Geometry of minimum contrast

Shinto Eguchi
(Received September 6, 1991)

1. Introduction

Such concepts as information, entropy, divergence, energy and so on play an important role in mathematical sciences to research random phenomena. This paper tries a unified approach to measurement of these notions, in particular the geometrical structure induced by a contrast function. In the mathematical formulation a contrast function ρ on a manifold M is defined by the first requirement for distance: $\rho(x, y) \geq 0$ with equality if and only if $x=y$, see Eguchi [2] for various examples. A simple example is found in

$$
\rho_{1}(\boldsymbol{p}, \boldsymbol{q})=\sum_{i=1}^{n+1} p_{i}\left(\log p_{i}-\log q_{i}\right)
$$

on the n-simplex $\mathscr{S}=\left\{\boldsymbol{p}=\left(p_{1}, \ldots, p_{n+1}\right): \sum_{i=1}^{n+1} p_{i}=1,0<p_{i}<1\right\}$. This function is called the Kullback information in the context that \boldsymbol{p} and \boldsymbol{q} are the vectors of probabilities for $n+1$ disjoint events, see [2] for other examples and construction for ρ. Thus a contrast function is generally not assumed to be symmetric as seen in ρ_{1}.

We discuss on the manifold M instead of \mathscr{S} on the assumption of finite dimensionality because we wish to investigate contrast functions or functionals over not only \mathscr{S} but also a general space of probability measures. A new geometry on M by means of ρ is presented: a Riemannian g, a pair (∇, ∇^{*}) of torsion-free connections and a pair (D, D^{*}) of second-order differentials. The asymmetry of ρ leads to different two connections ∇ and ∇^{*} such that $1 / 2\left(\nabla+\nabla^{*}\right)$ is the Riemannian connection. Lauritzen [3] calls (M, g, T) a statistical manifold, where T is the third order tensor representing the difference between ∇ and ∇^{*}. In general such a pair $\left(\nabla, \nabla^{*}\right)$ is called conjugate in the sense that if M is curvature-free with respect to ∇, then M is also curvature-free with respect to ∇^{*}. Nagaoka and Amari [6] extended a notion of locally Euclidean space: If M is curvature-free with respect to ∇, then there exists a pair of local coordinates $\left(x^{i}, U\right)$ and $\left(x_{i}^{*}, V\right)$ such that

$$
g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x_{j}^{*}}\right)=\delta_{i}^{j} \quad \text { (Kronecker's delta) }
$$

on $U \cap V$. In Section 2 we present a further conjugacy property introduced
by new operators (D, D^{*}) related with ρ. It is shown that the two operators D and D^{*} generate tensors $B(X, Y)$ and $B^{*}(X, Y)$ of which antisymmetric parts are the Riemannian curvature tensors with respect to ∇ and ∇^{*}, respectively. Section 3 investigates the case of a Riemannian space (M, g). A contrast function $\rho_{0}(x, y)$ on M is naturally defined by the squared arc-length of a geodesic curve connecting x with y in M. We give a formula of geometric quantities $g_{0},\left(\nabla_{0}, \nabla_{0}^{*}\right)$ and $\left(D_{0}, D_{0}^{*}\right)$ by ρ_{0}. Section 4 gives the induced form of the geometry by ρ into a submanifold \tilde{M}. Let x be in $M-\tilde{M}$. We consider minimization of ρ from x to \tilde{M}. For a fixed point \tilde{x} of \tilde{M} we denote $L_{\tilde{x}}$ the space of points from which minimization of ρ into \tilde{M} are given at \tilde{x}. If for any x there exists a unique minimizer \tilde{x} of the function $\rho(x, \cdot), M$ is decomposed into a foliation $M=\cup\left\{L_{\tilde{x}}: \tilde{x} \in \tilde{M}\right\}$. We call $L_{\tilde{x}}$ a minimum contrast leaf and we investigate the second fundamental tensor of $L_{\tilde{x}}$. It is shown that the tensor of $L_{\tilde{x}}$ vanishes at \tilde{x}.

2. Geometry associated with a contrast function

Let M be a C^{∞}-manifold of dimension d. Let $\mathfrak{X}(M)$ be the space of vector fields on M and $\mathscr{F}(M)$ the space of C^{∞}-differentiable functions on M. We call $\rho: M \times M \rightarrow \mathbf{R}$ a contrast function if $\rho(x, y) \geq 0$ for all x and y in M with equality if and only if $x=y$. Eguchi [2] introduced three classes of W-type, M-type and S-type in all the contrast functions on a space of probability distributions. In this paper it is assumed that ρ is a C^{∞}-function on $M \times M$ and that

$$
\left.X_{x} X_{x} \rho(x, y)\right|_{y=x}>0
$$

for all nonzero X in $\mathfrak{X}(M)$ and $x \in M$. We will show that the assumption determines the main order of ρ (see the last paragraph in this section). Throughout this paper we use the standard notation in Kobayashi and Nomizu [3] in addition to the following notation on partial differentials:

$$
\rho\left(X_{1} \cdots X_{n} \mid Y_{1} \cdots Y_{m}\right)(z)=\left.\left(X_{1}\right)_{x} \cdots\left(X_{n}\right)_{x}\left(Y_{1}\right)_{y} \cdots\left(Y_{m}\right)_{y} \rho(x, y)\right|_{x=z, y=z}
$$

for X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} in $\mathfrak{X}(M)$. A Riemannian metric g on M is defined by

$$
g(X, Y)=-\rho(X \mid Y)
$$

In effect the bilinearity of g holds by definition. Since the contrast $\rho(x, y)$ has a minimum 0 when $x=y$, we see $\rho(Y \mid \cdot)=0$ for any $Y \in \mathfrak{X}(M)$. Moreover, applying X to $\rho(Y \mid \cdot)=0$ we have

$$
\rho(X Y \mid \cdot)=-\rho(X \mid Y)
$$

Thus from the assumption we get $g(X, X)>0$ for all $X \neq 0$ in $\mathfrak{X}(M)$. The symmetry follows from $g(X, Y)-g(Y, X)=-\rho([X, Y] \mid \cdot)=0$. Accordingly g is well-defined as a metric tensor with the expressions

$$
g(X, Y)=\rho(X Y \mid \cdot)=\rho(\cdot \mid X Y)
$$

Next we define a pair $\left(\nabla, \nabla^{*}\right)$ of covariant differentials as follows:

$$
g\left(\nabla_{X} Y, Z\right)=-\rho(X Y \mid Z) \quad \text { and } \quad g\left(\nabla_{X}^{*} Y, Z\right)=-\rho(Z \mid X Y)
$$

for all $Z \in \mathfrak{X}(M)$. Here $\nabla_{X} Y$ and $\nabla_{X}^{*} Y$ are determined by the conditions that the above quantities are satisfied for all Z. By definition the mapping $(X, Y) \rightarrow \nabla_{X} Y$ is bilinear. Noting that

$$
\begin{aligned}
g\left(\nabla_{f X} Y, Z\right) & =-\rho((f X) Y \mid Z)=g\left(f \nabla_{X} Y, Z\right) \\
g\left(\nabla_{X} f Y, Z\right) & =-\rho(X(f Y) \mid Z)=-\rho((X f) Y+f(X Y) \mid Z) \\
& =g\left((X f) Y+f \nabla_{X} Y, Z\right)
\end{aligned}
$$

for all $f \in \mathscr{F}(M)$ and all $Z \in \mathfrak{X}(M)$, we have

$$
\begin{equation*}
\nabla_{f X} Y=f \nabla_{X} Y \quad \text { and } \quad \nabla_{X} f Y=(X f) Y+f \nabla_{X} Y \tag{2.1}
\end{equation*}
$$

Similarly we can see that ∇^{*} satisfies these properties. Thus ∇ and ∇^{*} are well-defined connections and have the following relation, see Eguchi [2].

Proposition 1. Let $\bar{\nabla}=\frac{1}{2}\left(\nabla+\nabla^{*}\right)$. Then $\bar{\nabla}$ is the Riemannian connection with respect to g.

Proof. By definition,

$$
X g(Y, Z)=-\rho(X Y \mid Z)-\rho(Y \mid X Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X}^{*} Z\right) .
$$

This implies

$$
X g(Y, Z)=\frac{1}{2} X\{g(Y, Z)+g(Z, Y)\}=g\left(\bar{V}_{X} Y, Z\right)+g\left(Y, \bar{\nabla}_{X} Z\right)
$$

which shows that $\bar{\nabla}$ is metric. Next we see that

$$
g\left(\nabla_{X} Y-\nabla_{Y} X, Z\right)=-\rho(X Y-Y X \mid Z)=g([X, Y], Z)
$$

and

$$
g\left(\nabla_{X}^{*} Y-\nabla_{Y}^{*} X, Z\right)=-\rho(Z \mid X Y-Y X)=g([X, Y], Z)
$$

for all $Z \in \mathfrak{X}(M)$, which implies that both ∇ and ∇^{*} are torsion-free and hence \bar{V} is.

If ρ is symmetric, then $\bar{\nabla}=\nabla=\nabla^{*}$. This case reduces to the Riemannian geometry. A typical example of a contrast function is asymmetric as ρ_{1} defined in Introduction. Hence we pay attention to a tensor on M,

$$
T(X, Y, Z)=g\left(\nabla_{X} Y-\nabla_{X}^{*} Y, Z\right) .
$$

The tensor T is symmetric because

$$
\begin{aligned}
T(X, Y, Z)-T(Y, X, Z) & =g\left(\nabla_{X} Y-\nabla_{Y} X-\left(\nabla_{X}^{*} Y-\nabla_{Y}^{*} X\right), Z\right) \\
& =g([X, Y]-[X, Y], Z)=0
\end{aligned}
$$

and

$$
T(X, Y, Z)-T(X, Z, Y)=X\{g(Y, Z)-g(Z, Y)\}=0 .
$$

Thus the triple (M, g, T) becomes a statistical manifold according to the terminology by Lauritzen [4].

Nagaoka and Amari [6] introduced a dualistic structure on such a triple (M, g, T), see also Chapter 3 in Amari [1] for extensive discussions. The identity

$$
[X, Y] g(Z, W)=X Y g(Z, W)-Y X g(Z, W)
$$

leads to

$$
g(R(X, Y) Z, W)=g\left(Z, R^{*}(Y, X) W\right)
$$

where R and R^{*} are the Riemannian curvature tensors associated with ∇ and ∇^{*}, that is,

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

and

$$
R^{*}(X, Y)=\nabla_{X}^{*} \nabla_{Y}^{*}-\nabla_{Y}^{*} \nabla_{X}^{*}-\nabla_{[X, Y]}^{*} .
$$

Thus it is seen that M is R-free if and only if it is R^{*}-free. Further, when M is R-free and R^{*}-free, the corresponding dual affine coordinates (x^{i}) and $\left(x_{i}^{*}\right)$ to ∇ and ∇^{*}, that is

$$
\nabla_{\partial \mid \partial x^{i}} \frac{\partial}{\partial x^{j}}=0, \nabla_{\partial \mid \partial x_{i}^{*}}^{*} \frac{\partial}{\partial x_{j}^{*}}=0 \quad \text { and } \quad g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x_{j}^{*}}\right)=\delta_{i}{ }^{j}
$$

are connected with the Legendre transformation $\sum_{i} x^{i} x_{i}^{*}=\psi(x)+\varphi\left(x^{*}\right)$. Here both ψ and φ are convex-conjugate and are called the potential functions. It is shown that

$$
\begin{equation*}
g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)=\frac{\partial^{2}}{\partial x^{i} \partial x^{j}} \psi, \quad g\left(\frac{\partial}{\partial x_{i}^{*}}, \frac{\partial}{\partial x_{i}^{*}}\right)=\frac{\partial^{2}}{\partial x_{i}^{*} \partial x_{j}^{*}} \varphi . \tag{2.2}
\end{equation*}
$$

Thus the notion of a locally Euclidean space can be extended to a dualistic version.

We now define a pair (D, D^{*}) of differential operators $\mathfrak{X}(M) \times \mathfrak{X}(M) \times$ $\mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ by the conditions

$$
g\left(D_{X, Y} Z, W\right)=-\rho(X Y Z \mid W) \quad \text { and } \quad g\left(D_{X, Y}^{*} Z, W\right)=-\rho(W \mid X Y Z)
$$

which should be satisfied for all $W \in \mathfrak{X}(M)$.
Proposition 2. The operator D satisfies the following conditions:
The mapping $(X, Y, Z) \longrightarrow D_{X, Y} Z$ is trilinear.

$$
\begin{equation*}
D_{f X, Y} Z=f D_{X, Y} Z \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
D_{X, f_{Y}} Z=f D_{X, Y} Z+X f \nabla_{Y} Z \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{X, Y} f Z=f D_{X, Y} Z+X f \nabla_{Y} Z+Y f \nabla_{X} Z+X(Y f) Z \tag{4}
\end{equation*}
$$

for all $f \in \mathscr{F}(M)$.
Proof. By definition, (1) is clear. The Leipnitzs law yields that

$$
\begin{aligned}
& g\left(D_{f X, Y} Z, W\right)=-\rho(f X Y Z \mid W)=g\left(f D_{X, Y} Z, W\right) \\
& g\left(D_{X, f Y} Z, W\right)=-\rho(f X Y Z+(X f) Y Z \mid W)=g\left(f D_{X, Y} Z+X f \nabla_{Y} Z, W\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(D_{X, Y} f Z, W\right) & =-\rho(f X Y Z+(X f) Y Z+(Y f) X Z+X(Y f) Z \mid W) \\
& =g\left(f D_{X, Y} Z+X f \nabla_{Y} Z+Y f \nabla_{X} Z+X(Y f) Z, W\right)
\end{aligned}
$$

for all $W \in \mathfrak{X}(M)$ and $f \in \mathfrak{F}(M)$, which conclude (2), (3) and (4).
Take arbitrarily two local coordinate systems $\left(\lambda, U,\left(y^{i}\right)\right)$, and ($\mu, V,\left(z^{a}\right)$) with $U \cap V \neq \phi$. Then $D_{\partial / \partial y^{i}, \partial / \partial y^{j}} \partial / \partial y^{k}$ defines the components of D in the coordinates $\left(\lambda, U,\left(y^{i}\right)\right)$. The natural bases $\left\{\partial / \partial y^{i}\right\}$ and $\left\{\partial / \partial z^{a}\right\}$ on $U \cap V$ are related by

$$
\frac{\partial}{\partial z^{a}}=\frac{\partial y^{i}}{\partial z^{a}} \frac{\partial}{\partial y^{i}}
$$

from which it follows that

$$
D_{\frac{\partial}{\partial z^{a}}, \frac{\partial}{\partial z^{b}}} \frac{\partial}{\partial z^{c}}=\frac{\partial y^{k}}{\partial z^{c}} D_{\frac{\partial}{\partial z^{a}}, \frac{\partial}{\partial z^{b}}} \frac{\partial}{\partial y^{k}}+\frac{\partial^{2} y^{j}}{\partial z^{a} \partial z^{c}} \nabla_{\frac{\partial}{\partial z^{b}}} \frac{\partial}{\partial y^{j}}
$$

$$
\begin{aligned}
& +\frac{\partial^{2} y^{j}}{\partial z^{b} \partial z^{c}} \nabla_{\frac{\partial}{\partial z^{a}}} \frac{\partial}{\partial y^{j}}+\frac{\partial^{3} y^{k}}{\partial z^{a} \partial z^{b} \partial z^{c}} \frac{\partial}{\partial y^{k}} \quad \text { (from (1) and (4)) } \\
= & \frac{\partial y^{i}}{\partial z^{a}} \frac{\partial y^{j}}{\partial z^{b}} \frac{\partial y^{k}}{\partial z^{c}} D_{\frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial y^{j}}} \frac{\partial}{\partial y^{k}}+\frac{\partial^{2} y^{j}}{\partial z^{a} \partial z^{b}} \frac{\partial y^{k}}{\partial z^{c}} \nabla_{\frac{\partial}{\partial y^{\prime}}} \frac{\partial}{\partial y^{k}} \\
& +\frac{\partial^{2} y^{j}}{\partial z^{a} \partial z^{c}} \frac{\partial y^{k}}{\partial z^{b}} \nabla_{\frac{\partial}{\partial y^{k}}} \frac{\partial}{\partial y^{j}}+\frac{\partial^{2} y^{j}}{\partial z^{b} \partial z^{c}} \frac{\partial y^{k}}{\partial z^{a}} \nabla_{\frac{\partial}{\partial y^{k}}} \frac{\partial}{\partial y^{j}}+\frac{\partial^{3} y^{k}}{\partial z^{a} \partial z^{b} \partial z^{c}} \frac{\partial}{\partial y^{k}}
\end{aligned}
$$

(from (1), (2) and (3)), where $\left\{\partial y^{i} / \partial z^{a}\right\}$ denotes the Jacobi matrix of $\lambda^{-1}(\mu(\cdot))$. Here and hereafter the Einstein convention is used for indices i, j and k. Thus we observe that the set of the conditions (1)-(4) determines the transformation rule of components of D for a change of variables. By a similar argument we see that D^{*} enjoys also the conditions:
(1) \quad The mapping $(X, Y, Z) \longrightarrow D_{X, Y}^{*} Z$ is trilinear.

$$
\begin{equation*}
D_{f X, Y}^{*} Z=f D_{X, Y}^{*} Z \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
D_{X, f Y}^{*} Z=f D_{X, Y}^{*} Z+X f \nabla_{Y}^{*} Z \quad \text { and } \tag{3}
\end{equation*}
$$

for all $f \in \mathscr{F}(M)$.
We now define

$$
B(X, Y)=D_{X, Y}-\nabla_{X} \nabla_{Y} \quad \text { and } \quad B^{*}(X, Y)=D_{X, Y}^{*}-\nabla_{X}^{*} \nabla_{Y}^{*}
$$

Then we have that

$$
B(f X, Y) Z=B(X, f Y) Z=B(X, Y) f Z=f B(X, Y) Z
$$

for all $f \in \mathscr{F}(M)$ since $\nabla_{X} \nabla_{Y}$ also satisfies the conditions (1)-(4). Thus both $B(X, Y)$ and $B^{*}(X, Y)$ are $\mathscr{F}(M)$-linear and are a kind of curvature-like tensors associated with D and D^{*}. We now show that the antisymmetric part of B is nothing but the Riemannian curvature tensor.

Proposition 3. $R(X, Y)=B(Y, X)-B(X, Y)$.
Proof. The result follows from $D_{X, Y} Z-D_{Y, X} Z=\nabla_{[X, Y]} Z$. In fact,

$$
g\left(D_{X, Y} Z-D_{Y, X} Z, W\right)=-\rho([X, Y] Z \mid W)=g\left(\nabla_{[X, Y]} Z, W\right)
$$

for all $W \in \mathfrak{X}(M)$.
By a similar argument, $R^{*}(X, Y)=B^{*}(Y, X)-B^{*}(X, Y)$. Proposition 3 directly implies Bianchi's first and second identities:

$$
\mathfrak{S}(X, Y) Z=0 \quad \text { and } \quad \Im\left(\nabla_{Z} R\right)(X, Y)=0
$$

where \mathfrak{G} denotes the cyclic sum on X, Y and Z. The symmetry of B is equivalent to R-freeness. Further, the following identities hold.

Proposition 4. (1) $B(X, Y) Z=B(X, Z) Y$.

$$
\begin{align*}
& g(B(X, Y) Z, W)=g(B(W, Y) Z, X) \tag{2}\\
& g\left(B^{*}(Y, X) W, Z\right)=g(B(X, Y) Z, W) \tag{3}
\end{align*}
$$

Proof. We get

$$
\begin{aligned}
& B(X, Y) Z=D_{X, Y} Z-\nabla_{X} \nabla_{Y} Z \\
= & D_{X, Y} Y+\nabla_{X}[Y, Z]-\nabla_{X}\left(\nabla_{Z} Y+[Y, Z]\right)=B(X, Z) Y
\end{aligned}
$$

since

$$
D_{X, Y} Z=D_{X, Z} Y+\nabla_{X}[Y, Z]
$$

Hence we obtain (1). We next show (2). By applying X to the definition

$$
g\left(\nabla_{Y} Z, W\right)=-\rho(Y Z \mid W)
$$

we get

$$
g\left(\nabla_{X} \nabla_{Y} Z, W\right)+g\left(\nabla_{Y} Z, \nabla_{X}^{*} W\right)=-\rho(X Y Z \mid W)-\rho(Y Z \mid X W)
$$

or

$$
\begin{equation*}
g(B(X, Y) Z, W)=g\left(\nabla_{Y} Z, \nabla_{X}^{*} W\right)+\rho(Y Z \mid X W) \tag{2.3}
\end{equation*}
$$

From this and the torsion-freeness of ∇^{*} it follows that

$$
\begin{aligned}
g(B(W, Y) Z, X) & =g\left(\nabla_{Y} Z,[W, X]+\nabla_{X}^{*} W\right)+\rho(Y Z \mid W X) \\
& =g\left(\nabla_{Y} Z, \nabla_{X}^{*} W\right)+\rho(Y Z \mid X W)=g(B(X, Y) Z, W),
\end{aligned}
$$

which concludes (2). The identity

$$
Y\left[g\left(Z, \nabla_{X}^{*} W\right)+\rho(Z \mid X W)\right]=0
$$

leads to

$$
\begin{equation*}
g\left(B^{*}(Y, X) W, Z\right)=g\left(\nabla_{Y} Z, \nabla_{X}^{*} W\right)+\rho(Y Z \mid X W) \tag{2.4}
\end{equation*}
$$

which concludes (3) because of (2.3).

Since it follows from (3) in Proposition 3 that

$$
g\left(\left\{B(X, Y)-B^{*}(X, Y)\right\} Z, W\right)=g(B(X, Y) Z, W)-g(B(Y, X) W, Z)
$$

we obtain that $B(X, Y)=B^{*}(X, Y)$ if and only if

$$
g(B(X, Y) Z, W)=g(B(Y, X) W, Z)
$$

for all Z and W in $\mathfrak{X}(M)$.
From this we get a kind of symmetry associated with B.
Corollary 1. The forth-order tensor $g(B(X, Y) Z, W)$ or $g\left(B^{*}(X, Y) Z, W\right)$ is symmetric if and only if B is equal to B^{*} and R vanishes.

Proof. The result follows from the above statement and Proposition 4 (1) and (2).

Now we obtain that the contrast function generates a further dualistic structure over M.

Theorem 1. The following statements are equivalent:
(1) M is B-free. (2) M is B^{*}-free.
(3) There exists a system of coordinates (x^{i}) satisfying

$$
\nabla_{\partial i \partial x^{i}} \frac{\partial}{\partial x^{j}}=0 \quad(1 \leq i, j \leq d)
$$

and

$$
\begin{equation*}
D_{\partial\left|\partial x^{i}, \partial\right| \partial x j} \frac{\partial}{\partial x^{k}}=0 \quad(1 \leq i, j, k \leq d) . \tag{2.5}
\end{equation*}
$$

(4) There exists a system of coordinates $\left(x_{i}^{*}\right)$ satisfying

$$
\nabla_{\partial \mid \partial x_{i}^{*}}^{*} \frac{\partial}{\partial x_{j}^{*}}=0 \quad(1 \leq i, j \leq d)
$$

and

$$
\begin{equation*}
D_{\partial\left|\partial x_{i}^{*}, \partial\right| \partial x_{j}^{*}}^{*} \frac{\partial}{\partial x_{k}^{*}}=0 \quad(1 \leq i, j, k \leq d) . \tag{2.6}
\end{equation*}
$$

Proof. If follows from (3) in Proposition 4 that (1) is equivalent to (2). Next we assume (1). Then M is R-free on account of Proposition 3. Namely M has ∇-affine coordinates (x^{i}), which are seen from (1) that

$$
D_{\partial / \partial x^{i}, \partial / \partial x^{j}} \frac{\partial}{\partial x^{k}}=0
$$

This implies (3). Conversely if (3) holds, then

$$
B\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) \frac{\partial}{\partial x^{k}}=0
$$

with respect to the coordinates $\left(x^{i}\right)$, which leads M to be B-free since B is a tensor. Similarly (2) is equivalent to (4).

In the statements (3) and (4), (2.5) and (2.6) can be exchanged for

$$
\rho\left(\left.\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}} \right\rvert\, \frac{\partial}{\partial x^{k}} \frac{\partial}{\partial x^{1}}\right)=0 \quad \text { and } \quad \rho\left(\left.\frac{\partial}{\partial x_{i}^{*}} \frac{\partial}{\partial x_{j}^{*}} \right\rvert\, \frac{\partial}{\partial x_{k}^{*}} \frac{\partial}{\partial x_{l}^{*}}\right)=0,
$$

respectively, on account of (2.3). We assume that M is B-free in this paragraph. From (2.2) it is satisfied that

$$
\begin{equation*}
g\left(\frac{\partial}{\partial x^{i}}, \nabla_{\frac{\partial}{\partial x^{j}}}^{*} \frac{\partial}{\partial x^{k}}\right)=\frac{\partial^{3}}{\partial x^{i} \partial x^{j} \partial x^{k}} \psi \tag{2.7}
\end{equation*}
$$

and

$$
g\left(\nabla_{\frac{\partial}{\partial x_{i}^{*}}} \frac{\partial}{\partial x_{j}^{*}}, \frac{\partial}{\partial x_{k}^{*}}\right)=\frac{\partial^{3}}{\partial x_{i}^{*} \partial x_{j}^{*} \partial x_{k}^{*}} \varphi .
$$

Further, then

$$
\begin{equation*}
g\left(\frac{\partial}{\partial x^{i}}, D_{\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}}^{*} \frac{\partial}{\partial x^{l}}\right)=\frac{\partial^{4}}{\partial x^{i} \partial x^{j} \partial x^{k} \partial x^{l}} \psi \tag{2.8}
\end{equation*}
$$

since

$$
\frac{\partial}{\partial x^{j}}\left[g\left(\frac{\partial}{\partial x^{i}}, \nabla_{\frac{\partial}{\partial x^{k}}}^{*} \frac{\partial}{\partial x^{l}}\right)-\frac{\partial^{3}}{\partial x^{i} \partial x^{k} \partial x^{l}} \psi\right]=0
$$

yields

$$
g\left(\nabla_{\frac{\partial}{\partial x^{j}}} \frac{\partial}{\partial x^{i}}, \nabla_{\frac{\partial}{\partial x^{k}}}^{*} \frac{\partial}{\partial x^{l}}\right)+g\left(\frac{\partial}{\partial x^{i}}, \nabla_{\frac{\partial}{\partial x^{j}}}^{*} \nabla_{\frac{\partial}{\partial x^{k}}}^{*} \frac{\partial}{\partial x^{l}}\right)=\frac{\partial^{4}}{\partial x^{i} \partial x^{j} \partial x^{k} \partial x^{l}} \psi
$$

Similarly we obtain that

$$
g\left(D_{\frac{\partial}{\partial x_{i}^{*}} \frac{\partial}{\partial x_{j}^{*}}} \frac{\partial}{\partial x_{j}^{*}}, \frac{\partial}{\partial x_{l}^{*}}\right)=\frac{\partial^{4}}{\partial x_{i}^{*} \partial x_{j}^{*} \partial x_{k}^{*} \partial x_{l}^{*}} \varphi .
$$

If M is R-free, then the divergence function can be introduced as

$$
d\left(x_{1}, x_{2}^{*}\right)=\psi\left(x_{1}\right)+\varphi\left(x_{2}^{*}\right)-\sum_{i=1}^{d} x_{1}^{i} x_{2 i}^{*},
$$

where ψ and φ are potential functions with respect to $\left(x^{i}\right)$ and (x_{i}^{*}), respectively. Thus d is a contrast function, see [1]. The contrast function ρ is related with d as follows.

Corollary 2. Assume that M is B-free. Then

$$
\rho\left(x_{1}, x_{2}^{*}\right)=d\left(x_{1}, x_{2}^{*}\right)
$$

by neglecting $O\left(\left\|x_{1}-x_{2}\right\|^{5}\right)$.
Proof. We write $\delta\left(x_{1}, x_{2}^{*}\right)=\rho\left(x_{1}, x_{2}^{*}\right)-d\left(x_{1}, x_{2}^{*}\right)$. It suffices to show that the differential coefficients of $\delta\left(x_{1}, x_{2}^{*}\right)$ in x_{1} vanish at $x_{1}=x_{2}$ up to the forth-order by Taylor's theorem. By definition we have the following identities: $\rho(X Y \mid \cdot)=g(X, Y)$,

$$
\rho(X Y Z \mid \cdot)=g\left(\nabla_{Y} Z, X\right)+g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X}^{*} Z\right)
$$

and

$$
\begin{aligned}
& \rho(X Y Z \mid \cdot)=g\left(D_{X, Y} Z, W\right)+g\left(\nabla_{X} \nabla_{Z} W, Y\right)+g\left(\nabla_{Z} W, \nabla_{X}^{*} Y\right) \\
& \quad+g\left(\nabla_{X} \nabla_{Y} Z, W\right)+g\left(\nabla_{Y} Z, \nabla_{X}^{*} W\right)+g\left(\nabla_{X} Z, \nabla_{Y}^{*} W\right)+g\left(Z, \nabla_{X}^{*} \nabla_{Y}^{*} W\right) .
\end{aligned}
$$

Hence we have

$$
\rho\left(\left.\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{k}} \right\rvert\, \cdot\right)=\frac{\partial^{3}}{\partial x^{i} \partial x^{j} \partial x^{k}} \psi
$$

and

$$
\rho\left(\left.\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{k}} \frac{\partial}{\partial x^{l}} \right\rvert\, \cdot\right)=\frac{\partial^{4}}{\partial x^{i} \partial x^{j} \partial x^{k} \partial x^{l}} \psi
$$

from Theorem 1, (2.7) and (2.8). Consequently the function δ is of order $O\left(\left\|x_{1}-x_{2}\right\|^{5}\right)$.

We discuss a deformation of a contrast function. Let a function $\Phi:[0, \infty) \rightarrow \mathbf{R}$ be monotone increasing such that $\Phi(0)=0$ and $\Phi^{\prime}(0)=1$. As typical examples we can mention

$$
\Phi_{\alpha}(t)=\frac{1}{\alpha} \log (1+\alpha t), \quad \Psi_{\alpha}(t)=\frac{1}{\alpha} \tan (\alpha t)
$$

or their inverse transformations, where α is a positive constant. Then $\rho_{1}(x, y)=\Phi(\rho(x, y))$ is also a contrast function. The geometric quantities $\left(g, \nabla, \nabla^{*}, D, D^{*}\right)$ and ($\left.g_{1}, \nabla_{1}, \nabla_{1}^{*}, D_{1}, D_{1}^{*}\right)$ associated with ρ and ρ_{1} are connected with

$$
\begin{gather*}
\left(g_{1}, \nabla_{1}, \nabla_{1}^{*}\right)=\left(g, \nabla, \nabla^{*}\right) \tag{2.9}\\
\left(D_{1}\right)_{X, Y} Z=D_{X, Y} Z+\Phi^{\prime \prime}(0) \Im_{g(X, Y) Z} \tag{2.10}
\end{gather*}
$$

and

$$
\left(D_{1}^{*}\right)_{X, Y} Z=D_{X, Y}^{*} Z+\Phi^{\prime \prime}(0) \Im_{g}(X, Y) Z
$$

In particular, the deformation of ρ keeps the equality of B with B^{*}.
Let \mathscr{S} be a simplex of dimension n. As an alternative contrast function on \mathscr{S} to ρ_{1} defined in Introduction, we give

$$
\rho_{0}(p, q)=4\left(1-\sum_{i=1}^{n+1} \sqrt{p_{i} q_{i}}\right)
$$

for \boldsymbol{p} and \boldsymbol{q} in \mathscr{S}. It follows from a straightforward calculus that ρ_{0} and ρ_{1} generate a common metric tensor, say g_{0}. By taking $\Phi(t)=\left(\cos ^{-1}(1-t / 4)\right)^{2}$, we know that $\Phi\left(\rho_{0}(\boldsymbol{p}, \boldsymbol{q})\right)$ is the squared arc-length of the geodesic curve connecting \boldsymbol{p} and \boldsymbol{q} with respect to g_{0}.

Let ρ be a contrast function on M such that ρ is C^{∞}-differentiable and generates a nontrivial metric tensor g. For every $\delta>0, \rho^{(\delta)}(x, y)=\{\rho(x, y)\}^{\delta}$ is also a contrast function by definition. However if $\delta<1$, then $\rho^{(\delta)}(x, y)$ is not differentiable at $x=y$. Alternatively if $\delta>1$, then the metric tensor by $\rho^{(\delta)}$ is reduced to a zero tensor. Thus we see that if ρ yields a nontrivial metric tensor g, then any power change of ρ becomes nonsense. In effect $\rho(x, y)$ has the same order as the squared arc-length of the geodesic curve connecting x with y with respect to g, which will be shown in the following section.

3. Riemannian case

Let (M, g) be a Riemannian manifold and $\bar{\nabla}$ the Riemannian connection with respect to g. We denote the geodesic curve connecting x with y by $C=\left\{x_{t}: 1 \leq t \leq 1\right\}$, where $x_{0}=x$ and $x_{1}=y$. Define a contrast function by

$$
\rho_{0}(x, y)=\frac{1}{2}\left(\int_{C} \sqrt{g_{x_{t}}\left(\dot{x}_{t}, \dot{x}_{t}\right)} d t\right)^{2}
$$

where $\dot{x}_{t}=d x_{t} / d t$. Since the tangent vectors \dot{x}_{t} 's are parallel to each other along the curve C,

$$
\rho_{0}(x, y)=\frac{1}{2} g_{x_{t}}\left(\dot{x}_{t}, \dot{x}_{t}\right)
$$

for any $t \in[0,1]$, in particular $\rho_{0}(x, y)=g_{x}\left(\dot{x}_{0}, \dot{x}_{0}\right) / 2$. We now investigate what geometry the function ρ_{0} generates. Let ($g_{0}, \nabla_{0}, \nabla_{0}^{*}, D_{0}, D_{0}^{*}$) be the geometric quantities associated with ρ_{0} according to the formulation discussed in Section 2. The symmetry of ρ_{0} yields $\nabla_{0}=\nabla_{0}^{*}$ and $D_{0}=D_{0}^{*}$ on M. Further, it will be seen that $g_{0}=g$ and $\nabla_{0}=\nabla_{0}^{*}=\bar{V}$, where $\bar{\nabla}$ is the original Riemannian connection.

Theorem 2. $g=g_{0}, \nabla_{0}=\nabla_{0}^{*}=\bar{\nabla}$ and

$$
\left(D_{0}\right)_{X, Y} Z=\bar{V}_{X} \bar{\nabla}_{Y} Z-\frac{1}{3}\{\bar{R}(X, Y) Z+\bar{R}(X, Z) Y\},
$$

where \bar{R} denotes the Riemannian curvature with respect to $\bar{\nabla}$.
Proof. For a sufficiently small $\rho_{0}(x, y)$ there exists a local chart $\left(x^{1}, \ldots, x^{d}, U, \varphi\right)$ of M such that $x \in U$ and $y \in U$. Then the curve $x_{t}=\left(x^{1}(t), \ldots\right.$, $\left.x^{d}(t)\right)$ satisfies

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} x^{i}(t)+\sum_{j, k} \Gamma_{j k}^{i}(x(t)) \frac{d}{d t} x^{j}(t) \frac{d}{d t} x^{k}(t)=0 \tag{3.1}
\end{equation*}
$$

with $\left(x^{i}(0)\right)=x$ and $\left(x^{i}(1)\right)=y$, where $\Gamma_{j k}^{i}$'s denote the Christoffel symbols.
We now express the vector $\left(d x^{i}(0) / d t\right)$ as a polynomial of $y-x$ up to the third order. From (3.1),

$$
\begin{aligned}
\frac{d^{3}}{d t^{3}} x^{i}(t)= & \sum_{j, k, l}\left(-\frac{\partial}{\partial x^{l}} \Gamma_{j k}^{i}(x(t))+2 \sum_{\alpha} \Gamma_{j \alpha}^{i}(x(t)) \Gamma_{k l}^{\alpha}(x(t))\right) \\
& \times \frac{d}{d t} x^{j}(t) \frac{d}{d t} x^{k}(t) \frac{d}{d t} x^{l}(t) .
\end{aligned}
$$

A Taylor expansion leads to

$$
\begin{aligned}
x^{i}(t)= & x^{i}+\frac{d}{d t} x^{i}(0) t+\frac{d^{2}}{d t^{2}} x^{i}(0) \frac{t^{2}}{2}+\frac{d^{3}}{d t^{3}} x^{i}(0) \frac{t^{3}}{6}+O\left(t^{4}\right) \\
= & x^{i}+t \Delta^{i}-\frac{t^{2}}{2} \sum_{j, k} \Gamma_{j k}^{i}(x) \Delta^{j} \Delta^{k} \\
& +\frac{t^{3}}{6} \sum_{j, k, l}\left(-\frac{\partial}{\partial x^{l}} \Gamma_{j k}^{i}(x)+2 \sum_{\alpha} \Gamma_{j \alpha}^{i}(x) \Gamma_{k l}^{\alpha}(x)\right) \Delta^{j} \Delta^{k} \Delta^{l}+O\left(t^{4}\right)
\end{aligned}
$$

where $\Delta^{i}=d x^{i}(0) / d t$. From $\left(x^{i}(1)\right)=y$, it follows that

$$
\begin{align*}
\Delta^{i}= & \left(y^{i}-x^{i}\right)+\frac{1}{2} \sum_{j, k} \Gamma_{j k}^{i}(x)\left(y^{j}-x^{j}\right)\left(y^{k}-x^{k}\right) \\
& +\frac{1}{6} \sum_{j, k, l}\left(\frac{\partial}{\partial x^{l}} \Gamma_{j k}^{i}(x)+\sum_{\alpha} \Gamma_{j \alpha}^{i}(x) \Gamma_{k l}^{\alpha}(x)\right)\left(y^{j}-x^{j}\right)\left(y^{k}-x^{k}\right)\left(y^{l}-x^{l}\right) \\
& +O\left(\|y-x\|^{4}\right) . \tag{3.2}
\end{align*}
$$

Let X, Y, Z and W be vector fields on M. Define a mapping $(X, Y) \rightarrow X \cdot Y$ by

$$
X \cdot Y=\sum_{i, j} X^{i} \frac{\partial Y^{j}}{\partial x^{i}} \frac{\partial}{\partial x^{j}}
$$

for $X=\sum X^{i} \partial / \partial x^{i}$ and $Y=\sum Y^{j} \partial / \partial x^{j}$. By definition

$$
\bar{\nabla}_{X} Y=X \cdot Y+\Gamma(X, Y)
$$

see Loos [5]. Further,

$$
\begin{aligned}
\bar{\nabla}_{X} \bar{\nabla}_{Y} Z= & X \cdot(Y \cdot \Gamma)+(X \cdot \Gamma)(Y, Z)+\Gamma(\Gamma(Y, Z), X) \\
& +\Gamma(X \cdot Y, Z)+\Gamma(X \cdot Z, Y)+\Gamma(Y \cdot Z, X)
\end{aligned}
$$

and the curvature tensor with respect to \bar{V} is expressed as

$$
\begin{align*}
\bar{R}(X, Y) Z= & (X \cdot \Gamma)(Y, Z)-(Y \cdot \Gamma)(X, Z) \\
& +\Gamma(\Gamma(Y, Z), X)-\Gamma(\Gamma(X, Z), Y) . \tag{3.3}
\end{align*}
$$

Note that in the right-hand sides of the above equations each term depends on the local coordinate system, while all the left-hand side is coordinatefree. Writing $U=\sum_{i}\left(y^{i}-x^{i}\right)\left(\partial / \partial x^{i}\right)_{x}$, we can express \dot{x}_{0} as

$$
\begin{equation*}
\dot{x}_{0}=U+\frac{1}{2} \Gamma_{X}(U, U)+\frac{1}{6}\left\{\left(U \cdot \Gamma_{X}\right)(U, U)+\Gamma_{X}\left(\Gamma_{X}(U, U), U\right)\right\}+O\left(\|U\|^{4}\right) \tag{3.4}
\end{equation*}
$$

by inverting the equation (3.2). The following relations are deduced from (3.4):

$$
\begin{gathered}
\left(X_{y} \cdot \dot{x}_{0}\right)_{*}=X,\left(X_{X} \cdot \dot{x}_{0}\right)_{*}=-X,\left(\nabla_{X_{x}} \dot{x}_{0}\right)_{*}=-X, \\
\left(\bar{V}_{X_{x}}\left(Y_{y} \cdot \dot{x}_{0}\right)\right)_{*}=0,\left(X_{y} \cdot\left(Y_{y} \cdot \dot{x}_{0}\right)\right)_{*}=\bar{V}_{X} Y, \\
\left(X_{y} \cdot\left(Y_{y} \cdot\left(Z_{y} \cdot \dot{x}_{0}\right)\right)\right)_{*}=X \cdot(Y \cdot Z)+\Gamma(X \cdot Y, Z)+\Gamma(X \cdot Z, Y)+\Gamma(Y \cdot Z, X), \\
+\frac{1}{3} \subseteq\{(X \cdot \Gamma)(Y, Z)+\Gamma(\Gamma(Y, Z), X)\}
\end{gathered}
$$

and

$$
\begin{aligned}
\left(\bar{\nabla}_{W_{x}} Y_{y} \cdot\left(Z_{y} \cdot \dot{x}_{0}\right)\right)_{*}= & (W \cdot \Gamma)(Y, Z)+\Gamma(\Gamma(Y, Z), W) \\
& \left.-\frac{1}{3} \Im\{W \cdot \Gamma)(Y, Z)+\Gamma(\Gamma(Y, Z), W)\right\},
\end{aligned}
$$

where \mathfrak{S} denotes cyclic sum and

$$
\begin{aligned}
& \left(\left(X_{1}\right)_{x} \cdots\left(X_{n}\right)_{x}\left(Y_{1}\right)_{y} \cdots\left(Y_{m}\right)_{y} F(x, y)\right)_{*} \\
= & \left(\left(X_{1}\right)_{x} \cdots\left(X_{n}\right)_{x}\left(Y_{1}\right)_{y} \cdots\left(Y_{m}\right)_{y} F(x, y)\right)_{x=z, y=z} .
\end{aligned}
$$

Specifically we get

$$
\left(X_{y} \cdot Y_{y} \cdot Z_{y} \cdot \dot{x}_{o}\right)_{*}=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\frac{1}{3}\{\bar{R}(X, Y) Z+\bar{R}(X, Z) Y\}
$$

and

$$
\left(\bar{\nabla}_{W_{x}} Y_{y} \cdot Z_{y} \cdot \dot{x}_{0}\right)_{*}=\frac{1}{3}\{\bar{R}(W, Y) Z+\bar{R}(W, Z) Y\}
$$

on account of (3.3).
On the basis of the relations established above, we get

$$
g_{0}(X, Y)=-\rho_{0}(X \mid Y)=-\left(g\left(\dot{x}_{0}, \nabla_{X_{x}} Y_{y} \cdot \dot{x}_{0}\right)+g\left(\nabla_{X_{x}} \dot{x}_{0}, Y_{y} \cdot \dot{x}_{0}\right)\right)_{*}=g(X, Y)
$$

and

$$
\begin{aligned}
g_{0}\left(Z,\left(\nabla_{0}^{*}\right)_{X} Y\right)= & -\rho_{0}(Z \mid X Y)=-\left(g\left(\dot{x}_{0}, \bar{\nabla}_{Z_{x}} X_{y} \cdot Y_{y} \cdot \dot{x}_{0}\right)+g\left(\bar{\nabla}_{Z_{x}} \dot{x}_{0}, X_{y} \cdot Y_{y} \cdot \dot{x}_{0}\right)\right. \\
& \left.+g\left(Y_{y} \cdot \dot{x}_{0}, \bar{\nabla}_{Z_{x}} X_{y} \cdot \dot{x}_{0}\right)+g\left(\bar{\nabla}_{Z_{x}} Y_{y} \cdot \dot{x}_{0}, X_{y} \cdot \dot{x}_{0}\right)\right)_{*} \\
= & g\left(Z, \bar{\nabla}_{X} Y\right)
\end{aligned}
$$

by the use of the expression $\rho_{0}(x, y)=g_{x}\left(\dot{x}_{0}, \dot{x}_{0}\right) / 2$. In this way the metric g_{0} is g and both ∇_{0} and ∇_{0}^{*} are equal to $\bar{\nabla}$. Next we get

$$
\begin{aligned}
& \left.g\left(W, D^{*}\right)_{X, Y} Z\right)=-\rho_{0}(W \mid X Y Z) \\
= & -\left(g\left(\dot{x}_{0}, \bar{\nabla}_{W_{x}} X_{y} \cdot Y_{y} \cdot Z_{y} \cdot \dot{x}_{0}\right)+g\left(\bar{\nabla}_{W_{x}} \dot{x}_{0}, X_{y} \cdot Y_{y} \cdot Z_{y} \cdot \dot{x}_{0}\right)\right. \\
+ & g\left(Z_{y} \cdot \dot{x}_{0}, \bar{\nabla}_{W_{x}} X_{y} \cdot Y_{y} \cdot \dot{x}_{0}\right)+g\left(\bar{V}_{W_{x}} Z_{y} \cdot \dot{x}_{0}, X_{y} \cdot Y_{y} \cdot \dot{x}_{0}\right) \\
+ & g\left(Y_{y} \cdot \dot{x}_{0}, \bar{\nabla}_{W_{x}} X_{y} \cdot Z_{y} \cdot \dot{x}_{0}\right)+g\left(\bar{V}_{W_{x}} Y_{y} \cdot \dot{x}_{0}, X_{y} \cdot Z_{y} \cdot \dot{x}_{0}\right) \\
+ & \left.g\left(X_{y} \cdot \dot{x}_{0}, \bar{\nabla}_{W_{x}} Y_{y} \cdot Z_{y} \cdot \dot{x}_{0}\right)+g\left(\bar{\nabla}_{W_{x}} X_{y} \cdot \dot{x}_{0}, Y_{y} \cdot Z_{y} \cdot \dot{x}_{0}\right)\right)_{*} \\
= & g\left(W, \bar{\nabla}_{X} \bar{\nabla}_{Y} Z\right)-\frac{1}{3} g(W, \bar{R}(X, Y) Z+\bar{R}(X, Z) Y)+\frac{1}{3} g(X, \bar{R}(W, Y) Z \\
& +\bar{R}(W, Z) Y)+\frac{1}{3} g(Y, \bar{R}(W, X) Z+\bar{R}(W, Z) X)+\frac{1}{3} g(Z, \bar{R}(W, X) Y \\
& +\bar{R}(W, Y) X) .
\end{aligned}
$$

Consequently we obtain

$$
\left(D_{0}\right)_{X, Y} Z=\left(D_{0}^{*}\right)_{X, Y} Z=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\frac{1}{3}\{\bar{R}(X, Y) Z+\bar{R}(X, Z) Y\}
$$

noting $\quad g(W, \bar{R}(X, Y) Z)+g(\bar{R}(X, Y) W, Z)=0 \quad$ and $\quad \bar{R}(X, Y) Z+\bar{R}(Y, Z) X$ $+R(Z, X) Y=0$.

Let $\bar{B}(X, Y)=\left(D_{0}\right)_{X, Y}-\nabla_{X} \nabla_{Y}$. Then the Bianchi's first identity leads to

$$
\{\bar{B}(X, Y)+\bar{B}(Y, X)\} Z=-\bar{B}(Z, X) Y
$$

Further it is easily seen from Proposition 3 that M is \bar{R}-free if and only if M is also \bar{B}-free.

4. Minimum contrast leaf

As discussed in Section 2, a contrast function ρ on M generates a metric tensor g and differential operators ∇, ∇^{*}, D and D^{*}, where B-conjugacy is established in addition to R-conjugacy. Let \tilde{M} be a k-dimensional submanifold of M with the immersion f of \tilde{M} in M. By restricting the domain of ρ as $\tilde{\rho}=\left.\rho\right|_{\tilde{\mathcal{M}} \times \tilde{M}}$, the quantities $\left(g, \nabla, \nabla, D, D^{*}\right)$ induce $\left(\tilde{g}, \tilde{\nabla}, \tilde{V}, \tilde{D}, \tilde{D}^{*}\right)$ over \tilde{M}. For example,

$$
\tilde{g}(U, V)=-\tilde{\rho}(U \mid V)
$$

for U and V of $\mathfrak{X}(\tilde{M})$. Of course by definition $\tilde{g}(U, V)=g\left(f_{*} U, f_{*} V\right)$. Henceforth we identify U with $f_{*} U$, so that $\tilde{g}(U, V)=g(U, V)$. Let N_{f} be the normal bundle of \tilde{M} and $\operatorname{Sec}\left(N_{f}\right)$ the space of sections of \tilde{M} into N_{f}, or the space of normal vector fields. We define a mapping $\alpha: \mathfrak{X}(\tilde{M}) \times \mathfrak{X}(\tilde{M})$ $\rightarrow \operatorname{Sec}\left(N_{f}\right)$ by

$$
g(\alpha(U, V), \xi)=-\rho(U V \mid \xi)
$$

for all ξ of $\operatorname{Sec}\left(N_{f}\right)$. Then α is the second-fundamental tensor with respect to ∇ because α is bilinear and it is decomposed that

$$
\nabla_{U} V=\tilde{V}_{U} V+\alpha(U, V)
$$

Alternatively with respect to ∇^{*}, the tensor α^{*} is similarly defined and hence

$$
\nabla_{U}^{*} V=\tilde{V}_{U}^{*} V+\alpha^{*}(U, V)
$$

Next for a fixed ξ of $\operatorname{Sec}\left(N_{f}\right)$ the shape operator A_{ξ} with respect to ∇ and the conjugate A_{ξ}^{*} are given by

$$
\tilde{g}\left(A_{\xi} U, V\right)=-\rho(U \xi \mid V) \quad \text { and } \quad \tilde{g}\left(V, A_{\xi}^{*} U\right)=-\rho(V \mid U \xi)
$$

Note that

$$
\nabla_{U} \xi=-A_{\xi} U+\nabla_{U}^{\perp} \xi \quad \text { and } \quad \nabla_{U}^{*} \xi=-A_{\xi}^{*} U+\nabla_{U}^{* \perp} \xi
$$

Thus $\left(\alpha, \alpha^{*}\right)$ and $\left(A_{\xi}, A_{\xi}^{*}\right)$ are related to each other as follows:
Proposition 5. $\tilde{g}\left(A_{\xi}^{*} U, V\right)+g(\alpha(U, V), \xi)=0$ and

$$
\tilde{g}\left(A_{\xi} U, V\right)+g\left(\alpha^{*}(U, V), \xi\right)=0
$$

Proof. By definition,

$$
U g(V, \xi)=0 \quad \text { and } \quad U g(\xi, V)=0
$$

or

$$
-\rho(U V \mid \xi)-\rho(V \mid U \xi)=0, \quad \text { and } \quad-\rho(\xi \mid U V)-\rho(U \xi \mid V)=0,
$$

which conclude the two identities.
We define a mapping $\beta: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathrm{X}(M) \rightarrow \operatorname{Sec}\left(N_{f}\right)$ by

$$
\beta(U, V, W)=\beta_{1}(U, V, W)-\nabla_{U}^{\perp} \alpha(V, W)-\nabla_{V}^{\perp} \alpha(U, W),
$$

where β_{1} is defined to satisfy

$$
g\left(\beta_{1}(U, V, W), \xi\right)=-\rho(U V W \mid \xi)
$$

for any $\xi \in \operatorname{Sec}\left(N_{f}\right)$. It should be noted that β is a tensor field and

$$
D_{U, V} W=\tilde{D}_{U, V} W+\beta_{1}(U, V, W)
$$

We call β the third fundamental tensor with respect to D. The conjugate counterpart is written by β^{*}.

Proposition 6. Assume that M is $B-f r e e$. Then we have that

$$
\beta(U, V, W)=\alpha\left(U, \tilde{V}_{V} W\right)-\nabla_{V}^{\perp} \alpha(U, W)
$$

and

$$
\beta^{*}(U, V, W)=\alpha^{*}\left(U, \tilde{\nabla}_{V}^{*} W\right)-\nabla_{V}^{* \perp} \alpha^{*}(U, W) .
$$

Proof. From the assumption it follows that

$$
\begin{aligned}
& g(\beta(U, V, W), \xi)=g\left(\nabla_{U} \nabla_{V} f_{*} W, \xi\right)-g\left(\nabla_{U}^{\perp} \alpha(V, W)+\nabla_{V}^{\perp} \alpha(U, W), \xi\right) \\
& \quad=g\left(\nabla_{U}\left(\nabla_{V} W+\alpha(V, W)\right), \xi\right)-g\left(\nabla_{U}^{\perp} \alpha(V, W)+\nabla_{V}^{\perp} \alpha(U, W), \xi\right) \\
& \quad=g\left(\alpha\left(U, \tilde{\nabla}_{V} W\right)-\nabla_{V}^{\perp} \alpha(U, W), \xi\right)
\end{aligned}
$$

for all ξ of $\operatorname{Sec}\left(N_{f}\right)$. This shows the first relation. From Theorem $1, M$ is also B^{*}-free, which leads to the second relation by a similar argument as above. The proof is complete.

Hereafter we assume that for any point x of M there exists a unique point u of \tilde{M} such that u minimizes $\rho(x, v)$ in $v \in \tilde{M}$. Then to each point u of \tilde{M} it can be defined that

$$
L_{u}=\left\{x \in M: \rho(x, u)=\min _{v \in \tilde{M}} \rho(x, v)\right\},
$$

which we call the minimum contrast leaf at u. By the above assumption L_{u}
is a submanifold of codimension k transversing to \tilde{M} at u. Thus M is decomposed into a foliation $M=U\left\{L_{u}: u \in \tilde{M}\right\}$ and

$$
T_{u}(M)=T_{u}(\tilde{M}) \oplus T_{u}\left(L_{u}\right)
$$

Now let u be fixed. From the above assumption it follows that

$$
U_{u} \rho(x, u)=0
$$

for all U of $\mathfrak{X}(\tilde{M})$ and x of L_{u}. Thus we have that $g_{u}(\xi, U)=0$ for all ξ of $\mathfrak{X}\left(L_{u}\right)$ and U of $\mathfrak{X}(\tilde{M})$, or equivalently that the tangent space of L_{u} at $f(u)$ is equal to the normal space of \tilde{M} at u. Further,

$$
\begin{equation*}
\rho\left(\xi_{1} \cdots \xi_{k} \mid U\right)(u)=0 \tag{4.1}
\end{equation*}
$$

for any $k \geq 2$. Hence the second fundamental tensor γ of L_{u} is defined by the condition

$$
g(\gamma(\xi, \zeta), \tilde{U})=-\rho(\xi \zeta \mid \tilde{U})
$$

for all \tilde{U} of $\operatorname{Sec}\left(N\left(L_{u}\right)\right)$. Next the third fundamental tensor δ of L_{u} is given by

$$
\delta(\xi, \zeta, \eta)=\delta_{1}(\xi, \zeta, \eta)-\nabla_{\xi}^{\perp} \gamma(\zeta, \eta)-\nabla_{\zeta}^{\frac{1}{\zeta}} \gamma(\xi, \eta)
$$

Proposition 6. Let L_{u} be a minimum contrast leaf through u of a subspace
\tilde{M}. Then the tensors γ and δ for L_{u}, defined as above, vanish at u.
Proof. The result follows from (4.1) with $k=2,3$.

References

[1] S.-I. Amari, Differential-Geometrical methods in Statistics, Lecture Note in Statistics. 28, Springer Verlag (1985).
[2] S. Eguchi, A differential geometric approach to statistical inference on the basis of contrast functions, Hiroshima Math. J. 15 (1985), 341-391.
[3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Wiley, New York (1963).
[4] S. L. Lauritzen, Statistical Manifolds, Institute of Mathematical Statistics-Monograph series. 10 (1987), 96-163.
[5] O. Loos, Symmetric space, Benjamine, New York (1969).
[6] H. Nagaoka and S.-I. Amari, Differential geometry of smooth families of probability distributions, METR 82-7, University of Tokyo (1982).

Department of Mathematics,
Faculty of Sciences,
Shimane University

