{(m+n) / 2} \tilde{\pi}_{m} \hat{\otimes} \tilde{\pi}_{n}(C, C)\left(\left(-2^{-1 / 2} \cdot \sqrt{-1}\right)^{m+n} \cdot\left(z_{1}^{2}-z_{2}^{2}\right)^{i+j}\right. \\
& \left.\cdot\left(\sum_{\substack{0 \leq p \leq m-2 i \\
p \equiv 0}} 2\binom{m-2 i}{p} z_{1}^{m-2 i-p_{z_{2}^{p}}^{p}}\right) \otimes\left(\sum_{\substack{0 \leq q \leq n-2 j \\
q \equiv 0}} 2\binom{n-2 j}{q} z_{1}^{n-2 j-q} z_{2}^{q}\right)\right) \\
& =(-1)^{(m+n) / 2}\left(\left(z_{1}^{m-i} z_{2}^{i}+z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j} z_{2}^{j}+z_{1}^{j} z_{2}^{n-j}\right)\right) .
\end{aligned}
$$

In the same way, we obtain

$$
\begin{aligned}
& \pi_{\gamma}\left(m_{2}\right)\left(\left(z_{1}^{m-i} z_{2}^{i}-z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j} z_{2}^{j}-z_{1}^{j} z_{2}^{n-j}\right)\right) \\
& \quad=(-1)^{(m+n) / 2}\left(\left(z_{1}^{m-i} z_{2}^{i}-z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j} z_{2}^{j}-z_{1}^{j} z_{2}^{n-j}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \pi_{\gamma}\left(m_{2}\right)\left(\left(z_{1}^{m-i} z_{2}^{i} \pm z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j} z_{2}^{j} \pm(-1) z_{1}^{j} z_{2}^{n-j}\right)\right) \\
& \quad=(-1)^{(m+n) / 2-1}\left(\left(z_{1}^{m-i} z_{2}^{i} \pm z_{1}^{i} z_{2}^{m-i}\right) \otimes\left(z_{1}^{n-j} z_{2}^{j} \pm(-1) z_{1}^{j} z_{2}^{n-j}\right)\right)
\end{aligned}
$$

These formulae lead us to the assertion of the lemma.
Lemma 8.2. Suppose γ is in \hat{K} and C as above. Then we have the following relations,

$$
\begin{align*}
& \pi_{\gamma}(l(C, C)) \pi_{\gamma}\left(m_{1}\right) \pi_{\gamma}(l(C, C))^{-1}=\pi_{\gamma}\left(m_{1} m_{2} m_{3}\right), \tag{1}\\
& \pi_{\gamma}(l(C, C)) \pi_{\gamma}\left(m_{2}\right) \pi_{\gamma}(l(C, C))^{-1}=\pi_{\gamma}\left(m_{3}\right) \\
& \pi_{\gamma}(l(C, C)) \pi_{\gamma}\left(m_{3}\right) \pi_{\gamma}(l(C, C))^{-1}=\pi_{\gamma}\left(m_{2}\right)
\end{align*}
$$

Proof. We shall prove (1). From (8.2) we have

$$
\pi_{\gamma}(l(C, C)) \pi_{\gamma}\left(m_{1}\right) \pi_{\gamma}(\imath(C, C))^{-1}=\pi_{\gamma}\left(\imath(C, C) \iota\left(\exp \pi X_{3}, \exp -\pi X_{3}\right) \iota(C, C)^{-1}\right) .
$$

By (7.7) and the relation

$$
l\left(\exp -t X_{1}, \exp -t X_{1}\right)=\left(\begin{array}{cccc}
\cos t & & & -\sin t \\
& 1 & & \\
& & 1 & \\
\sin t & & & \cos t
\end{array}\right], \quad(t \in \boldsymbol{R})
$$

the last expression equals

$$
=\pi_{\gamma}\left(m_{1} m_{2} m_{3}\right) .
$$

Next we shall prove (2) and (3). From (8.4) we have

$$
\begin{aligned}
& \pi_{\gamma}(l(C, C)) \pi_{\gamma}\left(m_{3}\right) \pi_{\gamma}(l(C, C))^{-1} \\
& \quad=\pi_{\gamma}\left(l(C, C) \iota\left(\binom{\sqrt{-1}}{-\sqrt{-1}},\binom{\sqrt{-1}}{-\sqrt{-1}}\right) \iota(C, C)^{-1}\right) .
\end{aligned}
$$

Since $\left(\left(\begin{array}{ll}-1 & \\ & -1\end{array}\right),\left(\begin{array}{cc}-1 & \\ & -1\end{array}\right)\right)$ is in the kernel of l, the last expression is equal to

$$
\begin{aligned}
& \pi_{\gamma}\left(l(C, C) \imath\left(\left(\begin{array}{ll}
-\sqrt{-1} & \\
& \sqrt{-1}
\end{array}\right),\left(\begin{array}{ll}
-\sqrt{-1} & \\
& \sqrt{-1}
\end{array}\right)\right) t(C, C)^{-1}\right) \\
& =\pi_{\gamma}\left(l (C , C) l \left(\left(\begin{array}{l}
\sqrt{-1} \\
\\
\left.-\sqrt{-1})^{-1},\left(\begin{array}{rl}
\sqrt{-1} & \\
& \left.-\sqrt{-1})^{-1}\right)
\end{array}\right) l(C, C)^{-1}\right), ~
\end{array}\right.\right.\right.
\end{aligned}
$$

by (8.3)

$$
=\pi_{\gamma}\left(m_{2}\right) .
$$

This proves (2). We have (3) from (2).
For simplicity, we denote $V_{(*, *, *)}^{\gamma}$ by $(*, *, *)$.
Corollary 8.3. Suppose γ is in \hat{K} and C as above. Then we have the following diagram.

$$
\begin{aligned}
& (+,+,+) \xrightarrow{\pi_{\gamma}(l(C, C))}(+,+,+) \\
& (+,-,+) \longrightarrow(-,+,-) \\
& (-,+,-) \longrightarrow(+,-,+) \\
& (-,-,-) \longrightarrow(-,-,-) \\
& (+,+,-) \longrightarrow(+,-,-) \\
& (+,-,-) \longrightarrow(-,+,+) \\
& (-,+,+) \longrightarrow(+,+,-) \\
& (-,-,+) \longrightarrow)
\end{aligned}
$$

Lemma 8.4. Let γ be in \hat{K} and $w_{i}(1 \leq i \leq 3)$ be as in $\S 7$, then $\pi_{\gamma}\left(w_{i}\right)$ satisfy the following diagram.

$$
\begin{aligned}
& (+,+,+) \xrightarrow{\pi_{\gamma}\left(w_{1}\right)}(+,+,+) \\
& (+,-,+) \longrightarrow(+,-,+)
\end{aligned}
$$

$$
\begin{aligned}
& (-,+,-) \longrightarrow(-,-,-) \\
& (-,-,-) \longrightarrow(-,+,-) \\
& (+,+,-) \longrightarrow(+,+,-) \\
& (+,-,-) \longrightarrow(+,-,-) \\
& (-,+,+) \longrightarrow(-,-,+) \\
& (-,-,+) \longrightarrow(-,+,+) \\
& (+,+,+) \xrightarrow{\pi_{\gamma}\left(w_{2}\right)}(+,+,+) \quad(+,+,+) \xrightarrow{\pi_{\gamma}\left(w_{3}\right)}(+,+,+) \\
& (+,-,+) \longrightarrow(-,-,-) \quad(+,-,+) \longrightarrow(+,-,+) \\
& (-,+,-) \longrightarrow(-,+,-) \quad(-,+,-) \longrightarrow(-,-,-) \\
& (-,-,-) \longrightarrow(+,-,+) \quad(-,-,-) \longrightarrow(-,+,-) \\
& (+,+,-) \longrightarrow(+,+,-) \quad(+,+,-) \longrightarrow(+,-,-) \\
& (+,-,-) \longrightarrow(-,-,+) \quad(+,-,-) \longrightarrow(+,+,-) \\
& (-,+,+) \longrightarrow(-,+,+) \quad(-,+,+) \longrightarrow(-,+,+) \\
& (-,-,+) \longrightarrow(+,-,-) \quad(-,-,+) \longrightarrow(-,-,+)
\end{aligned}
$$

Since the proof is simple, it is left to the reader.

§9. The determinant of the C-function

In this section we shall give an explicit formula of the determinant of $B_{\gamma}^{\sigma}(\bar{P}: P: v)$. We define the functions $\alpha^{\sigma}(v,(m, n))$ and $\beta^{\sigma}(v,(m, n))$ in $v\left(v \in \mathfrak{a}_{C}^{*}\right)$ as follows:
if $(m-n) / 2$ and n are even,

$$
\begin{aligned}
& \alpha^{+,+,+}(v,(m, n))=\prod_{\substack{(i, i)=0 \\
0 \leq i \leq[m / 2] \\
0 \leq j \leq[n / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k \leq m / 2] \\
0 \leq l<n / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right),
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{-,+,-}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq m / 2] \\
0 \leq j \leq m n / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{[k, l)=1 \\
0 \leq k \leq 2] \\
0 \leq l \leq[n / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right),
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{-,-,-}(v,(m, n))=\prod_{\substack{(i, j) \\
0 \leq i=1 \\
0 \leq j<j / 2] \\
0 \leq j<[n / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k \leq[2] \\
0 \leq l<[n]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right), \\
& \beta^{+,+,+}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq i \leq[m] \\
0 \leq j \leq[n] 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k \leq[\mid 2] \\
0 \leq l<n / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right), \\
& \beta^{+,-,+}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq i \leq m / 2] \\
0 \leq j \leq[n / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{[k, l)=0 \\
0 \leq k \leq 2] \\
0 \leq l \leq[n / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right),
\end{aligned}
$$

$$
\begin{aligned}
& \beta^{-,-,-}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i=[m / 2] \\
0 \leq j<[n / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k<[\mid 2] \\
0 \leq l<[n / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right),
\end{aligned}
$$

the others are equal to 1 ;
if $(m-n) / 2$ is odd and n even,

$$
\begin{aligned}
& \alpha^{+,-,+}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq i \leq[m / 2] \\
0 \leq j \leq[n / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k<m / 2] \\
0 \leq l<m, 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right), \\
& \alpha^{+,+,+}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq j \leq m / 2] \\
0 \leq j \leq[m / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k \leq[2] \\
0 \leq l<m / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right), \\
& \alpha^{-,-,-}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq j \leq m] \\
0 \leq j \leq[n / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k \leq 2] \\
0 \leq l \leq m / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right), \\
& \alpha^{-,+,-}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq j \leq m / 2] \\
0 \leq j \leq[n / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k \leq[2] \\
0 \leq l<n / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right), \\
& \beta^{+,-,+}(v,(m, n))=\prod_{\substack{(i, j) \\
0 \leq i \leq j \leq m / 2] \\
0 \leq j \leq[m / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k \mid 2] \\
0 \leq l \leq m / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right), \\
& \beta^{+,+,+}(v,(m, n))=\prod_{\substack{(i, j) \\
0 \leq i \leq i=[m / 2] \\
0 \leq j<[n / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k \leq[2] \\
0 \leq l<[n / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right), \\
& \beta^{-,-,-}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq j \mid 2] \\
0 \leq j \leq[m / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k \leq 2] \\
0 \leq l<m / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right), \\
& \beta^{-,+,-}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq[m / 2] \\
0 \leq j<[n / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k \leq[2] \\
0 \leq l<n / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right),
\end{aligned}
$$

the others are equal to 1 ;
if $(m-n) / 2$ is even and n odd,

$$
\begin{aligned}
& \alpha^{+,-,-}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq i \leq \leq m / 2] \\
0 \leq j \leq[n / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k \leq[2] \\
0 \leq l<n / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right), \\
& \alpha^{+,+,-}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq i \leq[m] \\
0 \leq j \leq[n]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k \leq[\mid 2] \\
0 \leq l<[n / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right), \\
& \alpha^{-,-,+}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq m / 2] \\
0 \leq j \leq[m / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k \leq 2] \\
0 \leq l \leq m / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right), \\
& \alpha^{-,+,+}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq[m] \\
0 \leq j \leq[/ 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k \leq m / 2] \\
0 \leq l<n / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right), \\
& \beta^{+,-,-}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq i \leq \leq m / 2] \\
0 \leq j \leq[n / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k<[\mid 2] \\
0 \leq l<n / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right), \\
& \beta^{+,+,-}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq i \leq[m] \\
0 \leq j \leq[n / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k \leq[2] \\
0 \leq l<n / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right), \\
& \beta^{-,-,+}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq j \leq 2] \\
0 \leq j \leq[m / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k \leq 2] \\
0 \leq l \leq m / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right),
\end{aligned}
$$

the others are equal to 1 ;
if $(m-n) / 2$ and n are odd,

$$
\begin{aligned}
& \alpha^{+,+,-}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq i=[m / 2] \\
0 \leq j \leq[n / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k \leq[2] \\
0 \leq l<n / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right),
\end{aligned}
$$

$$
\begin{aligned}
& \alpha^{-,+,+}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq m / 2] \\
0 \leq j \leq[m / 2]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k \leq 2] \\
0 \leq l \leq[n / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right), \\
& \alpha^{-,-,+}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq j \leq 1 / 2] \\
0 \leq j \leq[n]}} \alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k \leq[2] \\
0 \leq l \leq m / 2]}} \beta_{k, l}\left(v_{1}-v_{2},(m, n)\right),
\end{aligned}
$$

$$
\begin{aligned}
& \beta^{+,+,-}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq i \leq[m / 2] \\
0 \leq j \leq[n / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k) \\
0 \leq l<[m / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right), \\
& \beta^{+,-,-}(v,(m, n))=\prod_{\substack{(i, j)=0 \\
0 \leq i \leq m / 2] \\
0 \leq j \leq[n / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=0 \\
0 \leq k<[m / 2] \\
0 \leq l<[n / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right), \\
& \beta^{-,+,+}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq m / 2] \\
0 \leq j \leq[n / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k<[m / 2] \\
0 \leq l<[n / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right), \\
& \beta^{-,-,+}(v,(m, n))=\prod_{\substack{(i, j)=1 \\
0 \leq i \leq m / 2] \\
0 \leq j \leq[n / 2]}} \beta_{i, j}\left(v_{3}-v_{4},(m, n)\right) \prod_{\substack{(k, l)=1 \\
0 \leq k<[m / 2] \\
0 \leq l<[n / 2]}} \alpha_{k, l}\left(v_{3}-v_{4},(m, n)\right),
\end{aligned}
$$

the others are equal to 1 .
Lemma 9.1. Suppose γ in \hat{K} and σ in \hat{M} satisfy $V_{\sigma}^{\gamma} \neq\{0\}$. Then we have

$$
\begin{aligned}
& \operatorname{det}\left(B_{\gamma}^{\sigma}\left(w_{1}, v\right)\right)=\alpha^{\sigma}(v,(m, n)) \\
& \operatorname{det}\left(B_{\gamma}^{\sigma}\left(w_{3}, v\right)\right)=\beta^{\sigma}(v,(m, n))
\end{aligned}
$$

Proof. We shall prove only in the case that σ is $(+,+,+)$ and $(n-m) / 2, n$ are even. The proof of the other cases is similar to the above one and left to the reader. Let $u_{i}, v_{j}(1 \leq i \leq m, 1 \leq j \leq n)$ be as in Lemma 7.3. From Lemma $8.1,\left\{u_{i} \otimes v_{j}+u_{m-i} \otimes v_{n-j}, u_{i} \otimes v_{n-j}+u_{m-i} \otimes v_{j}\right\}_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}$ is basis of V_{γ}^{σ}. Furthermore, by Lemma 7.5 we have

$$
\begin{aligned}
& B_{\gamma}\left(w_{1}, v\right)\left(u_{i} \otimes v_{j}+u_{m-i} \otimes v_{n-j}\right) \\
& \quad=\alpha_{i, j}\left(v_{1}-v_{2},(m, n)\right)\left(u_{i} \otimes v_{j}+u_{m-i} \otimes v_{n-j}\right) \\
& B_{\gamma}\left(w_{1}, v\right)\left(u_{i} \otimes v_{n-j}+u_{m-i} \otimes v_{j}\right) \\
& \quad=\beta_{i, j}\left(v_{1}-v_{2},(m, n)\right)\left(u_{i} \otimes v_{n-j}+u_{m-i} \otimes v_{j}\right), \quad(1 \leq i \leq m, 1 \leq j \leq n) .
\end{aligned}
$$

Therefore, we obtain (1). Similarly, we can prove (2).
Theorem 9.2. Let γ be in \hat{K} and σ in \hat{M} such that $V_{\sigma}^{\gamma} \neq\{0\}$. Then we have the following relations.
(1) If $\sigma=(+,+,+)$,

$$
\begin{aligned}
\operatorname{det} & \left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right) \\
= & \text { Const } \cdot \alpha^{+,+,+}\left(w_{2} w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{+,+,+}\left(-l(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v, \quad(m, n)\right) \\
& \cdot \alpha^{+,+,+}\left(w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{+,+,+}\left(w_{2} w_{1} v,(m, n)\right) \\
& \cdot \beta^{+,+,+}\left(-l(C, C) \cdot w_{1} v,(m, n)\right) \alpha^{+,+,+}(v,(m, n)) .
\end{aligned}
$$

(2) If $\sigma=(+,+,-)$,

$$
\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)
$$

$$
\begin{aligned}
= & \text { Const } \cdot \alpha^{-,-,+}\left(w_{2} w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{+,-,-}\left(-l(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \\
& \cdot \alpha^{+,-,-}\left(w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{+,+,-}\left(w_{2} w_{1} v,(m, n)\right) \\
& \cdot \beta^{-,-,+}\left(-l(C, C) \cdot w_{1} v, \quad(m, n)\right) \alpha^{+,+,-}(v, \quad(m, n)) .
\end{aligned}
$$

(3) If $\sigma=(+,-,+)$,

$$
\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)
$$

$$
\begin{aligned}
= & \text { Const } \cdot \alpha^{+,-,+}\left(w_{2} w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{-,-,-}\left(-l(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \\
& \cdot \alpha^{-,+,-}\left(w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{-,-,-}\left(w_{2} w_{1} v,(m, n)\right) \\
& \cdot \beta^{-,+,-}\left(-l(C, C) \cdot w_{1} v,(m, n)\right) \alpha^{+,-,+}(v,(m, n)) .
\end{aligned}
$$

(4) If $\sigma=(+,-,-)$,

$$
\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)
$$

$$
\begin{aligned}
= & \text { Const } \cdot \alpha^{-,+,+}\left(w_{2} w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{-,+,+}\left(-l(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \\
& \cdot \alpha^{-,-,+}\left(w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{-,-,+}\left(w_{2} w_{1} v,(m, n)\right) \\
& \cdot \beta^{+,-,-}\left(-l(C, C) \cdot w_{1} v,(m, n)\right) \alpha^{+,-,-}(v,(m, n)) .
\end{aligned}
$$

(5) If $\sigma=(-,+,+)$, $\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)$

$$
\begin{aligned}
= & \text { Const } \cdot \alpha^{+,+,-}\left(w_{2} w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{-,-,+}\left(-l(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \\
& \cdot \alpha^{+,+,-}\left(w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{+,-,-}\left(w_{2} w_{1} v,(m, n)\right) \\
& \cdot \beta^{+,+,-}\left(-l(C, C) \cdot w_{1} v,(m, n)\right) \alpha^{-,+,+}(v,(m, n))
\end{aligned}
$$

(6) If $\sigma=(-,+,-)$, $\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: \nu)\right)$

$$
\begin{aligned}
= & \operatorname{Const} \cdot \alpha^{-,-,-}\left(w_{2} w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{-,+,-}\left(-l(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \\
& \cdot \alpha^{+,-,+}\left(w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{+,-,+}\left(w_{2} w_{1} v,(m, n)\right) \\
& \cdot \beta^{-,-,-}\left(-l(C, C) \cdot w_{1} v,(m, n)\right) \alpha^{-,+,-}(v,(m, n)) .
\end{aligned}
$$

(7) If $\sigma=(-,-,+)$,
$\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)$

```
\(=\) Const \(\cdot \alpha^{+,-,-}\left(w_{2} w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{+,+,-}\left(-l(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v, \quad(m, n)\right)\)
    \(\cdot \alpha^{-,+,+}\left(w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{-,+,+}\left(w_{2} w_{1} v,(m, n)\right)\)
    \(\cdot \beta^{-,+,+}\left(-l(C, C) \cdot w_{1} v,(m, n)\right) \alpha^{-,-,+}(v, \quad(m, n))\).
```

(8) If $\sigma=(-,-,-)$,

$$
\operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right)
$$

$$
\begin{aligned}
= & \text { Const } \cdot \alpha^{-,+,-}\left(w_{2} w_{1} w_{3} w_{2} w_{1} v, \quad(m, n)\right) \beta^{+,-,+}\left(-l(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v,(m, n)\right) \\
& \cdot \alpha^{-,-,-}\left(w_{3} w_{2} w_{1} v,(m, n)\right) \beta^{-,+,-}\left(w_{2} w_{1} v, \quad(m, n)\right) \\
\cdot & \beta^{+,-,+}\left(-l(C, C) \cdot w_{1} v,(m, n)\right) \alpha^{-,-,-}(v, \quad(m, n)) .
\end{aligned}
$$

Proof. We shall prove (2). Let

$$
\pi_{\gamma}^{\sigma}(w)=\left.\pi_{\gamma}(w)\right|_{V_{\sigma}^{\gamma}}, \quad\left(w \in M^{\prime}\right)
$$

By (7.1) and Lemma 8.4 we have

$$
\begin{align*}
B_{\gamma}^{\sigma}(\bar{P}: P: v)= & B_{\gamma}^{(+,+,-)}\left(w_{1}, v\right) \pi_{\gamma}^{(+,+,-)}\left(w_{1}\right) B_{\gamma}^{(+,+,-)}\left(w_{2}, w_{1} v\right) \pi_{\gamma}^{(+,+,-)}\left(w_{2}\right) \\
& \cdot B_{\gamma}^{(+,+,-)}\left(w_{3}, w_{2} w_{1} v\right) \pi_{\gamma}^{(+,-,-)}\left(w_{3}\right) B_{\gamma}^{(+,-,-)}\left(w_{1}, w_{3} w_{2} w_{1} v\right) \pi_{\gamma}^{(+,-,-)}\left(w_{1}\right) \\
& \cdot B_{\gamma}^{(+,-,-)}\left(w_{2}, w_{1} w_{3} w_{2} w_{1} v\right) \pi_{\gamma}^{(-,-,+)}\left(w_{2}\right) B_{\gamma}^{(-,-,+)}\left(w_{1}, w_{2} w_{1} w_{3} w_{2} w_{1} v\right) \\
& \cdot \pi_{\gamma}^{(-,+,+)}\left(w_{1}\right) \pi_{\gamma}^{(+,+,-)}\left(w_{0}\right) . \tag{9.1}
\end{align*}
$$

By (7.11) and Corollary 8.3, we obtain

$$
\begin{aligned}
B_{\gamma}^{(+,+,-)}\left(w_{2}, w_{1} v\right)= & \pi_{\gamma}^{(-,-,+)}(l(C, C)) B_{\gamma}^{(-,-,+)}\left(w_{3},-\left(l(C, C) \cdot w_{1} v\right)\right) \pi_{\gamma}^{(+,+,-)} \\
& \cdot\left(l(C, C)^{-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
B_{\gamma}^{(+,-,-)}\left(w_{2}, w_{1} w_{3} w_{2} w_{1} v\right)= & \pi_{\gamma}^{(+,-,-)}(l(C, C)) B_{\gamma}^{(+,-,-)}\left(w_{3},-\left(l(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v\right)\right) \\
& \cdot \pi_{\gamma}^{(+,-,-)}\left(\imath(C, C)^{-1}\right)
\end{aligned}
$$

Therefore, (9.1) is equal to

$$
\begin{aligned}
& B_{\gamma}^{(+,+,-)}\left(w_{1}, v\right) \pi_{\gamma}^{(+,+,-)}\left(w_{1}\right) \pi_{\gamma}^{(-,-,+)}(l(C, C)) \\
& \cdot B_{\gamma}^{(-,-,+)}\left(w_{3},-\left(l(C, C) \cdot w_{1} v\right)\right) \pi_{\gamma}^{(+,+,-)}\left(l(C, C)^{-1}\right) \pi_{\gamma}^{(+,+,-)}\left(w_{2}\right) \\
& \cdot B_{\gamma}^{(+,+,-)}\left(w_{3}, w_{2} w_{1} v\right) \pi_{\gamma}^{(+,-,-)}\left(w_{3}\right) B_{\gamma}^{(+,-,-)}\left(w_{1}, w_{3} w_{2} w_{1} v\right) \pi_{\gamma}^{(+,-,-)}\left(w_{1}\right) \\
& \cdot \pi_{\gamma}^{(+,-,-)}(l(C, C)) B_{\gamma}^{(+,-,-)}\left(w_{3},-\left(l(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v\right)\right) \\
& \cdot \pi_{\gamma}^{(+,-,-)}\left(l(C, C)^{-1}\right) \pi_{\gamma}^{(-,-,+)}\left(w_{2}\right) B_{\gamma}^{(-,-,+)}\left(w_{1}, w_{2} w_{1} w_{3} w_{2} w_{1} v\right)
\end{aligned}
$$

$$
\begin{equation*}
\cdot \pi_{\gamma}^{(-,+,+)}\left(w_{1}\right) \pi_{\gamma}^{(+,+,-)}\left(w_{0}\right) . \tag{9.2}
\end{equation*}
$$

Let i be an integer such that $1 \leq i \leq n-1$ and σ in M^{\prime}. We extend $B_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right)$ to an operator $B_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right)$ of V^{γ} by

$$
B_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right)= \begin{cases}B_{\gamma}^{\sigma^{\prime}}\left(w_{i}, \cdot\right) & \text { on } V_{\sigma}^{\gamma} \tag{9.3}\\ \text { identity } & \text { otherwise }\end{cases}
$$

and define

$$
\begin{align*}
\widetilde{B}_{\gamma}^{\sigma}(\bar{P}: P: v)= & \widetilde{B}_{\gamma}^{(+,+,-)}\left(w_{1}, v\right) \pi_{\gamma}\left(w_{1}\right) \pi_{\gamma}(\imath(C, C)) \tilde{B}_{\gamma}^{(-,-,+)}\left(w_{3},-\left(l(C, C) \cdot w_{1} v\right)\right) \\
& \cdot \pi_{\gamma}\left(l(C, C)^{-1}\right) \pi_{\gamma}\left(w_{2}\right) \tilde{B}_{\gamma}^{(+,+,-)}\left(w_{3}, w_{2} w_{1} v\right) \pi_{\gamma}\left(w_{3}\right) \\
& \cdot \widetilde{B}_{\gamma}^{(+,-,-)}\left(w_{1}, w_{3} w_{2} w_{1} v\right) \pi_{\gamma}\left(w_{1}\right) \pi_{\gamma}(l(C, C)) \\
& \cdot \tilde{B}_{\gamma}^{(+,-,-)}\left(w_{3},-\left(\imath(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v\right)\right) \pi_{\gamma}\left(l(C, C)^{-1}\right) \pi_{\gamma}\left(w_{2}\right) \\
& \cdot \widetilde{B}_{\gamma}^{(-,-,+)}\left(w_{1}, w_{2} w_{1} w_{3} w_{2} w_{1} v\right) \pi_{\gamma}\left(w_{1}\right) \pi_{\gamma}\left(w_{0}\right) . \tag{9.4}
\end{align*}
$$

Then from (9.2) we have

$$
\begin{equation*}
\left.\widetilde{B}_{\gamma}^{\sigma}(\bar{P}: P: v)\right|_{V_{\gamma}^{\sigma}}=B_{\gamma}^{\sigma}(\bar{P}: P: v) \tag{9.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(\widetilde{B}_{\gamma}^{\sigma}(\bar{P}: P: v)\right)=d_{1} \cdot \operatorname{det}\left(B_{\gamma}^{\sigma}(\bar{P}: P: v)\right), \tag{9.6}
\end{equation*}
$$

where d_{1} is a nonzero constant which is independent of v. On the other hand, from (9.3) and (9.4) we have

$$
\begin{align*}
\operatorname{det}\left(\widetilde{B}_{\gamma}^{\sigma}(\bar{P}: P: v)\right)= & d_{2} \cdot \operatorname{det}\left(B_{\gamma}^{(+,+,-)}\left(w_{1}, v\right)\right) \operatorname{det}\left(B_{\gamma}^{(-,-,+)}\left(w_{3},-\left(\imath(C, C) \cdot w_{1} v\right)\right)\right. \\
& \cdot \operatorname{det}\left(B_{\gamma}^{(+,+,-)}\left(w_{3}, w_{2} w_{1} v\right)\right) \operatorname{det}\left(B_{\gamma}^{(+,-,-)}\left(w_{1}, w_{3} w_{2} w_{1} v\right)\right) \\
& \cdot \operatorname{det}\left(B_{\gamma}^{(+,-,-)}\left(w_{3},-\left(\imath(C, C) \cdot w_{1} w_{3} w_{2} w_{1} v\right)\right)\right. \\
& \cdot \operatorname{det}\left(B_{\gamma}^{(-,-,+)}\left(w_{1}, w_{2} w_{1} w_{3} w_{2} w_{1} v\right)\right), \tag{9.7}
\end{align*}
$$

where d_{2} is a constant such that $\left|d_{2}\right|=1$. By Lemma 9.1 and (9.6), (9.7), we can prove (2). Similarly, we can prove the others.

Appendix

A.1. Suppose that q is a positive integer and $\operatorname{Re} z>q / 2$. Then $\int_{0}^{\infty} t^{q-1}\left(1+t^{2}\right)^{-z} d t$ converges absolutely and is equal to $\frac{1}{2} B(q / 2, z-q / 2)$ (see [11], p. 262).
A.2. Suppose that λ is an element in C such that $\operatorname{Re} \lambda<-1$ and l is an integer. Then we have
(*) $\int_{-\infty}^{\infty}(1+\sqrt{-1} x)^{\lambda+l / 2}(1-\sqrt{-1} x)^{\lambda-l / 2} d x=\frac{2^{\lambda+2} \pi \Gamma(-\lambda-1)}{\Gamma\left(-\frac{\lambda+l}{2}\right) \Gamma\left(-\frac{\lambda-l}{2}\right)}$.
Proof. We shall first prove inductively that (*) holds for all nonnegative integers l. If $l=0$, then we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} & (1+\sqrt{-1} x)^{\lambda / 2}(1-\sqrt{-1} x)^{\lambda / 2} d x \\
= & 2 \int_{0}^{\infty}\left(1+x^{2}\right)^{\lambda / 2} d x=B\left(\frac{1}{2},-\frac{\lambda}{2}-\frac{1}{2}\right) \\
= & \frac{2^{\lambda+2} \pi \Gamma(-\lambda-1)}{\Gamma\left(-\frac{\lambda}{2}\right)^{2}} .
\end{aligned}
$$

If $l=1$, then we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} & (1+\sqrt{-1} x)^{(\lambda+1) / 2}(1-\sqrt{-1} x)^{(\lambda-1) / 2} d x \\
\quad= & \int_{-\infty}^{\infty}\left(1+x^{2}\right)^{(\lambda-1) / 2}(1+\sqrt{-1} x) d x \\
= & \int_{-\infty}^{\infty}\left(1+x^{2}\right)^{(\lambda-1) / 2} d x+\sqrt{-1} \int_{-\infty}^{\infty} x\left(1+x^{2}\right)^{(\lambda-1) / 2} d x .
\end{aligned}
$$

Since the second term is equal to 0 , the last expression equals

$$
\begin{aligned}
B\left(\frac{1}{2},-\frac{\lambda}{2}\right) & =\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(-\frac{\lambda}{2}\right) \Gamma\left(-\frac{\lambda+1}{2}\right)}{\Gamma\left(-\frac{\lambda-1}{2}\right) \Gamma\left(-\frac{\lambda+1}{2}\right)} \\
& =\frac{2^{\lambda+2} \pi \Gamma(-\lambda-1)}{\Gamma\left(-\frac{\lambda-1}{2}\right) \Gamma\left(-\frac{\lambda+1}{2}\right)} .
\end{aligned}
$$

Let l be an integer such that $l \geq 2$ and put

$$
I_{l}(\lambda)=\int_{-\infty}^{\infty}(1+\sqrt{-1} x)^{(\lambda+1) / 2}(1-\sqrt{-1} x)^{(\lambda-1) / 2} d x
$$

Then it is not difficult to see that the following recurrence formula holds

$$
I_{l}(\lambda)=2 I_{l-1}(\lambda-1)-I_{l-2}(\lambda), \quad(l \geq 2) .
$$

Suppose that $(*)$ is true in $l-1, l-2$, then an easy computation gives that $(*)$ is true for $l \geq 0$. By the relation

$$
\begin{aligned}
& \int_{-\infty}^{\infty}(1+\sqrt{-1} x)^{(\lambda-1) / 2}(1-\sqrt{-1} x)^{(\lambda+1) / 2} d x \\
& =\int_{-\infty}^{\infty}(1+\sqrt{-1} x)^{(\lambda+1) / 2}(1-\sqrt{-1} x)^{(\lambda-1) / 2} d x
\end{aligned}
$$

$(*)$ is also true for $l<0$.
A.3. Let s be a complex number such that $\operatorname{Re} s>0$ and i, n nonnegative integers such that $0 \leq i \leq n$. Then we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left(1+x^{2}\right)^{-(s+1) / 2}\left(\frac{1-\sqrt{-1} x}{\left(1+x^{2}\right)^{1 / 2}}\right)^{n / 2-i} d x \\
& =\frac{\sqrt{\pi} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-(n / 2-i)}{2}\right) \Gamma\left(\frac{s+1+(n / 2-i)}{2}\right)} .
\end{aligned}
$$

Proof. By A.2, we have

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left(1+x^{2}\right)^{\lambda / 2}\left(\frac{1-\sqrt{-1} x}{\left(1+x^{2}\right)^{1 / 2}}\right)^{l} d x \\
& =\int_{-\infty}^{\infty}(1+\sqrt{-1} x)^{(\lambda+1) / 2}(1-\sqrt{-1} x)^{(\lambda-1) / 2} d x=\frac{2^{\lambda+2} \pi \Gamma(-\lambda-1)}{\Gamma\left(-\frac{\lambda+l}{2}\right) \Gamma\left(-\frac{\lambda-l}{2}\right)}
\end{aligned}
$$

putting $\lambda=-s-1, l=n / 2-i$, we have

$$
\begin{aligned}
& =\frac{2^{-s+1} \pi \Gamma(s)}{\Gamma\left(\frac{s+1-l}{2}\right) \Gamma\left(\frac{s+1+l}{2}\right)} \\
& =\frac{\sqrt{\pi} \Gamma\left(\frac{s}{2}\right) \Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+1-l}{2}\right) \Gamma\left(\frac{s+1+l}{2}\right)} .
\end{aligned}
$$

This proves the assertion of A.3.

References

[1] L. Cohn, Analytic Theory of the Harish-Chandra C-function, Lecture Notes in Math., 429 (1974), Springer-Verlag.
[2] -, Some theorems on C-functions, Bull. Amer. Math. Soc., 80 (1974), 921-926.
[3] Harish-Chandra, Harmonic analysis on real reductive groups I. The theory of the constant term, J. Func. Anal., 19 (1975), 104-204.
[4] -, Harmonic analysis on real reductive groups II. Wave packets in the Schwartz space, Invent. Math., 36 (1976), 1-55.
[5] -, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math., 104 (1976), 117-201.
[6] A. W. Knapp, Representation Theory of Semisimple Groups:An Overview Based on Examples, Princeton Univ. Press, Princeton, New Jersey, 1986.
[7] A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math., 93 (1971), 489-578.
[8] -, Intertwining operators for semisimple groups II, Invent. Math., 60 (1980), 9-84.
[9] B. Speh and D. A. Vogan, Reducibility of generalized principal series representations, Acta. Math., 145 (1980), 227-299.
[10] M. Sugiura, Unitary Representations and Harmonic Analysis, Kodansha, Tokyo, 1975.
[11] N. R. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973.
[12] -, On Harish-Chandra's generalized C-functions, Amer. J. Math., 97 (1975), 385403.
[13] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups, Vol I, Springer-Verlag, New York, 1972.
[14] ——, Harmonic Analysis on Semi-Simple Lie Groups, Vol II, Springer-Verlag, New York, 1972.

Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University and
Department of Mathematics, Fukuoka University of Education

