HIROSHIMA MATH. J. **22** (1992), 631–647

Geometry of minimum contrast

Shinto EGUCHI

(Received September 6, 1991)

1. Introduction

Such concepts as information, entropy, divergence, energy and so on play an important role in mathematical sciences to research random phenomena. This paper tries a unified approach to measurement of these notions, in particular the geometrical structure induced by a contrast function. In the mathematical formulation a contrast function ρ on a manifold M is defined by the first requirement for distance: $\rho(x, y) \ge 0$ with equality if and only if x = y, see Eguchi [2] for various examples. A simple example is found in

$$\rho_1(\boldsymbol{p}, \boldsymbol{q}) = \sum_{i=1}^{n+1} p_i(\log p_i - \log q_i)$$

on the *n*-simplex $\mathscr{S} = \{p = (p_1, \dots, p_{n+1}): \sum_{i=1}^{n+1} p_i = 1, 0 < p_i < 1\}$. This function is called the Kullback information in the context that p and q are the vectors of probabilities for n + 1 disjoint events, see [2] for other examples and construction for ρ . Thus a contrast function is generally not assumed to be symmetric as seen in ρ_1 .

We discuss on the manifold M instead of \mathscr{S} on the assumption of finite dimensionality because we wish to investigate contrast functions or functionals over not only \mathscr{S} but also a general space of probability measures. A new geometry on M by means of ρ is presented: a Riemannian g, a pair (V, V^*) of torsion-free connections and a pair (D, D^*) of second-order differentials. The asymmetry of ρ leads to different two connections V and V^* such that 1/2 $(V + V^*)$ is the Riemannian connection. Lauritzen [3] calls (M, g, T) a statistical manifold, where T is the third order tensor representing the difference between V and V^* . In general such a pair (V, V^*) is called conjugate in the sense that if M is curvature-free with respect to V, then M is also curvature-free with respect to V^* . Nagaoka and Amari [6] extended a notion of locally Euclidean space: If M is curvature-free with respect to V, then there exists a pair of local coordinates (x^i, U) and (x^i_i, V) such that

$$g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{*}_{j}}\right) = \delta_{i}^{j}$$
 (Kronecker's delta)

on $U \cap V$. In Section 2 we present a further conjugacy property introduced

by new operators (D, D^*) related with ρ . It is shown that the two operators D and D^* generate tensors B(X, Y) and $B^*(X, Y)$ of which antisymmetric parts are the Riemannian curvature tensors with respect to V and V^* , respectively. Section 3 investigates the case of a Riemannian space (M, g). A contrast function $\rho_0(x, y)$ on M is naturally defined by the squared arc-length of a geodesic curve connecting x with y in M. We give a formula of geometric quantities g_0 , (V_0, V_0^*) and (D_0, D_0^*) by ρ_0 . Section 4 gives the induced form of the geometry by ρ into a submanifold \tilde{M} . Let x be in $M - \tilde{M}$. We consider minimization of ρ from x to \tilde{M} . For a fixed point \tilde{x} of \tilde{M} we denote $L_{\tilde{x}}$ the space of points from which minimization of ρ into \tilde{M} are given at \tilde{x} . If for any x there exists a unique minimizer \tilde{x} of the function $\rho(x, \cdot)$, M is decomposed into a foliation $M = \bigcup \{L_{\tilde{x}} : \tilde{x} \in \tilde{M}\}$. We call $L_{\tilde{x}}$ a minimum contrast leaf and we investigate the second fundamental tensor of $L_{\tilde{x}}$. It is shown that the tensor of $L_{\tilde{x}}$ vanishes at \tilde{x} .

2. Geometry associated with a contrast function

Let M be a C^{∞} -manifold of dimension d. Let $\mathfrak{X}(M)$ be the space of vector fields on M and $\mathfrak{F}(M)$ the space of C^{∞} -differentiable functions on M. We call $\rho: M \times M \to \mathbb{R}$ a contrast function if $\rho(x, y) \ge 0$ for all x and y in M with equality if and only if x = y. Eguchi [2] introduced three classes of W-type, M-type and S-type in all the contrast functions on a space of probability distributions. In this paper it is assumed that ρ is a C^{∞} -function on $M \times M$ and that

$$|X_x X_x \rho(x, y)|_{y=x} > 0$$

for all nonzero X in $\mathfrak{X}(M)$ and $x \in M$. We will show that the assumption determines the main order of ρ (see the last paragraph in this section). Throughout this paper we use the standard notation in Kobayashi and Nomizu [3] in addition to the following notation on partial differentials:

$$\rho(X_1 \cdots X_n | Y_1 \cdots Y_m)(z) = (X_1)_x \cdots (X_n)_x (Y_1)_y \cdots (Y_m)_y \rho(x, y)|_{x = z, y = z}$$

for X_1, \ldots, X_n and Y_1, \ldots, Y_m in $\mathfrak{X}(M)$. A Riemannian metric g on M is defined by

$$g(X, Y) = -\rho(X | Y).$$

In effect the bilinearity of g holds by definition. Since the contrast $\rho(x, y)$ has a minimum 0 when x = y, we see $\rho(Y| \cdot) = 0$ for any $Y \in \mathfrak{X}(M)$. Moreover, applying X to $\rho(Y| \cdot) = 0$ we have

$$\rho(XY|\cdot) = -\rho(X|Y).$$

Thus from the assumption we get g(X, X) > 0 for all $X \neq 0$ in $\mathfrak{X}(M)$. The symmetry follows from $g(X, Y) - g(Y, X) = -\rho([X, Y]| \cdot) = 0$. Accordingly g is well-defined as a metric tensor with the expressions

$$g(X, Y) = \rho(XY| \cdot) = \rho(\cdot | XY).$$

Next we define a pair (∇, ∇^*) of covariant differentials as follows:

$$g(\nabla_X Y, Z) = -\rho(XY|Z)$$
 and $g(\nabla_X^* Y, Z) = -\rho(Z|XY)$

for all $Z \in \mathfrak{X}(M)$. Here $V_X Y$ and $V_X^* Y$ are determined by the conditions that the above quantities are satisfied for all Z. By definition the mapping $(X, Y) \rightarrow V_X Y$ is bilinear. Noting that

$$g(\nabla_{fX} Y, Z) = -\rho((fX)Y|Z) = g(f\nabla_X Y, Z),$$

$$g(\nabla_X fY, Z) = -\rho(X(fY)|Z) = -\rho((Xf)Y + f(XY)|Z)$$

$$= g((Xf)Y + f\nabla_X Y, Z)$$

for all $f \in \mathfrak{F}(M)$ and all $Z \in \mathfrak{X}(M)$, we have

$$\nabla_{fX} Y = f \nabla_X Y$$
 and $\nabla_X f Y = (Xf) Y + f \nabla_X Y.$ (2.1)

Similarly we can see that V^* satisfies these properties. Thus V and V^* are well-defined connections and have the following relation, see Eguchi [2].

PROPOSITION 1. Let $\overline{V} = \frac{1}{2}(V + V^*)$. Then \overline{V} is the Riemannian connection with respect to g.

PROOF. By definition,

$$Xg(Y, Z) = -\rho(XY|Z) - \rho(Y|XZ) = g(\nabla_X Y, Z) + g(Y, \nabla_X^*Z).$$

This implies

$$Xg(Y, Z) = \frac{1}{2}X\{g(Y, Z) + g(Z, Y)\} = g(\bar{V}_X Y, Z) + g(Y, \bar{V}_X Z),$$

which shows that \overline{P} is metric. Next we see that

$$g(\nabla_X Y - \nabla_Y X, Z) = -\rho(XY - YX | Z) = g([X, Y], Z)$$

and

$$g(\nabla_X^* Y - \nabla_Y^* X, Z) = -\rho(Z|XY - YX) = g([X, Y], Z)$$

for all $Z \in \mathfrak{X}(M)$, which implies that both \overline{V} and \overline{V}^* are torsion-free and hence $\overline{\overline{V}}$ is. \Box

If ρ is symmetric, then $\overline{V} = V = V^*$. This case reduces to the Riemannian geometry. A typical example of a contrast function is asymmetric as ρ_1 defined in Introduction. Hence we pay attention to a tensor on M,

$$T(X, Y, Z) = g(\nabla_X Y - \nabla_X^* Y, Z).$$

The tensor T is symmetric because

$$T(X, Y, Z) - T(Y, X, Z) = g(\mathcal{V}_X Y - \mathcal{V}_Y X - (\mathcal{V}_X^* Y - \mathcal{V}_Y^* X), Z)$$

= g([X, Y] - [X, Y], Z) = 0

and

$$T(X, Y, Z) - T(X, Z, Y) = X\{g(Y, Z) - g(Z, Y)\} = 0.$$

Thus the triple (M, g, T) becomes a statistical manifold according to the terminology by Lauritzen [4].

Nagaoka and Amari [6] introduced a dualistic structure on such a triple (M, g, T), see also Chapter 3 in Amari [1] for extensive discussions. The identity

$$[X, Y]g(Z, W) = XYg(Z, W) - YXg(Z, W)$$

leads to

$$g(R(X, Y)Z, W) = g(Z, R^*(Y, X)W),$$

where R and R^* are the Riemannian curvature tensors associated with V and V^* , that is,

$$R(X, Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X, Y]}$$

and

$$R^*(X, Y) = \nabla_X^* \nabla_Y^* - \nabla_Y^* \nabla_X^* - \nabla_{[X, Y]}^*.$$

Thus it is seen that M is R-free if and only if it is R^* -free. Further, when M is R-free and R^* -free, the corresponding dual affine coordinates (x^i) and (x_i^*) to ∇ and ∇^* , that is

$$\nabla_{\partial/\partial x^i} \frac{\partial}{\partial x^j} = 0, \ \nabla^*_{\partial/\partial x^*_i} \frac{\partial}{\partial x^*_j} = 0 \quad \text{and} \quad g\left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^*_j}\right) = \delta_i^{j}$$

are connected with the Legendre transformation $\sum_i x^i x_i^* = \psi(x) + \varphi(x^*)$. Here both ψ and φ are convex-conjugate and are called the potential functions. It is shown that

$$g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) = \frac{\partial^{2}}{\partial x^{i}\partial x^{j}}\psi, \quad g\left(\frac{\partial}{\partial x^{*}_{i}}, \frac{\partial}{\partial x^{*}_{i}}\right) = \frac{\partial^{2}}{\partial x^{*}_{i}\partial x^{*}_{j}}\varphi.$$
(2.2)

Thus the notion of a locally Euclidean space can be extended to a dualistic version.

We now define a pair (D, D^*) of differential operators $\mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ by the conditions

$$g(D_{X,Y}Z, W) = -\rho(XYZ|W)$$
 and $g(D_{X,Y}^*Z, W) = -\rho(W|XYZ),$

which should be satisfied for all $W \in \mathfrak{X}(M)$.

PROPOSITION 2. The operator D satisfies the following conditions:

(1) The mapping $(X, Y, Z) \longrightarrow D_{X,Y}Z$ is trilinear.

$$D_{fX,Y}Z = fD_{X,Y}Z,$$

$$D_{X,fY}Z = fD_{X,Y}Z + Xf\nabla_Y Z$$

and

(4)
$$D_{X,Y}fZ = fD_{X,Y}Z + Xf\nabla_Y Z + Yf\nabla_X Z + X(Yf)Z$$

for all $f \in \mathfrak{F}(M)$.

PROOF. By definition, (1) is clear. The Leipnitzs law yields that

$$g(D_{fX,Y}Z, W) = -\rho(fXYZ|W) = g(fD_{X,Y}Z, W),$$

 $g(D_{X,fY}Z, W) = -\rho(fXYZ + (Xf)YZ|W) = g(fD_{X,Y}Z + XfV_YZ, W)$

and

$$g(D_{X,Y}fZ, W) = -\rho(fXYZ + (Xf)YZ + (Yf)XZ + X(Yf)Z|W)$$
$$= g(fD_{X,Y}Z + XfV_YZ + YfV_XZ + X(Yf)Z, W)$$

for all $W \in \mathfrak{X}(M)$ and $f \in \mathfrak{F}(M)$, which conclude (2), (3) and (4).

Take arbitrarily two local coordinate systems $(\lambda, U, (y^i))$, and $(\mu, V, (z^a))$ with $U \cap V \neq \phi$. Then $D_{\partial/\partial y^i, \partial/\partial y^j} \partial/\partial y^k$ defines the components of D in the coordinates $(\lambda, U, (y^i))$. The natural bases $\{\partial/\partial y^i\}$ and $\{\partial/\partial z^a\}$ on $U \cap V$ are related by

$$\frac{\partial}{\partial z^a} = \frac{\partial y^i}{\partial z^a} \frac{\partial}{\partial y^i}$$

from which it follows that

$$D_{\frac{\partial}{\partial z^a},\frac{\partial}{\partial z^b}}\frac{\partial}{\partial z^c} = \frac{\partial y^k}{\partial z^c}D_{\frac{\partial}{\partial z^a},\frac{\partial}{\partial z^b}}\frac{\partial}{\partial y^k} + \frac{\partial^2 y^j}{\partial z^a \partial z^c}\nabla_{\frac{\partial}{\partial z^b}}\frac{\partial}{\partial y^j}$$

$$+ \frac{\partial^{2} y^{j}}{\partial z^{b} \partial z^{c}} \nabla_{\frac{\partial}{\partial z^{a}}} \frac{\partial}{\partial y^{j}} + \frac{\partial^{3} y^{k}}{\partial z^{a} \partial z^{b} \partial z^{c}} \frac{\partial}{\partial y^{k}} \quad \text{(from (1) and (4))}$$

$$= \frac{\partial y^{i}}{\partial z^{a}} \frac{\partial y^{j}}{\partial z^{b}} \frac{\partial y^{k}}{\partial z^{c}} D_{\frac{\partial}{\partial y^{i}}}, \frac{\partial}{\partial y^{b}} \frac{\partial}{\partial y^{k}} + \frac{\partial^{2} y^{j}}{\partial z^{a} \partial z^{b}} \frac{\partial y^{k}}{\partial z^{c}} \nabla_{\frac{\partial}{\partial y^{j}}} \frac{\partial}{\partial y^{k}}$$

$$+ \frac{\partial^{2} y^{j}}{\partial z^{a} \partial z^{c}} \frac{\partial y^{k}}{\partial z^{b}} \nabla_{\frac{\partial}{\partial y^{b}}} \frac{\partial}{\partial y^{j}} + \frac{\partial^{2} y^{j}}{\partial z^{b} \partial z^{c}} \frac{\partial y^{k}}{\partial z^{a}} \nabla_{\frac{\partial}{\partial y^{b}}} \frac{\partial}{\partial y^{j}} + \frac{\partial^{3} y^{k}}{\partial z^{b} \partial z^{c}} \frac{\partial}{\partial y^{k}}$$

(from (1), (2) and (3)), where $\{\partial y^i/\partial z^a\}$ denotes the Jacobi matrix of $\lambda^{-1}(\mu(\cdot))$. Here and hereafter the Einstein convention is used for indices *i*, *j* and *k*. Thus we observe that the set of the conditions (1)–(4) determines the transformation rule of components of *D* for a change of variables. By a similar argument we see that D^* enjoys also the conditions:

(1)' The mapping
$$(X, Y, Z) \longrightarrow D^*_{X,Y}Z$$
 is trilinear

$$(2)' \qquad D^*_{fX,Y}Z = fD^*_{X,Y}Z$$

(3)' $D_{X,fY}^*Z = f D_{X,Y}^*Z + X f \nabla_Y^*Z \quad \text{and} \quad$

(4)'
$$D_{X,Y}^* fZ = f D_{X,Y}^* Z + X f \nabla_Y^* Z + Y f \nabla_X^* Z + X (Y f) Z$$

for all $f \in \mathfrak{F}(M)$.

We now define

$$B(X, Y) = D_{X,Y} - \nabla_X \nabla_Y$$
 and $B^*(X, Y) = D^*_{X,Y} - \nabla^*_X \nabla^*_Y$.

Then we have that

$$B(fX, Y)Z = B(X, fY)Z = B(X, Y)fZ = fB(X, Y)Z$$

for all $f \in \mathfrak{F}(M)$ since $\nabla_X \nabla_Y$ also satisfies the conditions (1)-(4). Thus both B(X, Y) and $B^*(X, Y)$ are $\mathfrak{F}(M)$ -linear and are a kind of curvature-like tensors associated with D and D^* . We now show that the antisymmetric part of B is nothing but the Riemannian curvature tensor.

PROPOSITION 3. R(X, Y) = B(Y, X) - B(X, Y).

PROOF. The result follows from $D_{X,Y}Z - D_{Y,X}Z = \nabla_{[X,Y]}Z$. In fact,

$$g(D_{X,Y}Z - D_{Y,X}Z, W) = -\rho([X, Y]Z|W) = g(\mathcal{V}_{[X,Y]}Z, W)$$

for all $W \in \mathfrak{X}(M)$. \square

By a similar argument, $R^*(X, Y) = B^*(Y, X) - B^*(X, Y)$. Proposition 3 directly implies Bianchi's first and second identities:

$$\mathfrak{S}R(X, Y)Z = 0$$
 and $\mathfrak{S}(\mathcal{V}_Z R)(X, Y) = 0$,

where \mathfrak{S} denotes the cyclic sum on X, Y and Z. The symmetry of B is equivalent to R-freeness. Further, the following identities hold.

PROPOSITION 4. (1) B(X, Y)Z = B(X, Z)Y.

(2)
$$g(B(X, Y)Z, W) = g(B(W, Y)Z, X).$$

(3)
$$g(B^*(Y, X)W, Z) = g(B(X, Y)Z, W).$$

PROOF. We get

$$B(X, Y)Z = D_{X,Y}Z - \nabla_X \nabla_Y Z$$

= $D_{X,Y}Y + \nabla_X [Y, Z] - \nabla_X (\nabla_Z Y + [Y, Z]) = B(X, Z)Y$

since

$$D_{X,Y}Z = D_{X,Z}Y + \nabla_X[Y, Z].$$

Hence we obtain (1). We next show (2). By applying X to the definition

$$g(\nabla_{\mathbf{Y}} Z, W) = -\rho(\mathbf{Y} Z | W)$$

we get

$$g(\nabla_X \nabla_Y Z, W) + g(\nabla_Y Z, \nabla_X^* W) = -\rho(X Y Z | W) - \rho(Y Z | X W),$$

or

$$g(B(X, Y)Z, W) = g(\nabla_Y Z, \nabla_X^* W) + \rho(YZ|XW).$$
(2.3)

From this and the torsion-freeness of \mathcal{V}^* it follows that

$$g(B(W, Y)Z, X) = g(\nabla_Y Z, [W, X] + \nabla_X^* W) + \rho(YZ|WX)$$
$$= g(\nabla_Y Z, \nabla_X^* W) + \rho(YZ|XW) = g(B(X, Y)Z, W),$$

which concludes (2). The identity

$$Y[g(Z, \nabla_X^* W) + \rho(Z|XW)] = 0$$

leads to

$$g(B^*(Y, X)W, Z) = g(\nabla_Y Z, \nabla_X^* W) + \rho(YZ|XW), \qquad (2.4)$$

which concludes (3) because of (2.3). \Box

Since it follows from (3) in Proposition 3 that

$$g(\{B(X, Y) - B^*(X, Y)\}Z, W) = g(B(X, Y)Z, W) - g(B(Y, X)W, Z),$$

we obtain that $B(X, Y) = B^*(X, Y)$ if and only if

$$g(B(X, Y)Z, W) = g(B(Y, X)W, Z)$$

for all Z and W in $\mathfrak{X}(M)$.

From this we get a kind of symmetry associated with B.

COROLLARY 1. The forth-order tensor g(B(X, Y)Z, W) or $g(B^*(X, Y)Z, W)$ is symmetric if and only if B is equal to B^* and R vanishes.

PROOF. The result follows from the above statement and Proposition 4 (1) and (2). \Box

Now we obtain that the contrast function generates a further dualistic structure over M.

THEOREM 1. The following statements are equivalent:

(1) M is B-free. (2) M is B^* -free.

(3) There exists a system of coordinates (x^i) satisfying

$$abla_{\partial/\partial x^i} \frac{\partial}{\partial x^j} = 0 \qquad (1 \le i, j \le d)$$

and

$$D_{\partial/\partial x^{i}, \, \partial/\partial x^{j}} \frac{\partial}{\partial x^{k}} = 0 \qquad (1 \le i, j, \, k \le d).$$
(2.5)

(4) There exists a system of coordinates (x_i^*) satisfying

$$\mathcal{V}^*_{\partial/\partial x_i^*}\frac{\partial}{\partial x_j^*} = 0 \qquad (1 \le i, j \le d)$$

and

$$D^*_{\partial/\partial x_i^*, \, \partial/\partial x_j^*} \frac{\partial}{\partial x_k^*} = 0 \qquad (1 \le i, j, k \le d).$$
(2.6)

PROOF. If follows from (3) in Proposition 4 that (1) is equivalent to (2). Next we assume (1). Then M is R-free on account of Proposition 3. Namely M has V-affine coordinates (x^i) , which are seen from (1) that

$$D_{\partial/\partial x^i,\,\partial/\partial x^j}\frac{\partial}{\partial x^k}=0$$

This implies (3). Conversely if (3) holds, then

$$B\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)\frac{\partial}{\partial x^{k}} = 0$$

with respect to the coordinates (x^i) , which leads M to be *B*-free since B is a tensor. Similarly (2) is equivalent to (4). \Box

In the statements (3) and (4), (2.5) and (2.6) can be exchanged for

$$\rho\left(\frac{\partial}{\partial x^{i}}\frac{\partial}{\partial x^{j}}\left|\frac{\partial}{\partial x^{k}}\frac{\partial}{\partial x^{1}}\right)=0 \quad \text{and} \quad \rho\left(\frac{\partial}{\partial x^{*}_{i}}\frac{\partial}{\partial x^{*}_{j}}\left|\frac{\partial}{\partial x^{*}_{k}}\frac{\partial}{\partial x^{*}_{l}}\right.\right)=0,$$

respectively, on account of (2.3). We assume that M is *B*-free in this paragraph. From (2.2) it is satisfied that

$$g\left(\frac{\partial}{\partial x^{i}}, \nabla^{*}_{\frac{\partial}{\partial x^{j}}}\frac{\partial}{\partial x^{k}}\right) = \frac{\partial^{3}}{\partial x^{i}\partial x^{j}\partial x^{k}}\psi$$
(2.7)

and

$$g\left(\nabla_{\frac{\partial}{\partial x_i^*}} \frac{\partial}{\partial x_j^*}, \ \frac{\partial}{\partial x_k^*} \right) = \frac{\partial^3}{\partial x_i^* \partial x_k^*} \varphi.$$

Further, then

$$g\left(\frac{\partial}{\partial x^{i}}, D^{*}_{\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}} \frac{\partial}{\partial x^{l}}\right) = \frac{\partial^{4}}{\partial x^{i} \partial x^{j} \partial x^{k} \partial x^{l}} \psi$$
(2.8)

since

$$\frac{\partial}{\partial x^{i}} \left[g\left(\frac{\partial}{\partial x^{i}}, \ \nabla^{*}_{\frac{\partial}{\partial x^{k}}} \frac{\partial}{\partial x^{l}}\right) - \frac{\partial^{3}}{\partial x^{i} \partial x^{k} \partial x^{l}} \psi \right] = 0$$

yields

$$g\left(\nabla_{\frac{\partial}{\partial x^{j}}}\frac{\partial}{\partial x^{i}}, \nabla_{\frac{\partial}{\partial x^{k}}}^{*}\frac{\partial}{\partial x^{l}}\right) + g\left(\frac{\partial}{\partial x^{i}}, \nabla_{\frac{\partial}{\partial x^{j}}}^{*}\nabla_{\frac{\partial}{\partial x^{k}}}^{*}\frac{\partial}{\partial x^{l}}\right) = \frac{\partial^{4}}{\partial x^{i}\partial x^{j}\partial x^{k}\partial x^{l}}\psi.$$

Similarly we obtain that

$$g\left(D_{\frac{\partial}{\partial x_i^*},\frac{\partial}{\partial x_j^*},\frac{\partial}{\partial x_j^*}},\frac{\partial}{\partial x_l^*}\right) = \frac{\partial^4}{\partial x_l^* \partial x_j^* \partial x_k^* \partial x_l^*}\varphi$$

If M is R-free, then the divergence function can be introduced as

$$d(x_1, x_2^*) = \psi(x_1) + \varphi(x_2^*) - \sum_{i=1}^d x_1^{i} x_{2i}^*,$$

where ψ and φ are potential functions with respect to (x^i) and (x_i^*) , respectively. Thus d is a contrast function, see [1]. The contrast function ρ is related with d as follows.

COROLLARY 2. Assume that M is B-free. Then

$$\rho(x_1, x_2^*) = d(x_1, x_2^*)$$

by neglecting $O(||x_1 - x_2||^5)$.

PROOF. We write $\delta(x_1, x_2^*) = \rho(x_1, x_2^*) - d(x_1, x_2^*)$. It suffices to show that the differential coefficients of $\delta(x_1, x_2^*)$ in x_1 vanish at $x_1 = x_2$ up to the forth-order by Taylor's theorem. By definition we have the following identities: $\rho(XY| \cdot) = g(X, Y)$,

$$\rho(XYZ \mid \cdot) = g(\nabla_Y Z, X) + g(\nabla_X Y, Z) + g(Y, \nabla_X^* Z)$$

and

$$\rho(XYZ \mid \cdot) = g(\mathcal{D}_{X,Y}Z, W) + g(\mathcal{V}_X\mathcal{V}_ZW, Y) + g(\mathcal{V}_ZW, \mathcal{V}_X^*Y) + g(\mathcal{V}_X\mathcal{V}_YZ, W) + g(\mathcal{V}_YZ, \mathcal{V}_X^*W) + g(\mathcal{V}_XZ, \mathcal{V}_Y^*W) + g(Z, \mathcal{V}_X^*\mathcal{V}_Y^*W).$$

Hence we have

$$\rho\left(\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{k}} \middle| \cdot \right) = \frac{\partial^{3}}{\partial x^{i} \partial x^{j} \partial x^{k}} \psi$$

and

$$\rho\left(\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{j}} \frac{\partial}{\partial x^{k}} \frac{\partial}{\partial x^{l}} \right| \cdot \right) = \frac{\partial^{4}}{\partial x^{i} \partial x^{j} \partial x^{k} \partial x^{i}} \psi$$

from Theorem 1, (2.7) and (2.8). Consequently the function δ is of order $O(||x_1 - x_2||^5)$. \Box

We discuss a deformation of a contrast function. Let a function $\Phi: [0, \infty) \to \mathbf{R}$ be monotone increasing such that $\Phi(0) = 0$ and $\Phi'(0) = 1$. As typical examples we can mention

$$\Phi_{\alpha}(t) = \frac{1}{\alpha} \log (1 + \alpha t), \quad \Psi_{\alpha}(t) = \frac{1}{\alpha} \tan (\alpha t)$$

or their inverse transformations, where α is a positive constant. Then $\rho_1(x, y) = \Phi(\rho(x, y))$ is also a contrast function. The geometric quantities $(g, \nabla, \nabla^*, D, D^*)$ and $(g_1, \nabla_1, \nabla_1^*, D_1, D_1^*)$ associated with ρ and ρ_1 are connected with

$$(g_1, \nabla_1, \nabla_1^*) = (g, \nabla, \nabla^*), \tag{2.9}$$

$$(D_1)_{X,Y}Z = D_{X,Y}Z + \Phi''(0) \mathfrak{S}g(X, Y)Z$$
(2.10)

and

$$(D_1^*)_{X,Y}Z = D_{X,Y}^*Z + \Phi''(0)\mathfrak{S}g(X, Y)Z.$$

In particular, the deformation of ρ keeps the equality of B with B^* .

Let \mathscr{S} be a simplex of dimension *n*. As an alternative contrast function on \mathscr{S} to ρ_1 defined in Introduction, we give

$$\rho_0(\boldsymbol{p}, \boldsymbol{q}) = 4 \left(1 - \sum_{i=1}^{n+1} \sqrt{p_i q_i} \right)$$

for p and q in \mathscr{S} . It follows from a straightforward calculus that ρ_0 and ρ_1 generate a common metric tensor, say g_0 . By taking $\Phi(t) = (\cos^{-1}(1 - t/4))^2$, we know that $\Phi(\rho_0(p, q))$ is the squared arc-length of the geodesic curve connecting p and q with respect to g_0 .

Let ρ be a contrast function on M such that ρ is C^{∞} -differentiable and generates a nontrivial metric tensor g. For every $\delta > 0$, $\rho^{(\delta)}(x, y) = {\rho(x, y)}^{\delta}$ is also a contrast function by definition. However if $\delta < 1$, then $\rho^{(\delta)}(x, y)$ is not differentiable at x = y. Alternatively if $\delta > 1$, then the metric tensor by $\rho^{(\delta)}$ is reduced to a zero tensor. Thus we see that if ρ yields a nontrivial metric tensor g, then any power change of ρ becomes nonsense. In effect $\rho(x, y)$ has the same order as the squared arc-length of the geodesic curve connecting x with y with respect to g, which will be shown in the following section.

3. Riemannian case

Let (M, g) be a Riemannian manifold and \overline{V} the Riemannian connection with respect to g. We denote the geodesic curve connecting x with y by $C = \{x_t: 1 \le t \le 1\}$, where $x_0 = x$ and $x_1 = y$. Define a contrast function by

$$\rho_0(x, y) = \frac{1}{2} \left(\int_C \sqrt{g_{x_t}(\dot{x}_t, \dot{x}_t)} \, dt \right)^2,$$

where $\dot{x}_t = dx_t/dt$. Since the tangent vectors \dot{x}_t 's are parallel to each other along the curve C,

$$\rho_0(x, y) = \frac{1}{2} g_{x_t}(\dot{x}_t, \dot{x}_t)$$

for any $t \in [0, 1]$, in particular $\rho_0(x, y) = g_x(\dot{x}_0, \dot{x}_0)/2$. We now investigate what geometry the function ρ_0 generates. Let $(g_0, \nabla_0, \nabla_0^*, D_0, D_0^*)$ be the geometric quantities associated with ρ_0 according to the formulation discussed in Section 2. The symmetry of ρ_0 yields $\nabla_0 = \nabla_0^*$ and $D_0 = D_0^*$ on M. Further, it will be seen that $g_0 = g$ and $\nabla_0 = \nabla_0^* = \overline{\nu}$, where $\overline{\nu}$ is the original Riemannian connection.

THEOREM 2. $g = g_0, \overline{V}_0 = \overline{V}_0^* = \overline{V}$ and

$$(D_0)_{X,Y}Z = \bar{V}_X\bar{V}_YZ - \frac{1}{3}\{\bar{R}(X, Y)Z + \bar{R}(X, Z)Y\},\$$

where \overline{R} denotes the Riemannian curvature with respect to \overline{V} .

PROOF. For a sufficiently small $\rho_0(x, y)$ there exists a local chart $(x^1, \ldots, x^d, U, \varphi)$ of M such that $x \in U$ and $y \in U$. Then the curve $x_t = (x^1(t), \ldots, x^d(t))$ satisfies

$$\frac{d^2}{dt^2} x^i(t) + \sum_{j,k} \Gamma^i_{jk}(x(t)) \frac{d}{dt} x^j(t) \frac{d}{dt} x^k(t) = 0$$
(3.1)

with $(x^{i}(0)) = x$ and $(x^{i}(1)) = y$, where Γ_{jk}^{i} 's denote the Christoffel symbols.

We now express the vector $(dx^{i}(0)/dt)$ as a polynomial of y - x up to the third order. From (3.1),

$$\frac{d^3}{dt^3} x^i(t) = \sum_{j,k,l} \left(-\frac{\partial}{\partial x^l} \Gamma^i_{jk}(x(t)) + 2\sum_{\alpha} \Gamma^i_{j\alpha}(x(t)) \Gamma^\alpha_{kl}(x(t)) \right) \\ \times \frac{d}{dt} x^j(t) \frac{d}{dt} x^k(t) \frac{d}{dt} x^l(t).$$

A Taylor expansion leads to

$$\begin{aligned} x^{i}(t) &= x^{i} + \frac{d}{dt} x^{i}(0)t + \frac{d^{2}}{dt^{2}} x^{i}(0) \frac{t^{2}}{2} + \frac{d^{3}}{dt^{3}} x^{i}(0) \frac{t^{3}}{6} + O(t^{4}) \\ &= x^{i} + t\Delta^{i} - \frac{t^{2}}{2} \sum_{j,k} \Gamma^{i}_{jk}(x) \Delta^{j} \Delta^{k} \\ &+ \frac{t^{3}}{6} \sum_{j,k,l} \left(-\frac{\partial}{\partial x^{l}} \Gamma^{i}_{jk}(x) + 2 \sum_{\alpha} \Gamma^{i}_{j\alpha}(x) \Gamma^{\alpha}_{kl}(x) \right) \Delta^{j} \Delta^{k} \Delta^{l} + O(t^{4}) \end{aligned}$$

where $\Delta^i = dx^i(0)/dt$. From $(x^i(1)) = y$, it follows that

$$\begin{aligned} \mathcal{A}^{i} &= (y^{i} - x^{i}) + \frac{1}{2} \sum_{j,k} \Gamma^{i}_{jk}(x) (y^{j} - x^{j}) (y^{k} - x^{k}) \\ &+ \frac{1}{6} \sum_{j,k,l} \left(\frac{\partial}{\partial x^{l}} \Gamma^{i}_{jk}(x) + \sum_{\alpha} \Gamma^{i}_{j\alpha}(x) \Gamma^{\alpha}_{kl}(x) \right) (y^{j} - x^{j}) (y^{k} - x^{k}) (y^{l} - x^{l}) \\ &+ O(\|y - x\|^{4}). \end{aligned}$$
(3.2)

Let X, Y, Z and W be vector fields on M. Define a mapping $(X, Y) \rightarrow X \cdot Y$ by

Geometry of minimum contrast

$$X \cdot Y = \sum_{i,j} X^i \frac{\partial Y^j}{\partial x^i} \frac{\partial}{\partial x^j}$$

for $X = \sum X^i \partial / \partial x^i$ and $Y = \sum Y^j \partial / \partial x^j$. By definition

$$\overline{V}_X Y = X \cdot Y + \Gamma(X, Y),$$

see Loos [5]. Further,

$$\overline{\mathcal{V}}_{X}\overline{\mathcal{V}}_{Y}Z = X \cdot (Y \cdot \Gamma) + (X \cdot \Gamma)(Y, Z) + \Gamma(\Gamma(Y, Z), X)$$
$$+ \Gamma(X \cdot Y, Z) + \Gamma(X \cdot Z, Y) + \Gamma(Y \cdot Z, X)$$

and the curvature tensor with respect to \overline{V} is expressed as

$$\overline{R}(X, Y)Z = (X \cdot \Gamma)(Y, Z) - (Y \cdot \Gamma)(X, Z) + \Gamma(\Gamma(Y, Z), X) - \Gamma(\Gamma(X, Z), Y).$$
(3.3)

Note that in the right-hand sides of the above equations each term depends on the local coordinate system, while all the left-hand side is coordinatefree. Writing $U = \sum_{i} (y^{i} - x^{i}) (\partial/\partial x^{i})_{x}$, we can express \dot{x}_{0} as

$$\dot{x}_{0} = U + \frac{1}{2} \Gamma_{X}(U, U) + \frac{1}{6} \{ (U \cdot \Gamma_{X})(U, U) + \Gamma_{X}(\Gamma_{X}(U, U), U) \} + O(\|U\|^{4})$$
(3.4)

by inverting the equation (3.2). The following relations are deduced from (3.4):

$$\begin{aligned} (X_{y} \cdot \dot{x}_{0})_{*} &= X, \ (X_{X} \cdot \dot{x}_{0})_{*} = -X, \ (\overline{\nu}_{X_{x}} \dot{x}_{0})_{*} = -X, \\ (\overline{\nu}_{X_{x}}(Y_{y} \cdot \dot{x}_{0}))_{*} &= 0, \ (X_{y} \cdot (Y_{y} \cdot \dot{x}_{0}))_{*} = \overline{\nu}_{X} Y, \\ (X_{y} \cdot (Y_{y} \cdot (Z_{y} \cdot \dot{x}_{0})))_{*} &= X \cdot (Y \cdot Z) + \Gamma(X \cdot Y, Z) + \Gamma(X \cdot Z, Y) + \Gamma(Y \cdot Z, X), \\ &+ \frac{1}{3} \mathfrak{S} \{ (X \cdot \Gamma)(Y, Z) + \Gamma(\Gamma(Y, Z), X) \} \end{aligned}$$

and

$$(\overline{\mathcal{V}}_{W_x}Y_y \cdot (Z_y \cdot \dot{x}_0))_* = (W \cdot \Gamma)(Y, Z) + \Gamma(\Gamma(Y, Z), W) - \frac{1}{3} \mathfrak{S} \{ W \cdot \Gamma)(Y, Z) + \Gamma(\Gamma(Y, Z), W) \},$$

where S denotes cyclic sum and

$$((X_1)_x \cdots (X_n)_x (Y_1)_y \cdots (Y_m)_y F(x, y))_*$$

= $((X_1)_x \cdots (X_n)_x (Y_1)_y \cdots (Y_m)_y F(x, y))_{x=z, y=z}.$

Specifically we get

$$(X_y \cdot Y_y \cdot Z_y \cdot \dot{x}_0)_* = \overline{\nu}_X \overline{\nu}_Y Z - \frac{1}{3} \{ \overline{R}(X, Y) Z + \overline{R}(X, Z) Y \},$$

and

$$(\bar{\mathcal{V}}_{W_{x}}Y_{y} \cdot Z_{y} \cdot \dot{x}_{0})_{*} = \frac{1}{3} \{\bar{R}(W, Y)Z + \bar{R}(W, Z)Y\}$$

on account of (3.3).

On the basis of the relations established above, we get

$$g_0(X, Y) = -\rho_0(X|Y) = -(g(\dot{x}_0, \nabla_{X_x}Y_y \cdot \dot{x}_0) + g(\nabla_{X_x}\dot{x}_0, Y_y \cdot \dot{x}_0))_* = g(X, Y)$$
nd

and

$$g_{0}(Z, (\overline{P}_{0}^{*})_{X}Y) = -\rho_{0}(Z|XY) = -(g(\dot{x}_{0}, \overline{P}_{Z_{x}}X_{y} \cdot Y_{y} \cdot \dot{x}_{0}) + g(\overline{P}_{Z_{x}}\dot{x}_{0}, X_{y} \cdot Y_{y} \cdot \dot{x}_{0}) + g(Y_{y} \cdot \dot{x}_{0}, \overline{P}_{Z_{x}}X_{y} \cdot \dot{x}_{0}) + g(\overline{P}_{Z_{x}}Y_{y} \cdot \dot{x}_{0}, X_{y} \cdot \dot{x}_{0}))_{*} = g(Z, \overline{P}_{X}Y).$$

by the use of the expression $\rho_0(x, y) = g_x(\dot{x}_0, \dot{x}_0)/2$. In this way the metric g_0 is g and both V_0 and V_0^* are equal to \overline{V} . Next we get

$$\begin{split} g(W, D^*)_{X,Y}Z) &= -\rho_0(W|XYZ) \\ &= -\left(g(\dot{x}_0, \bar{V}_{W_x}X_y \cdot Y_y \cdot Z_y \cdot \dot{x}_0) + g(\bar{V}_{W_x}\dot{x}_0, X_y \cdot Y_y \cdot Z_y \cdot \dot{x}_0) \right. \\ &+ g(Z_y \cdot \dot{x}_0, \bar{V}_{W_x}X_y \cdot Y_y \cdot \dot{x}_0) + g(\bar{V}_{W_x}Z_y \cdot \dot{x}_0, X_y \cdot Y_y \cdot \dot{x}_0) \\ &+ g(Y_y \cdot \dot{x}_0, \bar{V}_{W_x}X_y \cdot Z_y \cdot \dot{x}_0) + g(\bar{V}_{W_x}Y_y \cdot \dot{x}_0, X_y \cdot Z_y \cdot \dot{x}_0) \\ &+ g(X_y \cdot \dot{x}_0, \bar{V}_{W_x}Y_y \cdot Z_y \cdot \dot{x}_0) + g(\bar{V}_{W_x}X_y \cdot \dot{x}_0, Y_y \cdot Z_y \cdot \dot{x}_0) \\ &+ g(W, \bar{V}_X\bar{V}_Z) - \frac{1}{3}g(W, \bar{R}(X, Y)Z + \bar{R}(X, Z)Y) + \frac{1}{3}g(X, \bar{R}(W, Y)Z \\ &+ \bar{R}(W, Z)Y) + \frac{1}{3}g(Y, \bar{R}(W, X)Z + \bar{R}(W, Z)X) + \frac{1}{3}g(Z, \bar{R}(W, X)Y \\ &+ \bar{R}(W, Y)X). \end{split}$$

Consequently we obtain

$$(D_0)_{X,Y}Z = (D_0^*)_{X,Y}Z = \overline{V}_X\overline{V}_YZ - \frac{1}{3}\{\overline{R}(X, Y)Z + \overline{R}(X, Z)Y\},\$$

noting $g(W, \overline{R}(X, Y)Z) + g(\overline{R}(X, Y)W, Z) = 0$ and $\overline{R}(X, Y)Z + \overline{R}(Y, Z)X + R(Z, X)Y = 0$. \Box

Let $\overline{B}(X, Y) = (D_0)_{X,Y} - \nabla_X \nabla_Y$. Then the Bianchi's first identity leads to

$$\{\overline{B}(X, Y) + \overline{B}(Y, X)\}Z = -\overline{B}(Z, X)Y.$$

Further it is easily seen from Proposition 3 that M is \overline{R} -free if and only if M is also \overline{B} -free.

4. Minimum contrast leaf

As discussed in Section 2, a contrast function ρ on M generates a metric tensor g and differential operators $\overline{V}, \overline{V^*}, D$ and D^* , where *B*-conjugacy is established in addition to *R*-conjugacy. Let \widetilde{M} be a *k*-dimensional submanifold of M with the immersion f of \widetilde{M} in M. By restricting the domain of ρ as $\tilde{\rho} = \rho|_{\widetilde{M} \times \widetilde{M}}$, the quantities $(g, \overline{V}, \overline{V}, D, D^*)$ induce $(\widetilde{g}, \widetilde{V}, \widetilde{V}, \widetilde{D}, \widetilde{D}^*)$ over \widetilde{M} . For example,

$$\tilde{g}(U, V) = - \tilde{\rho}(U | V)$$

for U and V of $\mathfrak{X}(\tilde{M})$. Of course by definition $\tilde{g}(U, V) = g(f_*U, f_*V)$. Henceforth we identify U with f_*U , so that $\tilde{g}(U, V) = g(U, V)$. Let N_f be the normal bundle of \tilde{M} and $Sec(N_f)$ the space of sections of \tilde{M} into N_f , or the space of normal vector fields. We define a mapping $\alpha : \mathfrak{X}(\tilde{M}) \times \mathfrak{X}(\tilde{M})$ $\rightarrow Sec(N_f)$ by

$$g(\alpha(U, V), \xi) = -\rho(UV|\xi)$$

for all ξ of $Sec(N_f)$. Then α is the second-fundamental tensor with respect to ∇ because α is bilinear and it is decomposed that

$$\overline{V}_U V = \widetilde{V}_U V + \alpha(U, V).$$

Alternatively with respect to ∇^* , the tensor α^* is similarly defined and hence

$$\overline{V}_U^* V = \widetilde{V}_U^* V + \alpha^* (U, V).$$

Next for a fixed ξ of $Sec(N_f)$ the shape operator A_{ξ} with respect to ∇ and the conjugate A_{ξ}^* are given by

$$\tilde{g}(A_{\xi}U, V) = -\rho(U\xi|V)$$
 and $\tilde{g}(V, A_{\xi}^*U) = -\rho(V|U\xi)$.

Note that

$$\nabla_U \xi = -A_{\xi}U + \nabla_U^{\perp} \xi$$
 and $\nabla_U^* \xi = -A_{\xi}^*U + \nabla_U^{*\perp} \xi$.

Thus (α, α^*) and (A_{ξ}, A_{ξ}^*) are related to each other as follows:

PROPOSITION 5. $\tilde{g}(A_{\xi}^*U, V) + g(\alpha(U, V), \xi) = 0$ and

$$\tilde{g}(A_{\xi}U, V) + g(\alpha^*(U, V), \xi) = 0.$$

PROOF. By definition,

 $Ug(V, \xi) = 0$ and $Ug(\xi, V) = 0$

or

$$-\rho(UV|\xi) - \rho(V|U\xi) = 0$$
, and $-\rho(\xi|UV) - \rho(U\xi|V) = 0$,

which conclude the two identities. \Box

We define a mapping $\beta: \mathfrak{X}(M) \times \mathfrak{X}(M) \to Sec(N_f)$ by

$$\beta(U, V, W) = \beta_1(U, V, W) - \nabla_U^{\perp} \alpha(V, W) - \nabla_V^{\perp} \alpha(U, W),$$

where β_1 is defined to satisfy

$$g(\beta_1(U, V, W), \xi) = -\rho(UVW|\xi)$$

for any $\xi \in Sec(N_f)$. It should be noted that β is a tensor field and

$$D_{U,V}W = D_{U,V}W + \beta_1(U, V, W).$$

We call β the third fundamental tensor with respect to D. The conjugate counterpart is written by β^* .

PROPOSITION 6. Assume that M is B-free. Then we have that

$$\beta(U, V, W) = \alpha(U, \widetilde{V}_V W) - \overline{V}_V^{\perp} \alpha(U, W)$$

and

$$\beta^*(U, V, W) = \alpha^*(U, \widetilde{\mathcal{V}}_V^* W) - \mathcal{V}_V^{*\perp} \alpha^*(U, W).$$

PROOF. From the assumption it follows that

$$\begin{split} g(\beta(U, V, W), \xi) &= g(\mathcal{V}_U \mathcal{V}_V f_* W, \xi) - g(\mathcal{V}_U^{\perp} \alpha(V, W) + \mathcal{V}_V^{\perp} \alpha(U, W), \xi) \\ &= g(\mathcal{V}_U(\mathcal{V}_V W + \alpha(V, W)), \xi) - g(\mathcal{V}_U^{\perp} \alpha(V, W) + \mathcal{V}_V^{\perp} \alpha(U, W), \xi) \\ &= g(\alpha(U, \tilde{\mathcal{V}}_V W) - \mathcal{V}_V^{\perp} \alpha(U, W), \xi) \end{split}$$

for all ξ of $Sec(N_f)$. This shows the first relation. From Theorem 1, M is also B^* -free, which leads to the second relation by a similar argument as above. The proof is complete. \Box

Hereafter we assume that for any point x of M there exists a unique point u of \tilde{M} such that u minimizes $\rho(x, v)$ in $v \in \tilde{M}$. Then to each point u of \tilde{M} it can be defined that

$$L_{u} = \{x \in M : \rho(x, u) = \min_{v \in \tilde{M}} \rho(x, v)\},\$$

which we call the minimum contrast leaf at u. By the above assumption L_u

is a submanifold of codimension k transversing to \tilde{M} at u. Thus M is decomposed into a foliation $M = \bigcup \{L_u : u \in \tilde{M}\}$ and

$$T_{u}(M) = T_{u}(M) \oplus T_{u}(L_{u}).$$

Now let u be fixed. From the above assumption it follows that

$$U_u \rho(x, u) = 0$$

for all U of $\mathfrak{X}(\tilde{M})$ and x of L_u . Thus we have that $g_u(\xi, U) = 0$ for all ξ of $\mathfrak{X}(L_u)$ and U of $\mathfrak{X}(\tilde{M})$, or equivalently that the tangent space of L_u at f(u) is equal to the normal space of \tilde{M} at u. Further,

$$\rho(\xi_1 \cdots \xi_k | U)(u) = 0 \tag{4.1}$$

for any $k \ge 2$. Hence the second fundamental tensor γ of L_u is defined by the condition

$$g(\gamma(\xi, \zeta), \tilde{U}) = -\rho(\xi \zeta | \tilde{U})$$

for all \tilde{U} of $Sec(N(L_u))$. Next the third fundamental tensor δ of L_u is given by

$$\delta(\xi,\,\zeta,\,\eta) = \delta_1(\xi,\,\zeta,\,\eta) - \nabla_{\xi}^{\perp}\gamma(\zeta,\,\eta) - \nabla_{\zeta}^{\perp}\gamma(\xi,\,\eta)$$

PROPOSITION 6. Let L_u be a minimum contrast leaf through u of a subspace \tilde{M} . Then the tensors γ and δ for L_u , defined as above, vanish at u.

PROOF. The result follows from (4.1) with k = 2, 3.

References

- [1] S.-I. Amari, Differential-Geometrical methods in Statistics, Lecture Note in Statistics. 28, Springer Verlag (1985).
- [2] S. Eguchi, A differential geometric approach to statistical inference on the basis of contrast functions, Hiroshima Math. J. 15 (1985), 341–391.
- [3] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Wiley, New York (1963).
- [4] S. L. Lauritzen, Statistical Manifolds, Institute of Mathematical Statistics-Monograph series. 10 (1987), 96-163.
- [5] O. Loos, Symmetric space, Benjamine, New York (1969).
- [6] H. Nagaoka and S.-I. Amari, Differential geometry of smooth families of probability distributions, METR 82-7, University of Tokyo (1982).

Department of Mathematics, Faculty of Sciences, Shimane University