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Periodic zeta functions for rank 1 space forms of symmetric spaces
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1. Introduction

For the modular group I'= PSL(2, Z) and a positive number a, 4. Fujii

[51, [6] has studied a periodic zeta function
o
(1.1) Z,(s) =Z,j>o¥ Res> 1
j

associated with the discrete spectrum 0 = 4, < 4, < --- of the Laplace-Beltrami
operator acting on L2*(IT*/I') where IT* is the upper half-plane. Here, as
usual, r; is given by A; = +r?. Using the Selberg trace formula Fujii proves
that Z, has an analytic continuation Z, to the whole plane—ie. Z, is an
entire function. Among other results he also proves that

. 1 ~
(1.2 hma—’logN(Pl) (x —log N(P,))Z,(0) = e Z{P},N(P)=N(P,) A(P)/\/N(P)

where {P,} is any hyperbolic conjugacy class, N is the norm function and
A is the von Mangoldt function for the Selberg zeta function. Some related
work appears in [2], [4], [10], [14].

It seems natural to replace IT* by a general rank one symmetric space
G/K where G is a connected non-compact semisimple Lie group with finite
center and K is a maximal compact subgroup of G. A suitable version of
the trace formula is available in this context for I" a discrete subgroup of
G. In this paper we consider indeed a corresponding zeta function Z,, as
in (1.1), and prove that Z, extends to an entire function on the complex
plane at least when G is simple and I" is without torsion and is co-com-
pact. Actually we construct an infinite family {Z, ,},., of zeta function with
Z,0=2, Each Z,, is entire; see Theorems 5.17 and 6.10.

For the modular group I" one has the well known fact that A, > 3; ie.
no complementary series representations of PSL(2, R) occur in the discrete
spectrum of L?(I'|PSL(2, R). However, in the case at hand complementary
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series indeed can occur in L?(I"|G)[18]. Extra care therefore must be taken
to analytically continue the Z,,. We consider an appropriate version of a
von Mangoldt function A for the space form X, = I'|G/K, and we formulate
the analogue of (1.2). As in [6] this requires a formula for the special value
Z,(0).

2. Normalization of measures

Let go, I, denote the Lie algebras of G, K and let (,) denote the Killing
form of g,. Then for p, = {x € go|(x, Ty) =0}, go =T, + po is a Cartan de-
composition of g,. Let 6 be the corresponding Cartan involution and let g,
f, p denote the complexifications of gy, ¥y, po- Fix an Iwasawa decomposition
G=KA,N of G where A, =expa,, N=expn, for a, maximal abelian in
Po and n, is the sum over a positive system X* of restricted root spaces. Let
a€ be the complixification of a maximal abelian subspace a of p, which
contains a,. Then a€ is a O-stable Cartan subalgebra of g. The set of
non-zero roots of (g, a€) is denoted by ®. Choose in @ an a,-compatible
system of positive roots @* and set

P*={oe® |a#0o0na,}
2p =<(P*)

where (Q) =, oa for Q = &. Then in fact we can take Z* = {«|, |a e P*}.
We will assume that the R-rank of G is 1 (ie. dim a, = 1) so that Z* has
the form X% = {B} or Z* = {B,2B}. The Iwasawa decomposition of G gives
rise to a smooth map H:G — a, for each xe G, x = k(x) exp H(x) € KA,N.
We fix the choice of basis element H, of a, by

(2:2) B(H,) =1

Haar measures da, dn, dx, dv on A,, N, G, a} (dual space of a,) respectively
will be normalized by the equations

2.1)

f h(a) da =f h(exp tH,) dt
A, R

(.
e—ZP(H(On)) dn=1
JN

(2.3)

.

f(x) dx=J~ J Jf(kan)ez"“"“’ dkdadn
G NJa, Jk

r

LY

o) dv= 1 f o(tP) dt
:‘ 27[ R

Ja
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for he C(4,), feC(G). e C/(a}) where dt denotes Lebesgue measure on
R. dk = normalized Haar measure on K. For I' a discrete subgroup of G
let m be the unique G-invariant measure on I'\G such that

(2.4) L f(x)dx = L\G (Xye r fx)) dmp(I'x)

Let G be one of the following Lie groups: SO,(2n, 1), SO,2n + 1,1) (n > 1),
SU(n, 1)(n = 2), Sp(n, 1)(n = 2), or Fy_,,), up to a local isomorphism. Let ¢
denote Harish-Chandra’s c-function for the spherical Plancherel measure of
G/K. Given the normalization of measures in (2.3) Miatello’s computation
[13] of |e(*)|"? takes the form

CgnrP(r) tanh zr for G=S0,(2n,1)
CsnP(r) for G=S0,2n+1,1)

@.5) le(r)| 72 = (wmmnmwg for G=58Umn, 1)

CgmrP(r) tanh % for G =S8p(n,1), Fy_s0,>

where C;, P(r), ¢ are given in the following table. Here I'(-) is the classical
gamma function

TABLE 1
G Ce P() € Po
(local isomorphism)
1 n
S0,(2n, 1 [ — 2 4 (n—j+ 1) _1
n>1(1n ) T4 ()2 ,Uz T +mn—j+3)7) n—3
1 n
SO,2n +1,1) e r*+n—-j? n
. 272 +3) Fi
1 n1 P\ (n—2j)*
SU(n, 1 S o) +—2 —1y+t
P O
1
Sp(n, 1 —_— see (2.6 2n+1
n”i”z) 2T (@2ny2 @9
1
Fy—20 W see (2.7) 11

For Sp(n, 1), F4-10), P(r) is given respectively by



o o ()T~ )
o (- OV )
©-0Q-)

Thus for G # SO,(2n + 1, 1), P(r) is an even polynomial of degree d — 2 where
d = dim G/K. In these cases we write

(28) P(r) = 4qy + a2r2 + a4r4 + -+ a2(d/2_“r2(d/2—1)
For G = SO,(2n + 1, 1), P(r) is also an even polynomial but of degree d — 1 =
2n which we write as

(29) P(r) = ag + ayr? + a,r* + -+ + ay,r™"

Note that the normalization of Haar measures in [13] differs from that given
in (2.3).

3. The zeta functions Z,, Z, ,

From now on I' will denote a discrete torsion free co-compact subgroup
of G. Let G be the unitary dual space of G—the set of equivalence classes of
irreducible unitary representations (7, H,) of G where H, is the Hilbert space
of m. m is called class 1 if 7|, contains the trivial representation of K. That
is, there is a n(K)-fixed unit v in H,. The latter gives rise to the corresponding
positive definite spherical function of ¢, which in fact determines =:

(3.1) ¢.(x) = <v, m(x)v > for x € G where {,) is the inner product on H,.

We let {n;};.o < G bea representative set of all the class 1 representations
of G which occur as subrepresentations of the right regular representation of
G on L*(I"\ G) (ie. where G acts by right translation). This L2-space is formed
with respect to the measure mp in (24). Let n; be the multiplicity m, (1)
with which =#; occurs in L*(I'\G). One knows that each n; is finite [18]. We
arrange the labeling so that n, =1, the trivial representation of G; then
no=1. As a spherical function each ¢, has the form ¢, = ¢, for some v,
in the complexification a*€ of a*, by a theorem of Harish-Chandra [11],
where for any v e a*€,

(3.2) é,(x) & J e V=PNHGK) g1
K
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for xe G. If M, M’ are the centralizer, normalizer of A, in K, respectively,
so that W= M'/M is the Weyl group of (go, a,) then the v; are determined
up to the action of W. For the sake of specificity we normalize the choice
of the v; by

vi(Ho) 2 0 if v(Hy)eR
ivi(Hp) <0 if vj(H,) € iR — {0} .

(3.3)

Then vy =ip —ie. ¢;,,=1. We set

ip
3.4) ij = pf, + vJ-(Ho)2

Relative to a suitable Riemannian metric on G/K (and thus on X /) one may
regard the 4; as the spectrum 0= /45 < 4; <4, <--- of —4 on X, where 4
is the Laplace-Beltrami operator. Then n; is the multiplicity of the eigenvalue
4; on C*(X). Note that for G =PSL(2, R), p§ =% and the v;(H,)* corre-
spond to the rj2 above; compare the remarks accompaning (1.1). Given a >0
we therefore define Z, by

n; sin ar;

(35) Za(s) Z} ri>0 " 5

for s € C with Re s sufficiently large where we set r; & vj(Hy). More generally
for b >0 we set

r;n; sin or;
(3.6) Z,p(8) = Z; r;>0 b+ 2)(s+1)/2
Thus Za,O = Za’
nr;
THEOREM 3.7. Let b>0,0€R. Theny ;, o W converges for

¢>d%dim G/K. In particular Z,,(s) in (3.6) converges absolutely for
Res>d.

To prove this we use

n; d
Tueorem 3.8 [8]. Y, 120 [T 17 1 2T converges for ¢ > 5
J
ri(1 +r} + p3)"?
(b+rj2)(a+1)/2 =

=(1+ (1 + pd)r;?)’ > 1 as j— . Thus for

PrOOF OF THEOREM 3.7. Take o6>d and r;>0. Then
r(L+ 1+ p3)? (1 + 17 +p3)"?
(er)(aH)/z - (er)a/Z
) ) . ri(1+r} +pd)"? nr; 2n;
j>some j, sufficiently large (b+rj2)“’“’/2 <2=>(b+rj2)‘°“)/2 (1+rj2+p(2,)“’2

for j > j,, so Theorem 3.8 = Theorem 3.7.
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One knows that only finitely many of the r; satisfy r} <O0; recall
that v, =ip so that r, =ip,=r% <0. We assume that ry, ry,...,r, only
satisfy 17 <0; rj<ri<--<rf<rl; <, r}>o0 in accordance with
O=dg<di< A, <

In sections 5, 6 we shall study the analytic continuation of the Z_,,
using the Selberg trace formula. To state this formula, in a form con-
venient for our purpose, we first introduce additional notation. Let
A} =exp{tHy|t>0}. As I is torsion free and co-compact any ye I' — {1} is
conjugate in G to an element of MA, (using that y is semisimple and acts
freely on G/K [15], and that as dim a, = 1, G has at most 2 Cartan subgroups,
up to conjugacy). Thus we can choose xeG such that xyx~'=m,(x)
expt,(x)Hy, where m,(x)eM, t,(x)>0. By Lemma 6.6 of [16], t,(x) is
independent of the particular choice x in G, and up to conjugation in M so
is my(x). We therefore write t,=t(x), m,=m/(x). del — {1} is called
primitive if it cannot be written in the form y{ for some y, in I" and j some
integer > 1. According to [7] each yelI'— {1} can be written y = 6 ? for a
unique primitive element é in I'— {1} and a unique positive integer j(y). Let
C, be a complete set of representatives in I” of its conjugacy classes, and let

(3.9 C(y)™" = e"*o|det, (Ad(m, expt,H,) ™" — 1)

for ye I'— {1}. Given the normalization of measures in (2.3) the trace for-
mula can be stated as follows [7], [8], [16], [18]

vol(I"\ G)

(3.10)  };z0mF*(vi(H,)) = o L FX0le()| 72 dr + Yyecr—1)t,i0) T COIF(2,)

where F* is an even, holomorphic function of suitable growth at infinity and

(3.11) F(u) = if F*(r)e™r™ dr
21 Jgr
(3.10) holds in particular for all F* which arise as the spherical Fourier
transform of a K-biinvariant function in the Harish-Chandra-Schwartz space
%,(G) [18]. Such a function is F*:r —re”@**sin ar where x, a >0 are
fixed with o real.

4. Some integral formulas

In addition to the trace formula the analytic continuation of the Z,,
will be based on some integral formulas. It seems convenient to consider
these now as an effort to maintain the flow of ideas of the next section. Let
o a, b>0 and let n=0, 1, 2, 3, ..., be a non-negative integer. Since
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rn
-
b+ r°y

_ [ r*(sin ar) tanh ar dr
@4.1) L(s) = L b+

n+1
r € L*(R) for Re s> — the functions I, =1, ,,, given by

2n+l_n+l
= 5

are well-defined for Re s >

We study the integral I (s). Write

ar _ p-ar e2ar —1 2

tanh ar = = =1—
e + e—ar eZar + 1 ean + 1

® (sin ar) tanh ar dr

to obtain Iy(s) = 2

o (b +r?y
® sin ar @ sin ar dr
. 2 —  dr —
“2) o By L @ + )b+ r°)

The modified Struve Functions L, and Bessel functions of an imaginary argu-
ment I, are defined by

(2/2)2m+v+1

. L) =Y>_
“3) &) = Lin=0 Fon 3T + m £ 372)
(4.4) I,z) = e ™) (e"?7)  _m<argz< g
where
45 L@=YEe(—1 ca jarg 2| <

. Z) = — = — .

W8 =2 Lm=0 2"mIT(v +m+ 1) gzl==

That is, the J, are Bessel functions of the first kind. From page 426 of [9]

(4.6) J‘” (B* + r*y "W sinar dr = 4 <g£>v F<v + %) [-,(2B) — L,(2B)]
0

for >0, Re >0, Re v<i, v# -1, —3, —3, .... Therefore by (4.2)

sin or dr
+ 1)(b + r?)

(47) IO(S) =—4 J; (eZar

2 b (1/2)-s
+ ﬁ(TJ_) ra-—s) [I—((1/2)—s)(a\/5) - Lu/z)—s(“\/—b)]

for s#1,2, 3,4, ..., Res>1.
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" z 2m+v+1
-1r(3)
mOF 3 r +3

z\™" z 3 3 z? 3
then from page 38 of [3] 3 H,(2) = 71F2 1;5 + Py r'iv+ 3
T

is an entire function of z and of v (where ,F, is a generalized
hypergeometric series). Replace z by iz to obtain in particular that

v—»\l/z7_11F2<1;+v; Z4>/I’<v+%> is an entire function ¥, of w.

z\ "’ . .
But y,(v) = l<§> L,(z) as L,(z) = —ie ™ 2H (z¢™?). Thus we see that in

If H, are the Struve functions, ie.

(4.8) H,(z) =

particular v—»Lv(cx\/B) is an entire function; i.e., in (4.11) s — Lllz_s(cx\/g) is
an entire function. Similarly s —1_ /z_s)(a\/g) is an entire function since in
fact v > J,(2) is entire. Now s — I'(1 —s) is meromorphic with simple poles
at s=1,2,3,..., and the residue at 1 + kis —(— 1)"/k! fork=0,1,2,... from
the identity L_ . /2(2) = Iy112(2), k=0, 1, 2,..., page 39 of [3] we see that

. 1 k
limg_,, . [s— (1 +k)]Ira— 5)[1—((1/2)—.@)(“\/3) L(1/2) s(“f)] )

and we therefore conclude that each of the points s=1,2,3,...is a removable
singularity of s— I'(1 — s)[I_«l,z)_s,(a\/l;) — L(m,_s(a\/g)] is entire; ie.

PROPOSITION 4.9. In (4.7) the function s— I'(1 —s)[I_y;- s,(a\[ ) —
Lp)- s(af)] is entire.

=0

@ sin ar dr
, @+ 1) +r?y
uniformly on compact subsets of the plane and thus is an entire function of

On the other hand it is easy to check that

converges

sin ar dr . . . .
@ L Db+ is also an entire function of s. Given Proposition

4.9 we therefore have

THEOREM 4.10. The right hand side of equation (4.7) defines an analytic
continuation of I, as an entire function.

We should observe in general that the I, are holomorphic functions on Re s >
1 1 p2"(sin ar) tanh ar dr ® r2"(sin ar) tanh ar dr
=. Namely I,(s) =2 2 ,

"ty Namely L) L (b + 7y . b+

where the 1*! integral is an entire function of s and 2" one converges uniformly
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1
on compact subsets of Res > n + 7

© r2"(sin or) dr 1 .
Let 4,(s) = L T for Res > n+§. Then as in (4.2) I,(s) =

©  p2%sin or) dr )
24,(s) — 4 here the latter integral i ti . N
#(8) L @ + D0 + 177 where the latter integral is entire in s. Now

ri(sinar) . (FP4+b)sinar " Vsinar r2* Vsinar  r?®7Y sin ar
(b+r?y *+by (+ry  (+rTt T (b+rPy
A(s) £ 4,_,(s — 1) — bd,_,(s). We have observed that 4, extends to an entire
function, by (4.2), (4.7) and Proposition 4.9. By #, inductively, each 4,
extends to an entire function and thus each I, extends to an entire function; ie.

THEOREM 4.11. The functions I, =1, , ., defined in (4.1) are holomorphic
on Res>n+ % and extend to entire functions.

Similar to the definition of I, in (4.1) we define K, =K, ,,, for a, a,
b>0,n=0,1,2 3, ..., by

(4.12) K (s) = J r2"(sin ar) coth ar dr
R

(b +r?y
For Res>n+ 1. Using that coth x — tanh x = (tanh x) csch?x we get

B r?"(sin ar)(tanh ar)csch2ar
(4.13) K, (s) — I(s) = _L (b + 17 dr

for Res>n+ 1 where the integral in (4.13) is an entire function of s, as
r—r*"csch® ar has exponential decay at co. Because of Theorem 4.11 we
may conclude

THEOREM 4.14. For n > 1 the function s — K,(s), which is holomorphic on
Re s > n + 1, extends to an entire function.

For n=0, 1, 2, 3, ..., «, b >0 define §,=S,,, by

_ [ r"*(sinar) dr
(4.15) S,(s) = J; W

for Re s > n+ 1. Similar to the argument which led to equation # preceding

r?*sinar) P2V singr  br?® "V sinor
b+r P +bT b+

S,(s) = S,_1(s — 1) — bS,_,(s). By induction (again) each S,, n >1, will extend

to an entire if only S, does. By page 427 of [9], Sy(s)/2 =

Theorem 4.11 we have
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dr [b(2/b\ R 1
(416)f r((s;’l“rz))sr_ \/;( {) [cos n<§—s>]r(1—s)1<_s+3,2(a\/5)

forRes>1,s#1,2,3,..., where K, is the K-Bessel function: Forv,ze C

4.17) K,(z) = %j e 2D V1 gy

0o

s—»Ks(oc\/B) is entire in s and s— cos n(} — s) vanishes at the poles s =1,
2,3, ...,0of s»>I'(1—s). Thatis, s— [cosn(3—s)]I'(1 —s) is entire (s =1,
2, 3,... are removable singularities) and thus by (4.16) S, extends to an entire
function. That is

PROPOSITION 4.18.  The holomorphic function S, , , defined in (4.15) extends
to an entire function.

For application of the trace formula, (3.10) we shall need the Fourier
transform of the function r — e ™"**r sin ar. Namely

PROPOSITION 4.19. For ueR, x, a >0,

—(u—a)2/4x —(u+a)?/4x
iru - . (o — u)e n(o + u)e
j e~ e ™" sin or dr = V= w \[( )
R

4x? 4x?

ProoF. We assume the known formula (4.20) je‘"‘e"z" dr =

n . -
\/ e "> for the Fourier transform of r »>e™* x> 0; ce R. Let I(u) =
x

f e~ "%r sin ar dr, H (u)=j e~me "% cos ar dr, J(u)= f e~'Me " sin ar dr
R R R
for ue R. Write the integrand of I(u) as f(r)g’(r) where f(r) = e ™ sin ar,

g'(r)=e"*r. Integrating by parts one therefore obtains I(u) (')—H( )——J (u).

ari —ari

On the other hand one can write 2 cos ar = e* 4+ ¢ * 2isinar =e* — e

and use (4.20) to obtain

1 (= 1 /=
H = — [— —(u—a)?/ax -2 —(uta)?jax
(u) 2 \/; ¢ + 2 \/; ¢
1 /= 1 In
=_ [Ce wa¥ax _ _ [T —(uta)?ax
T \/;e 2i\/;e

Then Proposition 4.19 follows from (i).
For teR, o, x>0, k=0, 1, 2, 3, ..., define

4.21)
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o)
F(t) = J e "r®*sin tr dr
0

(4.22) L(x; o) = I e *r?*(sin ar) dr

1]
[e 0]
Jobc; @) = j e " *r2*(cos ar) dr .
1]

The integrand of the second integral is f(r)g’(r) for f(r) = r** !(sin ar), g'(r) =
re”"* so that integration by parts gives
2k — 1 o

4.23) L(x;0) = o Ik_l(x;oc)+2xJk_1(x;a) for k>1.

The change of variables r—»r\/; also provides the relations I,(x;a)=

p— o
X k 1/2Fk<>’
NE

(4.24) Jolx; 0) = x7*71 J e rp2kt <cos i) dr.
. 7

We define ¢,(s; o) by

1
4.25) Pu(s; a) = f xS (x; o) dx for seC,

0o

Re s sufficiently large. Namely, using

®© 1 * F,
(4.24)  ¢,(s; a):f x—s—11k<;;a> dx=J %dx' Since F, is clearly
1 1
bounded we see therefore that ¢,(s; o) is defined if and only Res > k + 1 and
moreover we see that ¢,(;«) is holomorphic on Res > k + 3, by uniform
convergence of the integral on compact subsets of the latter domain.

1
ProrosiTION 4.26. For k > 1, Res > k + X di(s;0) = —F_4(a) +

(s—=1 jl xS721 4 (x; o) dx.

0

1 (! N
ProoOF. By (4.23), ¢k(s;a)=<k—§)j xs‘zlk_l(x;a)dx+§jox 2J—1(x; ) dx,
0

1

for k> 1. Let ¥(s;0) = ;j x*"2J,_,(x; «) dx be the 2"¢ integral. By (4.24)
0

and the preceding argument ¥(s; ) is well defined for Re s>k+1, which we
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assume. Note that ¥(s; cx)—J‘ f1(¥)gi(x)dx for fi(x)= —x**12 g,(x) =
1
F,‘_l(%) Since F,-, is bounded and Re s>k + 5 one has f,(x)g;(x)l} =
x

1
—F,_;(®). Thus integration by parts yields ¥(s; a) = — F,_(a) + (s—k—§> X

1 1
J XSTRIRE (-“-) dx= ~F,‘_1(a)+<s—k—1>j X2, _ (x;a)dx, by (4.24)
0 Jx 2/ Jo

1
again. Therefore ¢,(s; e —Fk_l(a)+(s—1)J x572I,_,(x; @) dx for Res >
0
k+1, where the rhs. is —F,_j(@) + (s — )@p_1(s — 1, ) by (4.25). On the
other hand we have seen that both sides of equation # are holomorphic on

Re s>k + 1. Therefore # holds for Re s > k + 3, as desired.
On page 172 of [5], Fujii defines the sum of two integrals I,¢, I,

1 1 ©
by 6(1,¢ + 1;4) =I x“‘(f +j )e"z"rz(sin ar)dr dx. By our notation
0 0 1

6(I,6 + 1,7) =¢,(s;2). I,4/I(-) extends to an entire function and Fujii shows
that I1,,/I'(-) extends to an entire function. That is ¢,(; a)/I’(-) extends to
an entire function. Inductively we have O

PrOPOSITION 4.27. For k> 1, ¢,(; 2)/I'(*) extends to an entire function.

PrROOF. We have observed the result to true for k = 1. By Proposition
4.26.
Pils; 0‘) _ Fk 1(“)
I'(s) I'(s) F ( )

¢k 16— Lo

for Res>k +4. The induction is completed by this equation as I'(s) =
(s—1I'(s—1). O

5. Analytic continuation of Z,, b # 0.

For x, >0 define F* by F*(r)=re ®3*"*sin ar, r € C. We have observed

. o 1 .
that F* plugs into the trace formula. Moreover F (u)"=r2—J F*(r)e "™ dr =
n

\/7_te "0"(0‘ — w)emw@ex 4 ﬁe_pOX
2ndx3? 2max?
4.19. The trace formula (3.10) therefore provides

(¢ + u)e" @+’ for y e R by Proposition

(5.1 Y jsonrie @8t P*sinar;

_vol(I'\G) J
D —

re”®tr%(sin ar)|c(r)| 2 dr
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e P& o
+ZyeCr—{1}——T ty](y) IC('}’)[(OC—ty)e (ty—a)2/dx
8. /mx?
+ (o + t,)e " tFDAx]
Multiply both sides of (5.1) by e”*e™" for b >0 to obtain

(5.2) Y isomrie” % sin ar;

LMDV [ bt
4n R

e—bx o o
g Dreer ) H0) COL—t)e™ ies
X

+ (ot + t,)e " Crroax]
Y

Consider the sum on the Lhs. of (5.2). As rq =ip, and ny =1 the summand
corresponding to j =0 is ipoe ®P% sin aip, = e~ PO¥(p,/2) [e %0 — £*0].
Similarly, by earlier notation, we may have ry, r,,..., r,€iR — {0}, say r; = it;

, o bic —aty
with ¢;>0 by (3.3). Then [nr;e”®*"9* sin or;=nze ® '5>x51[e 5 e%i],

1<j<l 1If rjeR then r;>0 by (3.3). Thus we can write (5.2) as

—(b+r2)x
(53) 23,50 mrie” P sin ar;

o _ (I\G .
=Yg ne g oot oats] 4 D \D) (277.-\ )J re=®+%(sin ar)|c(r)| 2 dr
R

e —bx

+ Y yecr1) LI T CH) [(a—t,)e G
N '
+ (o + t,)e o]

where we write t, = po; n, = 1. We note also that
J>0=4%r 4+ p2>0=1<p, .

Consider

e o)
= s—1 —(b+r)x o:
I1(s) L x Zj,,?onjrje M sinar;dx .

For o=Res, r;>0
s—1 =(b+r2)x : a—1 —(b+r2
[x*"*njr;e Prsinar| < x7'nirie (b+r)x

where
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® I (o)n;r;
-1 —(b+r2)x _ JJ
Zj,rj>o L X" nrie Pdx = Zj,rj>o(—’—-b+r1;)a

T

=F(G)Zj,rj>o(_b:p)—(za-—n—+1/3<°0
J

for 26 — 1 >d by Theorem 3.7. Hence by Fubini’s theorem

n.r.
(54) I(s)=I'(s) Zj,rj>0 &+ rg)(;21—1)+1)/2 =TI(5)Z,,(2s - 1)
J

for Res > d—;—l Let

(5.5)

1
Bo(x) = Y ne”®"Dxt[e — e7*i]
=0

6,(x) = —”01(21; \6) f re~®*rx(sin ar)|c(r)| 2 dr
R

e—bx

_ s\ —1 _ —(t,~a)?/4x —(t,+a)2/4x
Bz(x)—4———ﬁx3/2 Yrecr—(y HLIO) TCO(a—t,)e ™" +(+t)e™ ]

LeEMMA 5.6. Let j, be the smallest j for which r; > 0; thus jo>1+ 1.
There is a constant B > 0 such that anrje"zz"‘ < Be™"o* for x > 1.

Proor. We adapt the proof of Lemma 4.23 of [17] to the present
situation. Let M(x)=e"o*Y ;. ,ynrje™ for x>0. For j>jo+1, r}>r}=
—(r2-r? —-@r3-r?) ) —r2-r?
G rul)x ZSe iTNd for x> 1; ie. M(x):Zijo+1 nir;e r3 rjo)xstzjoﬂ
nrie”"im) = M() for x > 1. We set B = n;r; + M(l) and obtain

—r2 —r2 -2 L2

Lig>o M€ = mirieT 0N 4+ 3 i e T = eTXmr;, + M(x)) <
e "io*B for x > 1.

[co]

— - 2 . .

COROLLARY 5.7. J‘ XS jor, >0 mirse "% sin ar;] dx  converges uni-
1

formly on compact subsets of the plane and thus defines an entire function

I, of s, for b>0.

We have I(s)=1(s)+1)(s) where
1
I(O)(S) déf f _xs-1 [Zj,rj >0 njrje_(b+r12')x Sin arJ] dx .
0

Given Corollary 5.7. we focus our study on I,. By (5.3) and (5.5)
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(5.8) 2% 0,50 mre O sinar; = (6 + 6, + 6,)(x)
so that
1
(5.9 2l )(5) = j x10, + 6, + 6,)(x) dx
4]
1 <]
To study J x*710,(x) dx we first consider J x°710,(x) dx. Assume that b>0.
0 [}
Then
J |x5~Lre ~®+%(sin ar)|c(r)| 2| dx dr < j |r||c(r)|_zf xRes=1o=0Frx gy gy
RJO 0
I'(Re s)
2
J |r||c(r)| (b+ 2)Res r

|r|rP(r) tanh® ar dr

=I'(R
I'(Re s)Cqm . b+ P

for G #S0,2n+1,1) by (2.5 where ¢ = +1, a== or g
polynomial of degree d — 2, d = dim G/K; cf. (2.8). Assume for now G #

and P(r) is a

. . . d+1
SO,(2n + 1, 1). We see that the latter integral is finite if Re s>%. There-

fore by Fubini’s Theorem

e} 1—' o] N .
J x*710,(x) dx = EI%E\QJ I x5"re " ™%(sin ar) |c(r)| "2 dx dr

0

00
r(sin ar)|c(r)| ~2 j x57le~®+Ax gy dr
0

vol(F\ G) J

vol(I'\G) r(sin ar)|c(r)| =2 dr
T 1® L b+

vol(I'\ G) r2P(r) sin ar tanh® ar dr
on L @Cerm L b+ r?y

_ vol(I'\ G) r2®*Y(sin ar) tanh® ar dr
h 02k—2—F(S)CG J; b + r2y

(by (2.8)). In case ¢ =1 we use (4.1) to write

jw x10,(x)dx =Y 2t a vol(I'\ G)

2k r(s)CGIk+l,a,a,b(s) ,
0 2
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for

l o0
By Theorem 4.11 we see that, in case ¢ = 1, F(_sjj x*710,(x) dx extends to
0

an entire function. On the other hand for x > 1, e ®*™* < ¢ %%~ Vr e R=>
vol(I'\G)e ™
0,(¥)] < ————

5 A, by (5.5), where 4 =j re™"|c(r)| "2 dr. This means
n

R

0
that J x5710,(x) dx converges uniformly on compact subsets of the plane; ie.
1

0

Lemma 5.10. j x*710,(x) dx is an entire function of s.
1

1 © ©
As J x5710,(x) dx =J x5710, (x) dx —f x°710,(x) dx we have therefore es-

] ] 1

1 (! .
tablished that a0 x*710,(x) dx as a function of s extends meromorphically
0

to C (at least when ¢ = 1) with possibly simple poles at s=1, 2,...,d. In
case ¢ = —1 we argue pretty much the same.

Namely

r2&*1(sin or) tanh ar dr
" b+ Y

= Kk+1,a,a,b(s) = J xs‘lgl (x) dx
0

vol(I"'\ G) d+1
e

=Yzt a, 5 I'(5)CeKis1.005(s)  for Re s> — -

In place of Theorem 4.11 we now appeal to Theorem 4.14 to conclude that

1 (! . .
——j x°716,(x) dx still extends to an entire function.
I'(s) Jo
1
The final case to consider in studying f x716,(x) dx is the case G =
0

S$0,(2n + 1, 1) (or G locally isomorphic to SO,(2n + 1, 1)). Then by (2.5), (2.9)

le(r)| ™2 = Com z;!:o a2jr2j >
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with

oo} A . _2
G.11) d—1 =2n,=>L x*716,(x) dx“@“WF(s) L r(sin ar)|c(r)| —* dr

b+ r?y

I(I'\G \ 20%1 (s ) d
= CGM\—G)F(S) Z;=0 aZij(s)

2

d+1 ®©
by (4.15), for Re s > —;— =n+ 1. Thus by Proposition 4.18, f x*710, (x) dx
0
extends to an entire function.
1
We turn attention now to the study of the term x5710,(x) dx in (5.9)
0

® 1 . . 1
which we write as T(s) = f 0, <;>t'5‘1 dt using the transformation x = r
0

We shall argue as in [12], [17] and rely on the following result of DeGeorge.
For x>0 let E(x)=|{yeCr— {1}|t, < x}|, Ex)=|{yeCr—{1}|x < t, <
x + 1}|, where |s| denotes the cardinality of a set S. Then by [1], for
some B >0 it is true that lim,_, Bxe #*E(x) = 1. From this it follows that
there is an integer j, sufficiently large and a positive number & such
that

(5.12) E(x) < g—e"" for x> j,.
Now by definition of E(x) one has

szz,<x+1 t,(a + ty)e_'%‘/4e!,at/2
<Y st <1 (X 4 D@ + x + 1) >4 +Da2
= (x + 1)(a + x + 1)e **4etDat/2F(y)

%6X+1

(a + x + 1) **4gtx+iat2 o Bx for x>j,.

Taking j, a bit larger, if necessary, we assume j, > 20 + 1. Then if
LO% —(jo + n — 1)2t/A+(j, + n)at/2 for te R, we clearly have

df,

. _1)2 .
4E/(]o+n)=_(‘]0+n 1) +(]0+n)2a

(Jo+mn)
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_[Go + M = 2(jo + m) + 11 + (jo + 1)2

(Jotn)
) 1 .
= —jo—n+2—- +20< —jo—14+2a+1)<0;
]0+n
ie. f,(t) <0Vt=f, is decreasing:
(5.13) —(jo + n— 1*t/4 + (jo + n)at/2

< —(o+n—1%4+(jo+me2 Vn, for t>1.
LEMMA 5.14. Let

SO =Y, 5 o +t,)e e for teR.
Then S(t) converges for every t >0, and is bounded for t > 1.

PROOF.
SO =250 < Ljos<iort T Lioti<t,<jor2 + Ljgt2s,<jors T

S6]0'*‘
0

1 s 1 ;
(a +jo + l)e 101/4e(Jo+1)m/2eﬂJo

+ 5j° + Z(a +jo + 2)e—(jo+1)21/4e(jo+2)at/2eﬂ(jo+1)
Jo+1

+ 800 : ;(a + jo + 3)e Uot D4 gliot a2 gBlio+2)

+o by #)=

=0 Z M(a +jo + n)e—(Jo+n 1)%t/4 5(o+mat/2 5 B(jo+n—1)

which converges for every t > 0 by the ratio test. In particular for t > 1 we
have

St <édr T+_( & + jo 4 n)e Uotn=1/4glo*mal2gBo+n=1)
Jo

Going back to (5.5) we have

e bt

(5.19) 92<:)=4 a7mt Loen 0 CONE = e 7

—aa € " o - N
4 e ¥4 4\/’ 132 Zty>io ty]()’) IC(')))(OC _ ty)e 51/4 ptat/2
n
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—bjt
e
+ e—a21/44\/_t3/2 ZyeCr—{l} t,J'(y)"‘C(y)(oz + ty)e—rgx/cte—z,ar/z
4

for t >0.

We denote the 3 terms in (5.15) by Ti(t), T,(t), Ts(t) respectively. There-
© 1 @© ©
fore T(s) = f 02<—>rs-1 dt = f T de + f Lo dr +

1 t 1 1
[e o) [e o]
T,()t™*"'dt. We claim 1% that T,(t)t "' dt is an entire function of
1 1

M
s. As in [12] there is a bound M, for the numbers C(y). If M =4 9

n
we have for t > 1, |T(t)] < e ™ *M2Y, . t(a + t)e 51 er 2 =
e A ME28(t) < e **t32MC, for some constant C, by Lemma 5.14. It fol-

lows that fw T,(t)t ! dt converges uniformly on compact subsets of the
plane and tll1us defines an entire function of s. Ti(t) is a finite sum with
each term wtj(y)C(y)(a—t e ®&D%4 ¢ <jo. bounded by t32Mt (a+t,).

4\/7; » Y Y Y Y
e~ M4, e, fw T,(t)t ="' dt similarly is entire in s, being a finite sum of
functions entirelin s. We have |Ty(t)] < e "*Mt328(t), where

SOEY,ccr—q) t, +t,)e™5 = §,(t) + §,(2)
where

§1(t) = Z'ysjo ty(a+ tv)e_&'/“ >
S0=Y, s, t@+t)e " <SO=85t)<C for t>1,

again by Lemma 5.14. Recalling the definition of E(x) one has S,(f) <
Z,ysjojo(a +Jjo) =Jjol@ +jo)E(jo) for t>0. Thus we see that, similarly,

T;(t)t "' dt converges uniformly on compact subsets of the plane and
1

therefore also is an entire function of s. In conclusion, we have that T(s) =

1 © 1

f x5710,(x) dx = f 0, (;)t“"l dt is an entire function of s; here we allow
0 1

b>0.

1

The one remaining term J x5710y(x) dx in (5.9) is the easiest to ana-
]

1
lyze. From (5.5), f X*10p(x) dx = ¥ joomst; [ — e~ ¥(s), where ¥(s)%
0
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1
J e~ ®*xs"1 dx. Let y, be the incomplete gamma function:
0

t
(5.16) Po(s, 1) = J e *x* ! dx

0

Wils) _ (b= )l b—87)

where Res >0, teR. For b—1t} #0

res) I'(s)
. 1 ¥(s) 1
- .2 i = — ——!—— —3
known to be entire in 5. If b=t}, ¥s) . and clearly 7o)~ 5T
1 (! . .
(defined to be 1 for s = 0) is entire. Thus —— | x*7'6y(x) dx is entire in s

I'(s) Jo
for b > 0.
In conclusion we deduce from (5.4), Corollary 5.7, (5.9), and the definition
I =14 + Iy of I, I the following key theorem.

THEOREM 5.17. Z, , as defined in (3.6) indeed extends to an entire function,
for every b > 0.

REMARK. We shall see in the next section that for b=0, Z,, also
extends to an entire function.

6. Analytic continuation of Z,

1

Because of the term j x5710,(x) dx in (5.9) we had to assume b >0 to
0

analytically continue Z,, as we did in section 5. There we saw that I,

1
was entire for b > 0 (Corollary 5.7), j x°710,(x) dx was entire for b > 0 and
0

1 ! .
WJ x°710,(x) dx was entire for b > 0. Thus to handle the analytic contin-
0

1

uation of Z,=2Z,, we need only to analytically continue j x5710,(x) dx
0

(by some different means) in case b =0. We address this matter in this
section. For p =0,

vol(I’

(6.1) jl x5710,(x) dx = n\G) Il jw x5"Lre ™"** (sin ar)|c(r)| 2 dr dx
o Jo

0
_ vol(I'\ G)

1 foo
d/2)-1 -1,-r2 : 2(j+1) €
C wa azjf j x*" e "*(sin ar)r?U*Y tanh® ar dr dx ,
G 0 JO

say for G # SO,(2n + 1, 1), where ¢ = +1, a== or n/2. Consider the case
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&= 1; write tanhar=1— — so that the double integral in (6.1) which

e ar + 1
we denote by @,(s) is

1 ©
6.2) Di(s) = j J x*"le™"**(sin ar)r2U*D dr dx
0 (1]

1 (o xs~1e7*(sin ar)r2U*D dr dx
-2 2ar
o Jo e“r+1

The 1% integral in (6.2) is by (4.22), (4.25) exactly ¢;.,(s; «), which we

know is well-defined and holomorphic in s for Re s >j + 1 + %; this inequality
d+1
2
427, ¢;+1(;@)/T(-) extends to an entire function. Thus we concentrate on
the 2" integral in (6.2), which we denote by ¥(s). For Re s> 0, Fubini’s
Theorem applies:

(6.3) 'II,(S) = va M [Jl xS"1lg=rx dxil dr

o e2ar + 1 o

is satisfied for Re s >

d
(see (5.4)), as j < 3~ 1. Moreover by Proposition

1 r2
where J x$le ™ dx =72 J e ust du = r~2%,(s,r?), by (5.16). Define
0 0
v¥ by pi(s, £) =t ®y,(s, t)/I°(s), say for se C, te R. Then y%(s,t) is an entire
function of s, a fact already used, following (5.16). We therefore have

© (sin or)r2U*h)

lI’j(~‘>')/r(5) z . W??(S, "2) dr.
By page 135 of [3]
s t—le—x 4
(6.4) ¥, ) =t ———[14+0(t))™"'] as |[t|> 0.
I'(s)

There are positive constants C, M therefore such that for r > M

_r2 Ce™"
6.5 * : 2 < —2Res € ;
¢ S )
that is
_ C,e™"
(66) 1936, 1)) < r2Res 4
(s ) )

for r > M, where C; =1+ C. Accordingly we have
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%(s)/r(s)=f (221 ar) P0G, 12) dr +J (iz‘ ar) P2+ (s, 12) dr |
0 1 +1

where the 1% term is entire in s. The 2" term is also entire in s as the
integral converges uniformly on compact subsets K of the plane, by (6.6):

(sin ar) P

2ar - 1 (S, r2) < r2(j+1)—-2ne—2ar + Cl C2r2(j+1)e—2ar ,
1 1
where Re s>#, ——<C, for se K. We now have that s—»— x5710,(x) dx
|I"(s)] I(s) Jo
extends to an entire function in case ¢ =1. To handle the case e= —1

we use the idea preceding Theorem 4.4. Namely, write coth ar = tanh ar +
(tanh ar) csch? ar, so that the double integral in (6.1) is now Di(s) +

j J x*"1e~"**(sin ar)r?U*V(tanh ar) csch? ar dr dx, where s— —— F ( ) Ds) ex-

tends to an entire function, as we have just shown, and where again Fubini’s
Theorem applies to the 2" term—call it Tj(s):

T(S)

6.7) T

J (sin ar)r*Y*Y(tanh ar)(csch? ar)y%(s, r?) dr,

exactly as in equation #. Using (6.6) again we therefore see that s — T;(s)/1(s)
extends to an entire function—noting that r — r? csch? ar (defined to be al—2
at r = 0) is continuous on R, and that for some C > 0, r? csch? ar< Ce ™ Vr >
0. This gives the analytic continuation of s =7 f 5710, (x) dx to an entire

function in the case ¢ = —1.
In case G is locally isomorphis to SO;(2n + 1,1) (the final case to
consider).

1 1 ©

(6.8) J. x*716,(x) dx = Cgvol(I'\G) Y., azjf f x* e "*(sin ar)r¥*! dr dx
0 0 Jo

by (2.5), (2.9), and the 1* double integral in (6.1). By page 496 of [9]

© e (@?/ax o
6.9) L ~r**(sin ar)r?tt dr = (— (2\/\{)_21+2e @49H, in (m>

where H, is the n'™ Hermite polynomial. Therefore
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1
j x5710,(x) dx
V]
a 1) 1 i o .
- CGvOI(F\G)\[ 20 221£,+2 . TIxTM Hyj0 <§\/;>e x4 dx
which is entire in s. This concludes the proof of

THEOREM 6.10. The zeta function Z, % Z, , defined in (3.6) for Re s > dim
G/K admits an extension to the whole plane, which in all cases of G is an
entire function.

Compare Theorem 5.17

7. A limit formula

As in [6] we can compute the special value Z,(0) (given Theorem 6.10).
The result, which is rather long and technical, will not be stated here. Using
this result we can prove the following theorem. Recall the notation of section
3; see (3.9), (3.10) in particular.

THEOREM 7.1. For any y, e I' — {1}
1 o
lim,.,, (@ —t,,)Z,(0) = 5 Yrecr— 11 J0) 1, CH).

The proof of Theorem 7.1 will appear elsewhere. We note in closing that
Theorem 7.1 coincides with statement (1.2). Namely we define first of all the
von Mangoldt function A by

(7.2) A() = e"2jy) ', Ch)  for yel —{1}.

Define the norm N(y) of ye I'— {1} by N(y) =e". For G = SL(2, R), N(y) =
maximum of {|c|*|c = an eigenvalue of y} is the usual definition of the norm.
J(?) 't,  log N(9)

sl N@)™!
y = 6/ with § a primitive element as section 3. That is A in (7.2) reduces
to the usual von Mangoldt function for the Selberg zeta function.

1
Also in this case C(y) = S — g 5O that A(y) = for

Theorem 7.1 can now be written as

. 1 ~
hma—'logN(y,) (d - lOg N(yl))za(o) = § ZyeCr—El} A(Y)/\/ N(V 5
N(y)=N(y1)

which is (1.2) for our normalization of Haar measures.
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