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1. Introduction

Let Si/ (2) -> Pk -> S4 be the principal SU(2) bundle of degree c2(Pk) = k and

let ^(resp. &k) be the set of anti-self-dual connections (resp. SU(2)
connections) over Pk. The restricted gauge group (consisting automorphisms
which are the identity on the base point oo eS4) acts on s#k and 3$k. We define

Mk and Mk to be the orbit space of s/k and &k by the restricted gauge group

respectively. Mk is called the framed moduli space of instantons of degree k

and Jίk the framed moduli space of Si/ (2) connections of degree fc.
Mk is described by the linear algebra known as the ADHM (Atiyah-

Drinfeld-Hitchin-Manin) construction [2]. In the ADHM construction, the
following three conditions are imposed: (1) symmetric condition, (2) rank

condition and (3) reality condition. The space obtained by imposing the
conditions (1) and (2) only is denoted by Mk and we have inclusions i1 and i2:

We see easily that Mx = M l β So, we shall compare the topology of M2 with
that of M2.

THEOREM A. M2 is connected, π1(M2) = Z2 and π2(M2) = Z. Moreover,

*ι* : H*(M2 '9 Z2) -> Hχ(M2 Z2) is an isomorphism.

It is known that M1 is diffeomorphic to S0(3) x R5 [2]. The topology of

M2 is studied in [6] and the structures of H^(M2'9 Z2) and #*(M2; Z2) are
completely determined in [8]. It is known also that π1(Mk) = Z2 for all fe

[7]. Appropriate modifications of Hurtubise's proof might show that π^MJ

= Z2 hold for all k.
This paper is organized as follows. In §2 we shall review the ADHM

construction and give the precise definition of Mk as Fk/0(k). In §3 we shall

construct non-trivial elements in H^(M2\ Z2) by using the methods of Boyer

and Mann [4] and as an application, we shall estimate the Z2 coefficient Betti
numbers of M2 from below. In § 4 we shall prove a proposition which

determines H+(F2'9 Z2). In §5 and 6 we shall prove Theorem A by using the
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results of §3 and 4.
The author is grateful to Professors A. Hattori, Y. Matsumoto and

T. Matumoto for many useful comments.

2. The ADHM construction

Let Mm5M(H) be the set of m x n quaternion matrices. We define Fk to be

(2.1) Fk = \ ( ); A eM1 fc(H), BεMk fc(H) such that the
(\B/

following (2.2) and (2.3) are satisfied > .

(2.2) (Symmetric condition) B is a symmetric matrix.

(2.3) (Rank condition) For any xeH the rank of the matrix ( 1 is equal
\ D — XtL j

to k where £ is the identity matrix.

The group 0(k) acts on Fk (from the right) by the formula

For an element ( 1 of Fk, the corresponding connection jl 1 on the
\BJ \BJ

one point compactification S4 of H is described over xeH by the following
A(x).

(2.4) A(x) = σ(x)U(x)*dU(x)σ(x) + σ(xΓldσ(x)

where

- x)~lY and σ(x) = [1 + C/(x)*t/(x)]-1/2.

We define Fk to be

(2.5) Fk = \ ( A } e Fk the following (2.6) is satisfied 1 .
(\BJ )

(2.6) (Reality condition) Λ*Λ + B*B is real (* = transpose conjugate). Then
according to [2] we can state

THEOREM 2.7. j gives a dίffeomorphίsm of Fk/0(k) onto the image Mk of

j. Moreover the restriction of j to Fk/0(k) gives the dijfeomorphism of Fk/0(k)
onto Mk.

REMARKS 2.8. (1) We see M1 = M^ because (2.6) is satisfied automatically
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in this case.
(2) We define three symplectic 2-forms ωi9 ω^ and ωk on Fk to be ω4

= Rei(<L4 Λ dΛ* + (l/2)Ίτ(dB Λ dB*)) (ω, 0«d ωk are defined similarly).
Then the corresponding moment maps μi9 μj and μk with respect to the action
of 0(k) on Fk are given by μi — Rei(Λ*Λ + B*B) (μj and μk are given similarly).

Hence we see Fk = μf ί (0) n μj * (0) n μfc~* (0).

Before we end this section, we state a proposition which is proved by direct
computations.

PROPOSITION 2.9. The action of O(2) on F2 is free.

3. Construction of non-trivial elements in Hχ(M2ϊ Z2)

In what follows we identify Mk with ΩkS
3 because they are homotopically

equivalent [3]. So, J^k admits a natural loop sum and a C4-structure.

On the other hand Boyer and Mann introduced a loop sum * : Mk x Ml

-*Mk + l in [4]. In fact, fixing an element δ of (0, 1), we first define a map

φδ: Mk x Mt-+Mk + l by

(3.1) M*ιU*2)) = £ + 0/||*1||)B1 0
V 0 -E + (δ/\\b2\\)B2 I

where (ftj = ( 1 1 and (b2) = ( 2 ). II *ι || is the norm of b± regarded as an
\BlJ \B2j

element of the vector space M l ik(H) x Mk>fc(H). | |b2 | | is defined similarly.

Note that the right hand of (3.1) satisfies the rank condition (2.3). If we take

δ small enough, then we see that φδ is a map into the Taubes tubular

neighborhood [10]. Hence we can regard φδ as a map into Mk+l. This map
is the loop sum constructed by Boyer and Mann. In the same way they

introduced a C4-structure in jj Mk.
k

We can define a loop sum *: Mk x Mt->Mk+l by the same formula as
(3.1). The fact that our loop sum is compatible with iί is obvious and
compatible with ί2 is proved in the same way as in the proof of [4] . We can

also introduce a C4-structure in u Mk in the same way as [4] so as to be

compatible with i1 and i2.

Let zq(q = 1, 2, 3) be the generators of Hq(M±\ Z2). By operating the

Araki-Kudo operations Q l 9 β2> 6a» which are defined by the C4-structure [5],
iteratedly on zq9 and then by computing the loop sums of such elements, Boyer

and Mann obtained new elements of H^(Mk; Z2). In the case k = 2, the result

is as follows.
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PROPOSITION 3.2 ([4]). jFf^(M2;Z2) contains the following non-trivial

elements.

q

Hq(M2;Z2)

1

*ι*[l]

2

z 2 z 2 *[l]

3

β 1 (z 1 )z 1 *z 2 z 3 *[l]

4

62(^1

5

ρ ι(z 2)z 2*z 3 Q3(Zl)

6

d 62(^2)
7

63(^2) Gife)

8

62(^3)

9

63(^3)

z2 z *z

REMARK 3.3. By using the results 0/[6], it is known [8] that the elements

of Proposition 3.2 generate H^(M2\ Z2) αwrf the following relations hold.

(3.5) 62(^1) = *ι**3.

Now we shall estimate the Z2 coefficient Betti numbers of M2 from

below. The result will be needed to prove Theorem A. As in the case of M2,

we obtain new elements of H^(M2; Z2) and the result is as follows.

PROPOSITION 3.7. The image of the elements of Proposition 3.2 are

elements of /fs|c(M2; Z2) all of which are non-trivial and differ to each other in

H^.(M2\ Z2) except for iι^β2(z1) = i^(z^ *z3).

PROOF. First of all it is known [4] that all the elements of Proposition 3.2

are non-trivial and differ to each other in H^(Ω2S
3; Z2) except for

(*2 **ι)*62(^1) = ( ϊ2' ίι)*(zι *za) Hence they are non-trivial and differ to each
other except for i1^Q2(zl) = ii J | c(z1*z3) by (3.5). This completes the proof of
Proposition 3.7.

Now we see the following corollary by Proposition 3.7.

COROLLARY 3.8. Put bq = dimZ2Hq(M2; Z2). Then we have

'bq>l q = Q, 1, 8,9 and
1 ^̂  /^ <^ ^ ., rj

4. Computation of H^(F2 Z2)

In this section we shall determine H^(F2;Z2). The result is as
follows. Hereafter all homology groups and cohomology groups are with Z2

coefficients.
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PROPOSITION 4.1. H^(F2) is given as follows.

= Z2 4 = 0 > 3 > 7 ' 1 0

0 otherwise.

We write (λl9 λ2) instead of A and I j for B. We define open subsets

U and V of F2 by \ c /

\tλl λ2\ - } \ίλl λ2\ - \(4.2) U = I α b 1 eF2; ̂  φ 0 [ and 7= < α 6 eF2; A2 ^ 0 k

I \ 6 c / J l \ ft c / J

Note that F2 = U\jV by (2.3). We shall prove Proposition 4.1 by using the

Mayer- Vietoris exact sequence of the pair {U, V}.

First we shall determine H^(U). The following lemma is proved by direct

computation taking x = c — bλϊ1λ2 in (2.3).

ί ί λ l λ t \ }LEMMA 4.3. U = < I a 6 I λ t ^ 0 and the following (4.4) is satisfied > .

( \ b c I )

(4.4) bfa1 λ2)
2 + (a-c)λϊlλ2-bί 0.

We define open subsets Uί and U2 of U by

(4.5)

and U2 = * ε U \\λ^λ2\\ > 1 / 3 .

We write H* for H — {0} . The following lemma is easily proved by using

Lemma 4.3.

LEMMA 4.6. (1) A homeomorphίsm fί: U^ ->H* x H x H x H* x

< 2/3} is defined by ί^]^(λl9 a, c, b(λ^λ2)
2 + (α- c)λ^λ2 - b, λ^

(2) A homeomorphism f2: U2 -^H* x H x H x H* x {^eH; \\q\\ > 1/3} is

defined by (]\-+(λl9 α, b, b(λ^λ2)
2 + (a-c)λ^λ2-b, λ^lλ2) and f2(Ul n l/2)

= H* x H x H x H* x {(?eH; 1/3 < | | ς f | | < 2/3}.

Next we shall determine the generators of H^Uj). Let σeH3(S3) be the

fundamental class. We define a map u: (S3)2 -» U^ to be the composite of the

following maps, defined by I 1 ( z l 9 z2) = (zl9 0, 0, z2, 0),
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(4.7) (S3)2-^->H* x H x H x H* x

We define oq and α2 by α x = u^.(σ ® 1) and α2 = 1̂ (1 ® σ) respectively. Then

αx and α2 generate H^U^. Similarly we define the generator A of H6(V^) by

It is easy to see that the inclusion j2: U1 n t/2 -> l/2 is a homotopy

equivalence. Hence by considering the Mayer-Vietoris exact sequence of the

pair {I7l9 £/2}, we see the following

PROPOSITION 4.8. Let m:U1->U be the inclusion. Then m^\H^(U^)

-*Hφ(U) is an isomorphism. In particular,

( Z2 q = 0, 6

Hβ(t/)= Z 2 ΘZ 2 q = l

[ 0 otherwise.

Similarly we can determine H+(V) and their generators.

PROPOSITION 4.9.

Z2 q = 0, 6
H«(K) = Z2 Θ Z2 9 = 3

0 otherwise.

Moreover, rh^ldί1,m^δί2 are generators of H3(V) and m*A is the generator of

H6(V) for the inclusion m: V± -* V and some generators α l 9 α2 and A defined in

the same way as before.

The computation of H+(U Γ\V) is easy. In fact the map h: l /nK-»H*

x H x H x H* x H* defined by the same formula as /x is a

homeomorphism. We define a map Θ: (S3)3 -> U n V to be the composite of the

following maps, defined by /2(z1? z2, z3) = (z l9 0, 0, z2, 2z3),

(4.10) (S3)3 -̂ > H* x H x H x H* x H* -̂  U n V.

We define ω1 = 0*(σ® 1 ® 1), ω2 = 0^(1 ® σ® 1), ω3 = 0^(1 ® 1 ® σ), Ω1

= 0*( l®σ®σ), QΊ = 0^(σ® 1 ® σ), Ω^ = ΘΛσ ® σ ® 1), and Ω
If \ *~S •*-* / 7 L Jf \ -̂̂  ^-r / -> J φ \

= ^# (σ ® σ ® σ) Then

PROPOSITION 4.11.

ί Z2 4 = 0,9

Hβ(l7 n V) = Z2 θ Z2 0 Z2 4 = 3, 6
I 0 otherwise.
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Moreover, ωl9 a>2 and ω3 are generators of H3(U Π V), Ωl,Ω2 and ί23 are
generators of H6(U Π V), and Ω is a generator of H9(U Π V).

LEMMA 4.12. Let s^: U n V-* U and s2: U Γ\V^V be the inclusions.
Then, we have that 5lj |c0s2%(ω1) = (ms|£α1, m#aίι), sl^®s2:tί(ω2) = (m^oί2, w*α2),
slj|t 0 s2*(ω3) = (0, w^αj, slj|t 0 ŝ ί̂ ) = (0, m^A), sls, © s2slc(Ω2) = (0, 0) am/

*ι* θ s2*(β3) = (m^, m+A).

PROOF. Let 0 X : ^ ->H* x H x H x H* x {<?eH; \\q\\ < 2/3} be the
homeomorphism, defined by (λ2, a, c, b(λ2

l λ^2 + (c — a)λ2

lλ1 — b, λ^λj, in
the same way as fί. Then we see that g± -(h\ U n PI )~1 /2(zι, z2, z3)
= (2z!Z3, 0, 0, - (l/4)z2Z3"2, (l/2)z3"

1). This implies easily Lemma 4.12,
because the inclusions V1 -^V and U Γ\Vί -> C7 n V are homology equivalences.

Now we know the map slj |s © s2s|{ : #^(£7 n V) -> H^(U) φ //^(F) is injective
in dimension 3 and surjective in dimension 6 by Lemma 4.12. Proposition 4.1
follows from the Mayer- Vietoris exact sequence of the pair {(7, V}.

5. Determination of Hχ(M2> ^2)

In this section we shall prove the homological statement of Theorem
A. The homotopical statement is proved in §6. Note that we have the
following principal bundle and double covering by Proposition 2.9.

(5.1) 50(2)— +F2

(5.2) Z2 — >F2/SO(2) - >M2.

We shall compute H#(M2) in the following manner. First we compute
H*(F2/SO(2)) by using the Serre spectral sequence of (5.1). Next we compute
H*(M2) by using the Gysin sequence of (5.2).

In order to compute //*(F2/SO(2)), we need one technical fact.

PROPOSITION 5.3. Let w2(F2) be the second Stiefel-Whίtney class of
(5.1). Then w2(/2)

2 is non-trivial.

This proposition is a direct consequence of the following

LEMMA 5.4. Let w2(F2) be the second Stiefel-Whitney class of the principal
bundle

(5.5) 50(2) — > F2 — > F2/SO(2).

Then w2(F2)
2 is non-trivial.

Lemma 5.4 is proved by using the following facts with the Serre spectral

sequence of (5.5).
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PROPOSITION 5.6 ([8], [9]). (1) #*(M2) = Z2|>, u]/(w4X) where degw
= 1 and degi; = 2.

(2) F2 is connected and simply-connected.

Now by using Propositions 4.1 and 5.3, we can prove the following

proposition by a standard argument on the Serre spectral sequence associated
to (5.1).

PROPOSITION 5.7. H*(F2/SO(2)) is given by the following table.

q
Hq

gen.

0

Z2

1

1

0

2

Z2

X

3

Z2

y

4

Z2

x2

5

Z2

xy

6

Z2

x3

7

Z2

x2y

8

0

9

Z2

x3y

Finally we shall prove the homological statement of Theorem A. Because
of Propositions 3.7 and 5.6, it suffices to show the following

PROPOSITION 5.8.

q = 0, 1, 8, 9
Hq(M2) = Z2 Θ Z2

I 0 otherwise.

PROOF. We consider the Gysin exact sequence of (5.2), that is,

Hq(M2)-^Hq(F2/SO(2))

where HΊ is the first Stiefel-Whitney class of (5.2) and p: F2/SO(2)-+M2 is the
projection of (5.2).

Step 1. Hl(M2) = Z2. In fact, we know H1(F2/SO(2)) = 0 by Propo-

sition 5.7. Hence, ff°(M2) ^*Hl(M2) is an isomorphism.

Step 2. #2(M2) = Z20Z2. In fact, H1(F2/5O(2)) = 0 and H2(F2/SO(2))
= Z2 by Proposition 5.7 and Hl(M2) = Z2 by Step 1. Hence we see H2(M2)
is whether Z2 or Z 20Z 2 . But we know b2 > 2 by Corollary 3.8. Hence

Step 2 holds. Note that this argument shows that there exists φεH2(M2)
which satisfies p*φ = x.

Step 3. Hq(M2) = 0 for q > 10. In fact, we see Hq(M2) - #10(M2) for
q > 10. As M2 is a finite dimensional manifold, we see Hq(M2) = 0 for q
>dimM2. Hence Step 3 holds.

We can easily determine Hq(M2) for 9 > q > 3 similarly as in Step 2 by

using Corollary 3.8 and Proposition 5.7 in the decreasing order of q. This will
complete the proof of Proposition 5.8. But the details are omitted.
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6. πq(M2) for 0 < q < 2

LEMMA 6.1. πq(F2) = 0 for 0 < q < 2.

PROOF. We use the notation of § 4. It is clear that U n V is a Zariski
open set of F2 such that the real codimension of the complement in F2 equals to
4. Hence general position argument shows that πq(U n V) ̂  nq(F2) for
0 < q < 2. Note that U n V is homotopically equivalent to (S3)3. Hence
Lemma 6.1 holds.

Now by using the homotopy exact sequence of the principal bundle

(6.2) 0(2)—+F2^M2,

we can prove the homotopical statement of Theorem A.
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