Note on singular semilinear elliptic equations

Yasuhiro FURUSHO

(Received August 20, 1991)

1. Introduction

In this note we study the existence of positive entire solutions for the singular semilinear elliptic equation

(1)
$$-\Delta u + c(x)u = p(x)u^{-\gamma}, \quad x \in \mathbb{R}^N, \ N \ge 3, \ \gamma > 0$$

under the the hypothesis

(H) c and p are locally Hölder continuous functions in \mathbb{R}^N with exponent θ , $0 < \theta < 1$, and $c(x) \ge 0$ in \mathbb{R}^N .

An entire solution of (1) is defined to be a function $u \in C^{2+\theta}_{loc}(\mathbb{R}^N)$ satisfying (1) pointwise in \mathbb{R}^N .

For the equation (1) with $c(x) \equiv 0$, i.e.,

(2)
$$-\Delta u = p(x)u^{-\gamma}, \quad x \in \mathbb{R}^N, N \ge 3,$$

Kusano and Swanson [9] proved the existence of a positive entire solution u such that $|x|^{N-2}u(x)$ is bounded above and below as $|x| \to \infty$ under the assumptions that $0 < \gamma < 1$, p(x) > 0 in \mathbb{R}^{N} and

(3)
$$\int_{0}^{\infty} t^{N-1+\gamma(N-2)} p^{*}(t) dt < \infty,$$

where $p^*(t) = \max_{|x|=t} p(x)$. This result was extended afterwards by Dalmasso [2] to cover the case $\gamma \ge 1$.

On the other hand, for the equation (1) with negative γ , it is known that if $-1 < \gamma < 0$, and p(x) satisfies p(x) > 0, $\neq 0$ in \mathbb{R}^{N} and

(4)
$$\int_{-\infty}^{\infty} t p^*(t) dt < \infty,$$

then there exists a positive entire solution decaying to 0 at infinity (see e.g. [4], [6], [7] and [10]). However, as far as we are aware, no such result is obtained for the singular type equation (1) under the condition (4).

Our first result, Theorem 1 below, concerns the existence of positive entire solutions of (1) which have uniform positive limits at infnity. In Theorem 2, we show that there exists a decaying entire solution of (1) under the condition

(4). Finally, Theorem 3 gives an extension of the results of Kusano and Swanson [9] and Dalmasso [2] stated above. Our proof of Theorem 3 is simpler than that of Dalmasso [2].

For other closely related papers to this note we refer to the papers [3-5, 8, 11]. Among them, Fukagai [5] has studied the existence and asymptotic behavior at infinity of positive entire solutions of (1) with $c(x) \equiv m^2 > 0$, where *m* is a constant.

2. Statement of theorems

THEOREM 1. Assume that (H) holds. If

(5)
$$\int_{0}^{\infty} tc^{*}(t) dt < \infty \text{ and } \int_{0}^{\infty} tp^{*}(t) dt < \infty,$$

where $c^*(t) = \max_{|x|=t} c(x)$ and $p^*(t) = \max_{|x|=t} |p(x)|$, then there exist infinitely many positive entire solutions u of (1) such that

$$\lim_{|x|\to\infty}u(x)=\xi$$

for some constants $\xi > 0$.

THEOREM 2. Assume that (H) holds and that $p(x) \ge 0$, $\ne 0$, in \mathbb{R}^N . Then, condition (4) is sufficient for (1) to have a positive entire solution u tending uniformly to 0 as $|x| \rightarrow \infty$.

THEOREM 3. Assume that (H) holds (with $c(x) \equiv 0$) and $p(x) \ge 0$, $\neq 0$ in \mathbb{R}^{N} . Then, condition (3) is sufficient for (2) to have a positive entire solution u such that

(7)
$$k^{-1}|x|^{2-N} \le u(x) \le k|x|^{2-N}, \quad |x| \ge 1,$$

for some constant k > 1.

REMARK 1. Theorem 3 has been proved by Kusano and Swanson [9] and Dalmasso [2] under the condition that $k_0 p^*(|x|) \le p(x) \le p^*(|x|)$ in \mathbb{R}^N for some $0 < k_0 \le 1$. We note that this condition is not assumed in Theorem 3.

3. Proof of theorems

The proofs of Theorems 1-3 are based on the following supersolutionsubsolution method by Akô and Kusano [1].

THEOREM 0. Assume that (H) holds. If there exist functions V and $W \in C_{loc}^{\theta}(\mathbb{R}^N)$ such that

(8)
$$- \Delta V(x) + c(x)V(x) \le p(x)V(x)^{-\gamma}, \qquad x \in \mathbb{R}^N,$$

(9)
$$-\Delta W(x) + c(x)W(x) \ge p(x)W(x)^{-\gamma}, \qquad x \in \mathbb{R}^N,$$

(10)
$$0 < V(x) \le W(x), \qquad x \in \mathbf{R}^N,$$

then (1) has an entire solution u satisfying $V(x) \le u(x) \le W(x)$ in \mathbb{R}^{N} .

A function V(resp. W) satisfying (8) (resp. (9)) is called a subsolution (resp. a supersolution) of (1).

PROOF OF THEOREM 1. Consider the linear elliptic equations

(11)
$$-\Delta v + c(x)v = -|p(x)|, \qquad x \in \mathbb{R}^N,$$

(12)
$$-\Delta w + c(x)w = |p(x)|, \quad x \in \mathbb{R}^N.$$

By (5) and [7; Theorem 2.2] there exist positive solutions v and w in $C_{loc}^{2+\theta}(\mathbb{R}^N)$ of (11) and (12), respectively, such that

(13)
$$\lim_{|x|\to\infty} v(x) = \lim_{|x|\to\infty} w(x) = \tilde{\xi}$$

for some constant $\tilde{\xi} > 0$. Furthermore, the maximum principle combined with (11)–(13) implies the relation

(14)
$$0 < v(x) \le w(x), \qquad x \in \mathbb{R}^N.$$

For any fixed $\kappa \ge (\inf_{x \in \mathbb{R}^N} v(x))^{-\gamma/(1+\gamma)}$, put $V(x) = \kappa v(x)$ and $W(x) = \kappa w(x)$ for $x \in \mathbb{R}^N$. Then, the functions V and W are a subsolution and a supersolution of (1), respectively, and satisfy (10). In fact,

$$- \Delta V(x) + c(x)V(x) = -\kappa |p(x)|$$

= $-\kappa V(x)^{\gamma} |p(x)| V(x)^{-\gamma} \le - |p(x)| V(x)^{-\gamma}$
 $\le p(x)V(x)^{-\gamma}, \quad x \in \mathbb{R}^{N}.$

A similar argument holds for W. Therefore, the existence of a solution u of (1) lying between V and W follows from Theorem 0. Furthermore, by (13) u(x) tends to $\kappa \xi$ as $|x| \to \infty$. Since κ can be taken arbitrarily as above, equation (1) has an infinitude of entire solutions satisfying (6). This completes the proof.

PROOF OF THEOREM 2. Take a positive function $\tilde{p}^* \in C^{\theta}_{\text{loc}}[0, \infty)$ such that

Yasuhiro FURUSHO

(15)
$$\tilde{p}^*(t) \ge p^*(t), t > 0, \text{ and } \int_{-\infty}^{\infty} t \tilde{p}^*(t) dt < \infty.$$

Suggested by the proof of Theorem 10 in Fukagai [5], we define a function y by

(16)
$$y(t) = \left(\frac{N-2}{1+\gamma}\int_{t}^{\infty} t\tilde{p}^{*}(t) dt\right)^{1/(1+\gamma)}, \quad t \ge 0.$$

Then, y satisfies y(t) > 0 for $t \ge 0$, $\lim_{t\to\infty} y(t) = 0$ and

(17)
$$y'(t) = -\frac{1}{N-2} t \tilde{p}^*(t) y(t)^{-\gamma}, \quad t > 0,$$

where ' = d/dt. Integrating (17) from t to ∞ , we obtain

(18)
$$y(t) = \frac{1}{N-2} \int_{t}^{\infty} s \tilde{p}^{*}(s) y(s)^{-\gamma} ds, \qquad t \ge 0.$$

Using this y, we define a function z by

$$\begin{cases} z(t) = y(0) & \text{for } t = 0, \\ z(t) = \frac{t^{2-N}}{N-2} \int_0^t s^{N-1} \tilde{p}^*(s) y(s)^{-\gamma} ds + \frac{1}{N-2} \int_t^\infty s \tilde{p}^*(s) y(s)^{-\gamma} ds & \text{for } t > 0. \end{cases}$$

Then, z is a solution of the boundary value problem

(20)
$$z''(t) + \frac{N-1}{t} z'(t) = -\tilde{p}^*(t) y(t)^{-\gamma}, \quad t > 0,$$

(21)
$$z'(0) = 0 \text{ and } \lim_{t \to \infty} z(t) = 0.$$

The relation (20) and z'(0) = 0 follow from (19). Integrating the first term in (19) by parts and using (17), we obtain

$$z(t) = (N-2)t^{2-N} \int_0^t s^{N-3} y(s) \, ds, \qquad t > 0$$

which implies that $\lim_{t\to\infty} z(t) = 0$. The relation (20) means that the function W(x) = z(|x|) satisfies

$$-\Delta W(x) = \tilde{p}^*(|x|)y(|x|)^{-\gamma}, \qquad x \in \mathbf{R}^N.$$

Since $c(x) \ge 0$ and $z(t) \ge y(t)$ by (18) and (19), we see that

(22)
$$-\Delta W(x) + c(x)W(x) \ge \tilde{p}^*(|x|)W(x)^{-\gamma} \ge p(x)W(x)^{-\gamma}, \qquad x \in \mathbb{R}^N,$$

which means that W is a supersolition of (1).

To construct a subsolution, we take a function $v \in C^{2+\theta}_{loc}(\mathbb{R}^N)$ such that

(23)
$$\begin{cases} -\Delta v(x) + c(x)v(x) = p(x), & x \in \mathbb{R}^N, \\ v(x) > 0, & x \in \mathbb{R}^N \text{ and } \lim_{|x| \to \infty} v(x) = 0. \end{cases}$$

The existence of such a v is guaranteed by (4) and [7; Theorem 2.2]. Let

$$\kappa = \min\left\{(\sup_{x \in \mathbb{R}^N} v(x))^{-\gamma/(1+\gamma)}, \ (\sup_{x \in \mathbb{R}^N} W(x))^{-\gamma}\right\},\$$

and define $V(x) = \kappa v(x)$ for $x \in \mathbb{R}^N$. Then, V is a subsolution of (1), since (24) $- \Delta V(x) + c(x)V(x) = \kappa p(x) = \kappa p(x)V(x)^{-\gamma}V(x)^{\gamma} \le p(x)V(x)^{-\gamma}, \quad x \in \mathbb{R}^N.$

Furthermore, from (22), (24) and the inequalities

$$\kappa p(x) \leq (\sup_{x \in \mathbb{R}^N} W(x))^{-\gamma} p(x) \leq p(x) W(x)^{-\gamma}, \qquad x \in \mathbb{R}^N,$$

it follows that

$$\begin{cases} -\Delta(W(x) - V(x)) + c(x)(W(x) - V(x)) \ge 0, & x \in \mathbb{R}^{N}, \\ \lim_{|x| \to \infty} (W(x) - V(x)) = 0. \end{cases}$$

Applying the maximum principle to W - V, we see that $V(x) \le W(x)$ in \mathbb{R}^{N} . Consequently, the assertion of Theorem 2 follows from Theorem 0. This completes the proof.

PROOF OF THEOREM 3. Since $\int_{0}^{\infty} t^{N-1} p^{*}(t) dt < \infty$ by (3), from [6; Corollary 3.1] there exists a unique positive function $v \in C^{2+\theta}_{loc}(\mathbb{R}^{N})$ such that

(25)
$$\begin{cases} -\Delta v(x) = p(x), & x \in \mathbb{R}^{N} \\ k_{1}^{-1} |x|^{2-N} \le v(x) \le k_{1} |x|^{2-N}, & |x| \ge 1, \text{ for some } k_{1} > 1. \end{cases}$$

Then, as in the proof of Theorem 2, the function $V(x) = \kappa v(x)$ with $\kappa = (\sup_{x \in \mathbb{R}^N} v(x))^{-\gamma/(1+\gamma)}$ is a subsolution of (2).

To construct a supersolution of (2), let us solve the linear equation

(26)
$$-\Delta w = p(x)V(x)^{-\gamma}, \quad x \in \mathbb{R}^{N}.$$

By (3) and (25), the function $g^*(t) = \max_{|x|=t} \{p(x)V(x)^{-\gamma}\}$ satisfies

$$\int_{0}^{\infty} t^{N-1} g^{*}(t) dt \leq \text{constant} \int_{0}^{\infty} t^{N-1+\gamma(N-2)} p^{*}(t) dt < \infty$$

Hence, by [6; Corollary 3.1] there exists a positive solution $w \in C^{2+\theta}_{loc}(\mathbb{R}^N)$ of (26) such that

(27)
$$k_2^{-1} |x|^{2-N} \le w(x) \le k_2 |x|^{2-N}, \quad |x| \ge 1$$

for some $k_2 > 1$. Choosing a constant $\mu \ge 1$ large enough so that $\mu w(x) \ge V(x)$ in \mathbb{R}^N , we see that the function $W = \mu w$ satisfies

(28)
$$-\Delta W(x) = \mu p(x) V(x)^{-\gamma} \ge p(x) V(x)^{-\gamma} \ge p(x) W(x)^{-\gamma}, \qquad x \in \mathbb{R}^N.$$

Therefore, by Theorem 0 there exists a solution u of (2) such that $0 < V(x) \le u(x) \le W(x)$ in \mathbb{R}^{N} . This solution obviously satisfies the relation (7) by (25) and (27). Thus the proof is completed.

References

- K. Akô and T. Kusano, On bounded solutions of second order elliptic differential equations, J. Fac. Sci. Univ. Tokyo, Sect. I, 11 (1964), 29-37.
- [2] R. Dalmasso, Solutions d'équations elliptiques semi-linéaires singulières, Ann. Mat. Pura Appl. (IV), 153 (1988), 191-202.
- [3] A. L. Edelson, Entire solutions of singular elliptic equations, J. Math. Anal. Appl., 139 (1989), 523-532.
- [4] N. Fukagai, Existence and uniqueness of entire solutins of second order sublinear elliptic equations, Funkcial. Ekvac., 29 (1986), 151-165.
- [5] N. Fukagai, Positive entire solutins of semilinear elliptic equations, Math. Ann., 274 (1986), 75-93.
- [6] Y. Furusho, On decaying entire positive solutions of semilinear elliptic equations, Japan. J. Math., 14 (1988), 97-118.
- [7] Y. Furusho, Existence of global positive solutions of quasilinear elliptic equations in unbounded domains, Funkcial. Ekvac., 32 (1989), 227-242.
- [8] N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima Math. J., 14 (1984), 125–158.
- [9] T. Kusano and C. A. Swanson, Entire positive solutions of singular semilinear elliptic equations, Japan. J. Math., 11 (1985), 145-155.
- [10] T. Kusano and C. A. Swanson, Decaying entire positive solutions of quasilinear elliptic equations, Monatsh. Math., 101 (1986), 39-51.
- [11] W.-M. Ni, On the elliptic equation $\Delta u + K(x)u^{(n+2)/(n-2)} = 0$, its generalizations, and applications in geometry, Indiana Univ. Math. J., **31** (1982), 493-529.

Department of Mathematics, Faculty of Science and Engineering, Saga University