Congruences between binomial coefficients $\binom{2 f}{f}$ and
 Fourier coefficients of certain $\boldsymbol{\eta}$-products

Tsuneo Ishikawa
(Received May 21, 1991)
(Revised July 16, 1991)

§ 1. Introduction

Let k and l be positive integers with $(k, l)=1$. Let p be a prime, $p \equiv l$ $\bmod k$ and the integer f is defined by $p=k f+l$. We consider the congruences modulo p of binomial coefficients of the form $\binom{2 f}{f}$. In the classical results,
for $k=4$ and $l=1$, Gauss proved that

$$
\binom{2 f}{f} \equiv 2 a \bmod p
$$

where $p=a^{2}+b^{2}=4 f+1$ and $a \equiv 1 \bmod 4$. For $k=3$ and $l=1$, Jacobi proved that

$$
\binom{2 f}{f} \equiv-a \bmod p
$$

where $4 p=a^{2}+27 b^{2}$ and $a \equiv 1 \bmod 3$. Moreover, the number $2 a$ (resp. $-a$) can be regarded as the p-th Fourier coefficient of the cusp form of CM-type associated with the Hecke character of $\mathbb{Q}(\sqrt{-1})$ (resp. $\mathbb{Q}(\sqrt{-3})$). In the recent results, for $l=1$ and $k \leq 24$, these were studied by Hudson and Williams [4] using Jacobi sums.

In this paper, we shall prove the congruence properties between binomial coefficients $\binom{2 f}{f}$ and Fourier coefficients of certain η-products:

Theorem 1. Let k and l be the above and put $m=4 l / k$. Write

$$
\sum_{n=1}^{\infty} \gamma_{n}^{(k, l)} q^{n}=\eta(k \tau)^{2} \eta(2 k \tau)^{1+m} \eta(4 k \tau)^{3-3 m} \eta(8 k \tau)^{2 m-2}
$$

where $\eta(\tau)=q^{1 / 24} \prod_{n=0}^{\infty}\left(1-q^{n}\right)$ is the Dedekind η-function with $q=e^{2 \pi i \tau}$ and
$\operatorname{Im} \tau>0$. Then, for $p \equiv l \bmod k$ and $p=k f+l$,

$$
\binom{2 f}{f} \equiv(-1)^{f} \gamma_{p}^{(k, l)} \bmod p
$$

For some k and l, η-products in Theorem 1 are non-holomorphic automorphic forms of weight 2 , so they were not very studied for details. But we can obtain the congruence relations like Corollary 1 for the family of these functions.

Our method is an extended analogy of method in Beukers [2] and can be applied to other numbers, too. For example, we can get the congruences of $a\left(\frac{p-l}{k}\right)$ where $a(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}$ are the Apéry numbers appeared in the proof of irrationality of $\zeta(3)$.

§ 2. Proof of Theorem 1

We consider the generating function $F(t)=\sum_{n=0}^{\infty}(-1)^{n}\binom{2 n}{n} t^{n}$. Since the numbers $(-1)^{n}\binom{2 n}{n}$ satisfy the recurrence

$$
\begin{equation*}
(n+1)(-1)^{n+1}\binom{2(n+1)}{n+1}=-2(2 n+1)(-1)^{n}\binom{2 n}{n}, \quad n \geq 0 \tag{1}
\end{equation*}
$$

we have

$$
F(t)=(1+4 t)^{-1 / 2}
$$

Proposition. Let k and l be positive integers with $(k, l)=1$ and $m=4 l / k$. Write

$$
\begin{equation*}
\lambda(\tau)=\left(\eta(2 k \tau) \eta(4 k \tau)^{-3} \eta(8 k \tau)^{2}\right)^{4 / k}=\sum_{n=1}^{\infty} A_{n} q^{n} \quad\left(A_{1}=1\right) . \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
F\left(\lambda^{k}\right) d\left(\lambda^{l}\right)=l\left\{\eta(k \tau)^{2} \eta(2 k \tau)^{m+1} \eta(4 k \tau)^{3-3 m} \eta(8 k \tau)^{2 m-2}\right\} \frac{d q}{q} \tag{3}
\end{equation*}
$$

Remark 1. We may use the branch of k-th roots $x^{1 / k}$ so that it takes positive real values on the positive real axis, i.e., the leading coefficients $\gamma_{l}^{(k, l)}$ and A_{1} in the η-product of Theorem 1 and Proposition are equal to 1 respectively.

Proof of Proposition. First we prove in the case of $k=4$ and $l=1$. We
consider the following congruence modular subgroup

$$
\Gamma_{0}(8)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0 \bmod 8\right\}
$$

It has no elliptic elements, and a set of representatives of inequivalent cusps is $\left\{i \infty, 0, \frac{1}{4}, \frac{1}{2}\right\} . \mathbb{H}^{*} / \Gamma_{0}(8)$ is a curve of genus 0 . Putting

$$
t(\tau)=\eta(2 \tau)^{4} \eta\left(4 \tau^{-12} \eta(8 \tau)^{8}\right.
$$

it is a modular function with respect to $\Gamma_{0}(8)$, and the values at the cusps are given by $t(i \infty)=0$ (simple), $t(0)=\frac{1}{4}, t\left(\frac{1}{4}\right)=\infty$ (simple), and $t\left(\frac{1}{2}\right)=-\frac{1}{4}$. Hence $t(\tau)$ generates the function field of modular functions with respect to $\Gamma_{0}(8)$. Therefore we see that $F^{2}(t(\tau))=\frac{1}{1+4 t(\tau)}$ has a simple pole at $\tau=\frac{1}{2}$ and a simple zero at $\tau=\frac{1}{4} . \quad M_{k}\left(\Gamma_{0}(8)\right)\left(\operatorname{resp} . S_{k}\left(\Gamma_{0}(8)\right)\right.$) denote the space of modular forms (resp. cusp forms) of weight k. It is not hard to check that $t^{-1} \frac{d t}{d \tau}$ is in $M_{2}\left(\Gamma_{0}(8)\right)$ and it has a simple zero at $\tau=0, \frac{1}{2}$. Hence the function

$$
\begin{align*}
\Psi(\tau) & =\left(\frac{1}{2 \pi i}\right)^{4} F^{4}(t(\tau))\left(t^{-1} \frac{d t}{d \tau}\right)^{4} t(\tau) \\
& =q-8 q^{2}+12 q^{3}-64 q^{4}+210 q^{5}-96 q^{6}+\cdots \tag{4}
\end{align*}
$$

is an element of $S_{8}\left(\Gamma_{0}(8)\right)$. We choose

$$
\eta(\tau)^{8} \eta(2 \tau)^{8}=q-8 q^{2}+12 q^{3}-64 q^{4}+210 q^{5}-\cdots
$$

as another form (this is an old form) in $S_{8}\left(\Gamma_{0}(8)\right)$. Since $\operatorname{dim} S_{8}\left(\Gamma_{0}(8)\right)=5$, comparing with the coefficients, we have

$$
\begin{equation*}
\Psi(\tau)=\eta(\tau)^{8} \eta(2 \tau)^{8} \tag{5}
\end{equation*}
$$

Taking 4-th roots with Remark 1 and replacing τ by 4τ, we have

$$
\begin{equation*}
F\left(\lambda^{4}\right) d \lambda=\eta(4 \tau)^{2} \eta(8 \tau)^{2} d q / q \tag{6}
\end{equation*}
$$

In the general case, from (4) and (5), we see

$$
\begin{aligned}
\Psi_{k, l}(\tau) & =\left(\frac{1}{2 \pi i}\right)^{k} F(t(\tau))^{k}\left(t^{-1} \frac{d t}{d \tau}\right)^{k} t(\tau)^{l} \\
& =\eta(\tau)^{2 k} \eta(2 \tau)^{4 l+k} \eta(4 \tau)^{3 k-12 l} \eta(8 \tau)^{8 l-2 k}
\end{aligned}
$$

Hence our proposition forllows from taking k-th roots and replacing τ by $k \tau$.
Remark 2. When $k=4$ and $l=1$, since the function

$$
\sum_{n=1}^{\infty} \gamma_{n} q^{n}=\eta(4 \tau)^{2} \eta(8 \tau)^{2}
$$

is the unique cusp form in $S_{2}\left(\Gamma_{0}(32)\right)$, applying Beukers [2, Prop. 3] to (3), for any $m, r \in \mathbb{N}, m \equiv 1 \bmod 4$ and any prime $p \equiv 1 \bmod 4$, we have

$$
\begin{aligned}
& \binom{\left(m p^{r}-1\right) / 2}{\left(m p^{r}-1\right) / 4}(-1)^{\left(m p^{r-1}\right) / 4}-\gamma_{p}\binom{\left(m p^{r-1}-1\right) / 2}{\left(m p^{r-1}-1\right) / 4}(-1)^{\left(m p^{r-1}-1\right) / 4} \\
& \quad+p\binom{\left(m p^{r-2}-1\right) / 2}{\left(m p^{r-2}-1\right) / 4}(-1)^{\left(m p^{r-2}-1\right) / 4} \equiv 0 \quad \bmod p^{r}
\end{aligned}
$$

These congruences are quite Atkin-Swinnerton-Dyer type associated to the elliptic curve: $y^{2}=x^{3}+2 x$ (see Atkin-Swinnerton-Dyer [1]).

In our case, we can not use directly the method of Beukers [2] or Stienstra-Beukers [6, Th. A9] because the non-holomorphy of η-products of the right hand of Proposition obstructs that we apply the theory of the Hecke operators to them. But the following lemma is useful.

Lemma. Let p be a prime and

$$
\omega(t)=\sum_{n=1}^{\infty} b_{n} t^{n-1} d t
$$

be a differential form with $b_{n} \in \mathbb{Z}_{p}$. Let $t(u)=\sum_{n=1}^{\infty} c_{n} u^{n}$ with $c_{n} \in \mathbb{Z}_{p}, c_{1}$ is a p-adic unit, and suppose

$$
\omega(t(u))=\sum_{n=1}^{\infty} d_{n} u^{n-1} d u .
$$

Then $d_{p} \equiv c_{1} b_{p} \bmod p$.
Proof. It is clear that

$$
\omega(t)-b_{p} t^{p-1} d t=t^{p} G_{1}(t) d t+d G_{2}(t), \quad G_{1}(t), G_{2}(t) \in \mathbb{Z}_{p}[[t]] .
$$

It is straightforward to see that

$$
t^{p-1} d t=c_{1}^{p} u^{p-1} d u+u^{p} G_{3}(u) d u, \quad G_{3}(u) \in \mathbb{Z}_{p}[[u]] .
$$

Then we can write

$$
\omega(t(u))-b_{p} c_{1}^{p} u^{p-1} d u=u^{p} G_{4}(u) d u+d G_{5}(u), \quad G_{4}(u), G_{5}(u) \in \mathbb{Z}_{p}[[u]]
$$

Hence

$$
d_{p}-b_{p} c_{1}^{p} \equiv d_{p}-b_{p} c_{1} \equiv 0 \bmod p
$$

Now, (2) and (3) satisfy the condition of Lemma because the denominators of the coefficients of q-expansion do not divide p. Comparing with the equation

$$
\frac{1}{l} F\left(\lambda^{k}\right) d\left(\lambda^{l}\right)=\sum_{n=1}^{\infty}(-1)^{n}\binom{2 n}{n} \lambda^{k n+l-1} d \lambda=\sum_{n=0}^{\infty} \gamma_{n}^{(k, l)} q^{n-1} d q
$$

we have proof of our Theorem 1.
Examples. Let $k=4$ and $l=3$. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} \gamma_{n}^{(4,3)} q^{n} & =\eta(4 \tau)^{2} \eta(8 \tau)^{4} \eta(16 \tau)^{-6} \eta(32 \tau)^{4} \\
& =q^{3}-2 q^{7}-5 q^{11}+10 q^{15}+13 q^{19}+\cdots
\end{aligned}
$$

If $p=11$ then $\binom{2 f}{f}=\binom{4}{2}=6 \equiv-5=\gamma_{1 i}^{(4,3)} \quad \bmod 11$.
If $p=19$ then $\binom{2 f}{f}=\binom{8}{4}=70 \equiv 13=\gamma_{19}^{(4,3)} \quad \bmod 19$.
This form is the non-holomorphic automorphic form of weight 2 with respect to $\Gamma_{0}(32)$, but we do not know about the properties of $\gamma_{p}^{(4,3)}$.

Let $k=5$ and $l=2$. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} \gamma_{n}^{(5,2)} q^{n} & =\eta(5 \tau)^{2} \eta(10 \tau)^{13 / 5} \eta(20 \tau)^{-9 / 5} \eta(40 \tau)^{6 / 5} \\
& =q^{2}-2 q^{7}-\frac{18}{5} q^{12}+\frac{36}{5} q^{17}+\frac{122}{25} q^{22}-\cdots
\end{aligned}
$$

If $p=7$ then $\binom{2 f}{f}=\binom{2}{1}=2 \equiv-(-2)=(-1) \gamma_{7}^{(5,2)} \quad \bmod 7$.
If $p=17$ then $\binom{2 f}{f}=\binom{6}{3}=20 \equiv-\left(\frac{36}{5}\right)=(-1)^{3} \gamma_{17}^{(5,2)} \quad \bmod 17$.
The following corollary is obtained by applying the consequence of our theorem to the recurrence (1).

Corollary 1. Let k, l and $\gamma_{n}^{(k, l)}$ be the above. Then, for $p \equiv l \bmod k$,

$$
l \gamma_{p}^{(k, l)} \equiv-2(2 l+k) \gamma_{p}^{(k, k+l)} \bmod p
$$

§3. Applications

We can try to apply our method to other numbers of which the generating function satisfy the differential equation of the form

$$
F\left(\lambda(\tau)^{k}\right) d \lambda(\tau)=G(\tau) \frac{d q}{q} .
$$

and several examples can be seen in Beukers [2] and Stienstra-Beukers [6].
Let

$$
a(n)=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}, \quad n>0
$$

be Apéry numbers with the proof of irrationality of $\zeta(3)$. Beukers [2, Prop. 1] proved that the generating function

$$
A(t)=\sum_{n=0}^{\infty} a(n) t^{n}
$$

satisfies

$$
A\left(\lambda^{2}\right) d \lambda=\left\{\eta(2 \tau)^{4} \eta(4 \tau)^{4}-9 \eta(6 \tau)^{4} \eta(12 \tau)^{4}\right\} \frac{d q}{q},
$$

where $\lambda(\tau)=\eta(2 \tau)^{6} \eta(4 \tau)^{-6} \eta(6 \tau)^{-6} \eta(12 \tau)^{6}$. Extending of this in the same method of Proposition, we have

$$
\begin{aligned}
A\left(\lambda^{k}\right) d\left(\lambda^{l}\right)= & l\left\{\eta(k \tau)^{m-2} \eta(2 k \tau)^{10-m} \eta(3 k \tau)^{6-m} \eta(6 k \tau)^{m-6}\right. \\
& \left.-9 \eta(k \tau)^{m-6} \eta(2 k \tau)^{6-m} \eta(3 k \tau)^{10-m} \eta(6 k \tau)^{m-2}\right\} \frac{d q}{q},
\end{aligned}
$$

where $\lambda(\tau)=\{\eta(k \tau) \eta(2 k \tau) \eta(3 k \tau) \eta(6 k \tau)\}^{12 / k}$ and $m=12 l / k$. Consequently, by Lemma, we have

Theorem 2. Let k, l be positive integers with $(k, l)=1$ and write for $m=12 l / k$,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \xi_{n}^{(k, l)} q^{n}= & \eta(k \tau)^{m-2} \eta(2 k \tau)^{10-m} \eta(3 k \tau)^{6-m} \eta(6 k \tau)^{m-6} \\
& -9 \eta(k \tau)^{m-6} \eta(2 k \tau)^{6-m} \eta(3 k \tau)^{10-m} \eta(6 k \tau)^{m-2}
\end{aligned}
$$

Then, for any prime $p \equiv l \bmod k$,

$$
a\left(\frac{p-l}{k}\right) \equiv \xi_{p}^{(k, l)} \quad \bmod p
$$

Since the Apéry numbers $a(n)$ satisfy the recurrence

$$
(n+1)^{3} a(n+1)-\left(34 n^{3}+51 n^{2}+27 n+5\right) a(n)+n^{3} a(n-1)=0, \quad n>1,
$$

the following corollary is an easy consequence.
Corollary 2. Let k, l and $\xi_{n}^{(k, l)}$ be the above. Then for any prime $p \equiv l$ $\bmod k$,

$$
\begin{aligned}
& l^{3} \xi_{p}^{(k, l)}+(k+l)^{3} \xi_{p}^{(k, l+2 k)} \\
& \quad \equiv\left(34 l^{3}+52 l^{2} k+27 l k^{2}+5 k^{3}\right) \xi_{p}^{(k, l+k)} \quad \bmod p
\end{aligned}
$$

We cite an another example. For the numbers $\binom{2 n}{n}^{2}, n \geq 0$, Steinstra
Beukers [6] proved that the generating function

$$
F_{1}(t)=\sum_{n=0}^{\infty}\binom{2 n}{n}^{2} t^{n}
$$

satisfies

$$
F_{1}\left(\lambda^{4}\right) d \lambda=\eta(4 \tau)^{6} \frac{d q}{q},
$$

where $\lambda(\tau)=\eta(4 \tau)^{2} \eta(8 \tau)^{-6} \eta(16 \tau)^{4}$. Extending of this in same method, we have

$$
F_{1}\left(\lambda^{k}\right) d\left(\lambda^{l}\right)=\operatorname{l\eta }(k \tau)^{m+2} \eta(2 k \tau)^{6-3 m} \eta(4 k \tau)^{2 m-8} \frac{d q}{q},
$$

where $\lambda(\tau)=\left\{\eta(k \tau) \eta(2 k \tau)^{-3} \eta(4 k \tau)^{2}\right\}^{8 / k}$ and $m=8 l / k$. Consequently,
Theorem 3. Let k, l be positive integers with $(k, l)=1$ and write for $m=8 l / k$,

$$
\sum_{n=1}^{\infty} \alpha_{n}^{(k, l)} q^{n}=\eta(k \tau)^{m+2} \eta(2 k \tau)^{6-2 m} \eta(4 k \tau)^{2 m-8}
$$

Then, for any prime $p \equiv l \bmod k$ and $p=k f+l$,

$$
\binom{2 f}{f}^{2} \equiv \alpha_{p}^{(k, l)} \quad \bmod p
$$

Combining this with Theorem 1, we can obtain the congruences of Fourier coefficients of the automorphic forms of the different weights.

Corolary 3. Let $k, l, \gamma_{n}^{(k, l)}$ and $\alpha_{n}^{(k, l)}$ be the above. Then, for $p \equiv l \bmod k$,

$$
\alpha_{p}^{(k, l)} \equiv\left\{\gamma_{p}^{(k, l)}\right\}^{2} \quad \bmod p
$$

References

[1] A.O. L. Atkin and H. P.F.Swinnerton-Dyer, Modular forms on noncongruence subgroups, "Combinatorics", 1-25, Providence, Amer. Math. Soc. 1979.
[2] F. Beukers, Another congruences of the Apéry numbers, J. Number Theory 25 (1987), 201-210.
[3] T. Honda, Invariant differentials and L-function. Reciprocity law for quadratic fields and elliptic curves over \mathbb{Q}, Rend. Sem. Math. Univ. Padova 49 (1973), 322-335.
[4] R. H. Hudson and K. S. Williams, Binomial coefficients and Jacobi sums, Trans. Amer. Math. Soc. 281 (1984), 431-505.
[5] S. Lang, Introduction to modular forms, G. M. W. 222, Springer, 1976.
[6] J. Stienstra and F. Beukers, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3 surfaces, Math. Ann. 271 (1985), 269-304.

Department of Mathematics, Faculty of Science, Kobe University

