Estimates of the euclidean span for an open Riemann surface of genus one

Makoto Masumoto
(Received July 15, 1991)

1. Introduction

Every open Riemann surface of finite genus can be embedded conformally into a compact Riemann surface of the same genus. On the basis of [5], M. Shiba and K. Shibata gave in [7] a new proof of this classical theorem, and introduced the notion of hydrodynamic continuation. Their proof was of global character.

In [6] M. Shiba studied the set of compact continuations of an open Riemann surface of genus one in detail. He proved, among others, that the moduli set of compact continuations of a fixed marked open Riemann surface R of genus one is precisely a closed disk (or a point) in the upper half plane and that there is a bijection between the boundary of the closed disk and the set of hydrodynamic continuations of R. These results considerably improved Heins' result [2, Theorem 2]. The euclidean (resp. noneuclidean) diameter of the closed disk is called the euclidean (resp. hyperbolic) span for R (cf. Shiba-Shibata [8]). These spans represent the size of the ideal boundary of R. For example, the hyperbolic (or euclidean) span vanishes if and only if $R \in O_{A D}$ (see [6, Theorem 6]).

It seems that only few quantitative results about the moduli set are known. Shiba-Shibata [8] have calculated, using Jacobi's elliptic functions, the hyperbolic span explicitly for a strongly symmetric marked torus with a horizontal slit, and applied the formulae to estimate the hyperbolic span for an arbitrary marked torus with a horizontal slit. The results are rather complicated, however.

In this paper we consider an open Riemann surface (of genus one) of the form $R=\tilde{R} / G$, where G is a group generated by two translations of \mathbb{C} and \tilde{R} is a G-invariant domain of \mathbb{C}. By applying the length-area method we will give simple estimates of the euclidean span for R.

In the next section, after summarizing Shiba's results [6], we will state our main results. One of the hydrodynamic continuations of R has the smallest (normalized) area among the compact continuations of R. In §3 we will characterize the area in terms of the moduli of ring domains on R and
the modulus of a curve family. Our main results will be proved in $\S 4$. In the final section we treat the case where R is a torus with horizontal slits.

2. Main results

Let T be a torus (i.e., a compact Riemann surface of genus one). An ordered pair $\left\{a_{T}, b_{T}\right\}$ of generators for the fundamental group of T is called a marking of T if the intersection number of a_{T} and b_{T} is 1 . The modulus of T with respect to the marking $\left\{a_{T}, b_{T}\right\}$, or the modulus of the marked torus ($T,\left\{a_{T}, b_{T}\right\}$), is the period

$$
\tau=\int_{b_{T}} \varphi^{T}
$$

of φ^{T} along b_{T}, where φ^{T} is the holomorphic differential on T with period 1 along a_{T}. It is well known that $\operatorname{Im} \tau>0$.

Now, we summarize some results of Shiba [6]. Let R be an open Riemann surface of genus one, and fix a canonical homology basis $\{a, b\}$ of R modulo dividing cycles. The system $\{a, b\}$ may be regarded as a set of generators for the fundamental group of the Kerékjártó-Stoïlow compactification of R (cf. Richards [3]). The pair ($R,\{a, b\}$) is called a marked open Riemann surface. If there is a conformal embedding j of R into a torus T with marking $\left\{a_{T}, b_{T}\right\}$ such that $j(a)$ and $j(b)$ are freely homotopic to a_{T} and b_{T} in T respectively, then the triple $\left(T,\left\{a_{T}, b_{T}\right\}, j\right)$ is said to be a marked realization of $(R,\{a, b\})$. Two marked realizations $\left(T,\left\{a_{T}, b_{T}\right\}, j\right)$ and ($\left.T^{\prime},\left\{a_{T^{\prime}}^{\prime}, b_{T^{\prime}}^{\prime}\right\}, j^{\prime}\right)$ are defined to be equivalent if there exists a conformal mapping f of T onto T^{\prime} such that $f \circ j=j^{\prime}$. An equivalence class $\left[T,\left\{a_{T}, b_{T}\right\}, j\right]$ is called a compact continuation of $(R,\{a, b\})$.

By the modulus of a marked realization ($T,\left\{a_{T}, b_{T}\right\}, j$) we mean the modulus of T with respect to $\left\{a_{T}, b_{T}\right\}$. Then equivalent marked realizations have the same modulus so that we can speak of the modulus of a compact continuation. Let $M(R,\{a, b\})$ denote the set of the moduli of all compact continuations of $(R,\{a, b\})$. Then, by Shiba [6, Theorem 5], $M(R,\{a, b\})$ is a closed disk (or a point), say $\left\{\tau \in \mathbb{C}\left|\left|\tau-\tau^{*}\right| \leq r\right\}\right.$, in the upper half plane. The euclidean (resp. noneuclidean) diameter of $M(R,\{a, b\})$ is called the euclidean (resp. hyperbolic) span for the marked open Riemann surface ($R,\{a, b\}$) (cf. Shiba-Shibata [8]).

For each $t \in(-1,1]$ there is a unique holomorphic differential φ_{t} on R with $\int_{a} \varphi_{t}=1$ such that $\operatorname{Im}\left[e^{-i \pi t / 2} \varphi_{t}\right]$ is a distinguished harmonic differential of Ahlfors (cf. [1, V.21D]). Furthermore, there is a marked realization
$\left(T_{t},\left\{a_{t}, b_{t}\right\}, j_{t}\right)$ of $(R,\{a, b\})$ such that the transplant of φ_{t} via j_{t}^{-1} extends to a holomorphic differential $\varphi^{T_{t}}$ on T_{t} with period 1 along a_{t} and that $T_{t} \backslash j_{t}(R)$ is of zero area. We can choose a_{t} and b_{t} to be geodesics with respect to the metric $\left|\varphi^{T_{t}}\right|$. Then each component of $T_{t} \backslash j_{t}(R)$ is a point or a geodesic arc of inclination $\pi t / 2$ with a_{t}. The compact continuation $\left[T_{t},\left\{a_{t}, b_{t}\right\}, j_{t}\right]$ is called the hydrodynamic continuation of $(R,\{a, b\})$ with respect to φ_{t}. Its modulus is $\tau_{t}=\tau^{*}+r \exp [i \pi(t-1 / 2)] \in \partial M(R,\{a, b\})$, and it is the unique compact continuation of ($R,\{a, b\}$) whose modulus is τ_{t} ([6, Theorems 3 and 4]).

When R is a strongly symmetric torus with a horizontal slit, Shiba-Shibata [8] have explicitly calculated the hyperbolic span using Jacobi's elliptic functions. Also, they have obtained an estimate of the hyperbolic span for an arbitrary marked torus with a horizontal slit. The purpose of this paper is to estimate the euclidean span for the marked open Riemann surface ($R,\{a, b\}$) given in the following way. Let G be the group generated by the translations $\alpha(z)=z+1$ and $\beta(z)=z+\tau^{\prime}$ of the complex plane \mathbb{C}, where $\operatorname{Im} \tau^{\prime}>0$. Let $\tilde{R}(\neq \emptyset)$ be a G-invariant proper subdomain of \mathbb{C}. Then the orbit space $R=\tilde{R} / G$ is an open Riemann surface of genus one. We choose a canonical homology basis $\{a, b\}$ of R modulo dividing cycles so that a (resp. b) is covered by a Jordan arc in \tilde{R} from a point z_{0} to $\alpha\left(z_{0}\right)$ (resp. $\beta\left(z_{0}\right)$). Let $T^{\prime}=\mathbb{C} / G$. The inclusion map of \tilde{R} into \mathbb{C} induces an embedding $j^{\prime}: R \rightarrow T^{\prime}$. Setting $a^{\prime}=j^{\prime}(a)$ and $b^{\prime}=j^{\prime}(b)$, we obtain a marked realization ($\left.T^{\prime},\left\{a^{\prime}, b^{\prime}\right\}, j^{\prime}\right)$ of $(R,\{a, b\})$. In particular, $\tau^{\prime} \in M(R,\{a, b\})$. As before, we denote by φ_{t} the holomorphic differential on R with $\int_{a} \varphi_{t}=1$ such that $\operatorname{Im}\left[e^{-i \pi t / 2} \varphi_{t}\right]$ is distinguished. Also, we assume that $M(R,\{a, b\})=\left\{\tau \in \mathbb{C} \| \tau-\tau^{*} \mid \leq r\right\}$ and set $\tau_{t}=\int_{b} \varphi_{t}=\tau^{*}+r \exp [i \pi(t-1 / 2)]$.

We denote one and two dimensional Lebesgue measures by μ_{1} and μ_{2}, respectively. They naturally induce measures on T^{\prime}, which will be denoted by the same letters. Also, we denote by I the orthogonal projection onto the imaginary axis: $I(z)=i \operatorname{Im} z$. The closed segment joining z_{1} to z_{2} is denoted by $\left[z_{1}, z_{2}\right]$.

Theorem 1. Let $l_{1}=\sup \mu_{1}(I(E))$, where the supremum is taken over all components E of $\mathbb{C} \backslash \tilde{R} . \quad$ Set $L=\max \left\{l_{1}-\operatorname{Im} \tau^{\prime}, 0\right\}$. Then

$$
\operatorname{Im} \tau_{0} \leq \frac{\mu_{2}(R)}{L^{2}+1}
$$

and the euclidean span σ for $(R,\{a, b\})$ satisfies

$$
\sigma \geq \operatorname{Im} \tau^{\prime}-\frac{\mu_{2}(R)}{L^{2}+1}
$$

Theorem 1 makes sense when $\mathbb{C} \backslash \tilde{R}$ is large, while the following theorem does when $\mathbb{C} \backslash \tilde{R}$ is small.

Theorem 2. Let $l_{2}=\mu_{1}\left(I(\mathbb{C} \backslash \tilde{R}) \cap\left[0, I\left(\tau^{\prime}\right)\right]\right)$. Then

$$
\operatorname{Im} \tau_{0} \geq \operatorname{Im} \tau^{\prime}-l_{2}
$$

In particular, if $\left[T^{\prime},\left\{a^{\prime}, b^{\prime}\right\}, j^{\prime}\right]$ is the hydrodynamic continuation of $(R,\{a, b\})$ with respect to $\varphi_{t}, t \in(-1,1]$, then the euclidean span σ for $(R,\{a, b\})$ satisfies

$$
\sigma \leq \frac{l_{2}}{\sin ^{2}(\pi t / 2)}
$$

In the next section we give a proposition which is useful in estimating $\operatorname{Im} \tau_{0}$. The above theorems will be proved in $\S 4$.

3. Extremal properties of $\boldsymbol{\varphi}_{\mathbf{0}}$

A linear density (or a metric) $\rho=\rho(z)|d z|$ on a Riemann surface R is an assignment of a Borel measurable nonnegative function $\rho(z)$ to each local coordinate z on R such that $\rho(z)|d z|$ is invariant under coordinate changes. For a linear density $\rho=\rho(z)|d z|$ we set

$$
\|\rho\|=\left(\iint_{R} \rho(z)^{2} d x d y\right)^{1 / 2}
$$

If $\varphi=\varphi(z) d z$ is a holomorphic differential on R, then $\rho=|\varphi|=|\varphi(z)||d z|$ is a linear density on R. We define $\|\varphi\|=\|\rho\|$. Note that $2\|\varphi\|^{2}=\iint_{R} \varphi \wedge * \bar{\varphi}$.

Let D be a ring domain (i.e., a doubly connected domain) of R. It can be mapped conformally onto an annulus $\left\{z \in \mathbb{C}\left|r_{1}<|z|<r_{2}\right\}, 0 \leq r_{1}<r_{2} \leq+\infty\right.$. The modulus of D is defined to be $(1 / 2 \pi) \log \left(r_{2} / r_{1}\right)$, and denoted by $\bmod D$. Let c be a closed Jordan curve on R. If a closed Jordan curve on D which is homotopically nontrivial in D is freely homotopic to c on R, then D is said to be of homotopy type c. More generally, let $\left\{c_{n}\right\}_{n}$ be a sequence of finitely or countably many closed Jordan curves on R. A sequence $\left\{D_{n}\right\}_{n}$ of non-overlapping ring domains of R is said to be of homotopy type $\left\{c_{n}\right\}_{n}$ if each D_{n} is of homotopy type c_{n}.

Now, let R be an open Riemann surface of genus one, and a a closed Jordan curve on R which is homotopically nontrivial. We denote by $\mathscr{C}(R, a)$ the family of all rectifiable closed Jordan curves on R that are homologous to a on R modulo dividing cycles. The modulus $\bmod \mathscr{C}(R, a)$ of the family $\mathscr{C}(R, a)$ is defined by

$$
\bmod \mathscr{C}(R, a)=\inf _{\rho}\|\rho\|^{2}
$$

where the infimum is taken over all linear densities ρ on R such that $\int_{c} \rho|d z| \geq 1$ for all $c \in \mathscr{C}(R, a)$.

Next, let $\mathfrak{C}(R, a)$ be the set of all sequences of finitely or countably many curves in $\mathscr{C}(R, a)$. We denote by $\mathfrak{D}(R, a)$ the class of all sequences $\left\{D_{n}\right\}_{n}$ of non-overlapping ring domains of R such that $\left\{D_{n}\right\}_{n}$ is of homotopy type $\left\{c_{n}\right\}_{n}$ for some $\left\{c_{n}\right\}_{n} \in \mathbb{C}(R, a)$.

Proposition 1. Let $(R,\{a, b\})$ be a marked open Riemann surface of genus one, and φ_{0} the holomorphic differential on R with $\int_{a} \varphi_{0}=1$ such that $\operatorname{Im} \varphi_{0}$ is a distinguished harmonic differential of Ahlfors. Then

$$
\begin{equation*}
\left\|\varphi_{0}\right\|^{2}=\bmod \mathscr{C}(R, a)=\sup \sum_{n} \bmod D_{n} \tag{1}
\end{equation*}
$$

where the supremum is taken over all $\left\{D_{n}\right\}_{n} \in \mathfrak{D}(R, a)$.
Proof. First, we have $\int_{c}\left|\varphi_{0}\right| \geq 1$ for all $c \in \mathscr{C}(R, a)$ since $\int_{c} \varphi_{0}=\int_{a} \varphi_{0}=1$. Thus, by the definition of the modulus of the curve family $\mathscr{C}(R, a)$,

$$
\begin{equation*}
\left\|\varphi_{0}\right\|^{2} \geq \bmod \mathscr{C}(R, a) \tag{2}
\end{equation*}
$$

Next, let ρ be a linear density on R such that $\int_{c} \rho \geq 1$ for all $c \in \mathscr{C}(R, a)$. Since the modulus of a ring domain D is identical with the modulus of the family of closed Jordan curves in D which are homotopically nontrivial in D, we have

$$
\|\rho\|^{2} \geq \sum_{n} \iint_{D_{n}}|\rho|^{2} d x d y \geq \sum_{n} \bmod D_{n}
$$

for all $\left\{D_{n}\right\}_{n} \in \mathfrak{D}(R, a)$. Therefore, denoting by s the supremum in (1), we obtain

$$
\begin{equation*}
\bmod \mathscr{C}(R, a) \geq s \tag{3}
\end{equation*}
$$

Finally, in order to show that $s \geq\left\|\varphi_{0}\right\|^{2}$, we choose a regular exhaustion $\left\{R_{v}\right\}$ of R such that the cycles a and b are contained in R_{1}. For each v there is a unique holomorphic differential $\varphi_{0}^{(v)}$ on R_{v} with $\int_{a} \varphi_{0}^{(\nu)}=1$ such that
$\operatorname{Im} \varphi_{0}^{(v)}$ is a distinguished harmonic differential on R_{v}. Let $\left[T_{v},\left\{a_{v}, b_{v}\right\}, j_{v}\right.$] be the hydrodynamic continuation of $\left(R_{v},\{a, b\}\right)$ with respect to $\varphi_{0}^{(v)}$. Let G_{v} be the group generated by the translations $\alpha(z)=z+1$ and $\beta_{v}(z)=z+\tau_{v}$, where τ_{v} is the modulus of the continuation [$T_{v},\left\{a_{v}, b_{v}\right\}, j_{v}$]. We can identify T_{v} with \mathbb{C} / G_{v}, and assume that a_{v} and b_{v} are covered by the segments $[0,1]$ and $\left[0, \tau_{v}\right]$, respectively. Let $\pi_{v}: \mathbb{C} \rightarrow T_{v}$ be the natural projection, and set $\widetilde{R}_{v}=\pi_{v}^{-1}\left(j_{v}\left(R_{v}\right)\right)$. Then \tilde{R}_{v} is a G_{v}-invariant horizontal slit domain, and $F_{v}=I\left(\mathbb{C} \backslash \tilde{R}_{v}\right)$ is a discrete set of the imaginary axis $i \mathbb{R}$, where $I(z)=i \operatorname{Im} z$. If J is a component of $(i \mathbb{R}) \backslash F_{v}$, then $D=j_{v}^{-1}\left(\pi_{v}\left(I^{-1}(J)\right)\right)$ is a ring domain of $R_{v}(\subset R)$, whose modulus is equal to

$$
\mu_{1}(J)=\iint_{[0,1] \times J} d x d y=\iint_{D}\left|\varphi_{0}^{(v)}\right|^{2} d x d y
$$

Now, let $D_{m}^{(v)}, m=1, \ldots, m_{v}$, be the ring domains on R_{v} obtained as above from the components of $(i \mathbb{R}) \backslash F_{v}$. Then $\left\{D_{m}^{(\nu)}\right\}_{m} \in \mathfrak{D}\left(R_{v}, a\right) \subset \mathfrak{D}(R, a)$. Since $\bigcup_{m} D_{m}^{(\nu)}$ differs from R_{v} by a set of zero area, we obtain

$$
s \geq \sum_{m} \bmod D_{m}^{(v)}=\sum_{m} \iint_{D_{m}^{(\nu)}}\left|\varphi_{0}^{(v)}\right|^{2} d x d y=\left\|\varphi_{0}^{(\nu)}\right\|^{2}
$$

Since $\left\|\varphi_{0}^{(v)}\right\|^{2}$ tends to $\left\|\varphi_{0}\right\|^{2}$ as $v \rightarrow \infty$, we have

$$
\begin{equation*}
s \geq\left\|\varphi_{0}\right\|^{2} . \tag{4}
\end{equation*}
$$

Combining (2), (3) and (4), we obtain the desired result (1).
Remarks. (i) We could apply [9, Theorem 20.3] to prove inequality (3).
(ii) Since the differential $\psi=\operatorname{Re} \varphi_{0} /\left\|\varphi_{0}\right\|^{2}$ is the $\Gamma_{\text {hse }}$-reproducer for a, it follows from Rodin's theorem [4] that

$$
\frac{1}{\bmod \mathscr{C}(R, a)}=\iint_{R} \psi \wedge * \bar{\psi}=\frac{1}{\left\|\varphi_{0}\right\|^{2}}
$$

We have thus obtained a half of Proposition 1.

4. Proof of Theorems 1 and 2

We can now easily prove Theorems 1 and 2 .
Proof of Theorem 1. Let \tilde{c} be a curve on \tilde{R} whose projection belongs to $\mathscr{C}(R, a)$. Then \tilde{c} is a rectifiable Jordan arc joining a point $z_{0} \in \tilde{R}$ to $\alpha\left(z_{0}\right)=z_{0}+1$ in \widetilde{R}. We claim that

$$
\int_{\tilde{c}}|d z| \geq \sqrt{L^{2}+1}
$$

This inequality clearly holds when $L=0$. Thus we have only to consider the case $L>0$. For each $\varepsilon \in(0, L)$, there is a component E of $\mathbb{C} \backslash \tilde{R}$ such that $\mu_{1}(I(E))>l_{1}-\varepsilon$. Since $l_{1}-\varepsilon>\operatorname{Im} \tau^{\prime}$, we can find $g \in G$ such that (i) $g(E) \cap\left[z_{0}, \alpha\left(z_{0}\right)\right] \neq \emptyset$, (ii) $\operatorname{Im} \zeta^{+} \geq \operatorname{Im} z_{0}+(L-\varepsilon) / 2$ for some $\zeta^{+} \in E$, and (iii) $\operatorname{Im} \zeta^{-} \leq \operatorname{Im} z_{0}-(L-\varepsilon) / 2$ for some $\zeta^{-} \in E$. Since $\tilde{c} \cap g(E)=\emptyset$, we see that

$$
\begin{aligned}
\int_{\tilde{\mathfrak{c}}}|d z| & \geq \min \left\{\left|z_{0}-\zeta^{+}\right|+\left|\alpha\left(z_{0}\right)-\zeta^{+}\right|,\left|z_{0}-\zeta^{-}\right|+\left|\alpha\left(z_{0}\right)-\zeta^{-}\right|\right\} \\
& \geq \sqrt{(L-\varepsilon)^{2}+1}
\end{aligned}
$$

Letting $\varepsilon \downarrow 0$, we obtain our claim.
The linear density $|d z| / \sqrt{L^{2}+1}$ on \tilde{R} induces a linear density ρ on R. It then follows from the above claim that $\int_{c} \rho \geq 1$ for all $c \in \mathscr{C}(R, a)$. Consequently, by Proposition 1,

$$
\operatorname{Im} \tau_{0}=\left\|\varphi_{0}\right\|^{2}=\bmod \mathscr{C}(R, a) \leq\|\rho\|^{2}=\frac{\mu_{2}(R)}{L^{2}+1}
$$

Since $\tau^{\prime} \in M(R,\{a, b\})$, we have

$$
\sigma \geq\left|\tau^{\prime}-\tau_{0}\right| \geq \operatorname{Im} \tau^{\prime}-\operatorname{Im} \tau_{0} \geq \operatorname{Im} \tau^{\prime}-\frac{\mu_{0}(R)}{L^{2}+1}
$$

This completes the proof.

Proof of Theorem 2. The set $F=I(\mathbb{C} \backslash \tilde{R})$ is a closed subset of the imaginary axis $i \mathbb{R}$. Let $\pi: \tilde{R} \rightarrow R$ be the natural projection. If J is a component of $(i \mathbb{R}) \backslash F$, then $D=\pi\left(I^{-1}(J)\right)$ is a ring domain of R with $\bmod D=\mu_{1}(J)$. Let $\left\{D_{m}\right\}_{m}$ be the collection of the ring domains of R so obtained from the components of $(i \mathbb{R}) \backslash F$. Then $\left\{D_{m}\right\}_{m} \in \mathfrak{D}(R, a)$. Therefore, by Proposition 1, we have

$$
\operatorname{Im} \tau_{0}=\left\|\varphi_{0}\right\|^{2} \geq \sum_{m} \bmod D_{m}=\operatorname{Im} \tau^{\prime}-l_{2}
$$

Next, assume that [$\left.T^{\prime},\left\{a^{\prime}, b^{\prime}\right\}, j^{\prime}\right]$ is the hydrodynamic continuation of $(R,\{a, b\})$ with respect to φ_{t}. Then $\tau^{\prime}=\tau_{t}=\tau^{*}+r \exp [i \pi(t-1 / 2)]$. Hence

$$
l_{2} \geq \operatorname{Im} \tau^{\prime}-\operatorname{Im} \tau_{0}=r\left[1+\sin \pi\left(t-\frac{1}{2}\right)\right]=2 r \sin ^{2} \frac{\pi t}{2}
$$

which implies that

$$
\sigma=2 r \leq \frac{l_{2}}{\sin ^{2}(\pi t / 2)}
$$

We have proved the theorem.

5. Tori with horizontal slits

In this section we consider the case where $\left[T^{\prime},\left\{a^{\prime}, b^{\prime}\right\}, j^{\prime}\right]$ is the hydrodynamic continuation of $(R,\{a, b\})$ with respect to φ_{0}. Then $\tau^{\prime}=\tau_{0}$. In this case Theorem 1 or 2 gives us no information about the euclidean span. However, by changing homology bases, we can prove the following

Theorem 3. Set $\theta^{\prime}=\arg \tau^{\prime}, 0<\theta^{\prime}<\pi$, and $l_{3}=\mu_{1}\left(I^{\prime}(\mathbb{C} \backslash \tilde{R}) \cap\left[0, I^{\prime}(1)\right]\right)$, where I^{\prime} is the orthogonal projection of \mathbb{C} onto the line which passes through the origin and is orthogonal to the segment $\left[0, \tau^{\prime}\right]$. If $\left[T^{\prime},\left\{a^{\prime}, b^{\prime}\right\}, j^{\prime}\right]$ is the hydrodynamic continuation of $(R,\{a, b\})$ with respect to φ_{0}, then the euclidean span σ for $(R,\{a, b\})$ satisfies

$$
\begin{equation*}
\sigma \leq \frac{l_{3}}{\sin \theta^{\prime}-l_{3}} \cdot \frac{\left|\tau^{\prime}\right|}{\sin \theta^{\prime}} \tag{5}
\end{equation*}
$$

Proof. Let

$$
t= \begin{cases}\frac{2 \theta^{\prime}}{\pi} & \text { if } 0<\theta^{\prime} \leq \frac{\pi}{2} \\ \frac{2 \theta^{\prime}}{\pi}-2 & \text { if } \frac{\pi}{2}<\theta^{\prime}<\pi\end{cases}
$$

and consider the hydrodynamic continuation $\left[T_{t},\left\{a_{t}, b_{t}\right\}, j_{t}\right]$ of $(R,\{a, b\})$ with respect to φ_{t}. Note that the origin $0, \tau^{\prime}$ and τ_{t} are collinear. Thus, denoting by ψ_{0} the holomorphic differential on R with $\int_{b} \psi_{0}=1$ such that $\operatorname{Im} \psi_{0}$ is distinguished, we have $\varphi_{t}=\tau_{t} \psi_{0}$ so that

$$
\begin{equation*}
\int_{-a} \psi_{0}=-\frac{1}{\tau_{t}} \tag{6}
\end{equation*}
$$

Moreover, Theorem 2 implies that

$$
\begin{equation*}
\operatorname{Im} \int_{-a} \psi_{0} \geq \frac{\sin \theta^{\prime}-l_{3}}{\left|\tau^{\prime}\right|} \tag{7}
\end{equation*}
$$

Since $\arg \tau_{t}=\arg \tau^{\prime}=\theta^{\prime}$,

$$
\operatorname{Im}\left(-\frac{1}{\tau_{t}}\right)=\frac{\sin \theta^{\prime}}{\left|\tau_{t}\right|}
$$

By (6), (7) and (8) we obtain

$$
\left|\tau_{t}\right| \leq \frac{\sin \theta^{\prime}}{\sin \theta^{\prime}-l_{3}}\left|\tau^{\prime}\right|
$$

and hence

$$
\left|\tau_{t}-\tau^{\prime}\right|=\left|\tau_{t}\right|-\left|\tau^{\prime}\right| \leq\left(\frac{\sin \theta^{\prime}}{\sin \theta^{\prime}-l_{3}}-1\right)\left|\tau^{\prime}\right|=\frac{l_{3}}{\sin \theta^{\prime}-l_{3}}\left|\tau^{\prime}\right| .
$$

Since $\left|\tau_{t}-\tau^{\prime}\right|=\sigma \sin \theta^{\prime}$, we conclude that

$$
\sigma \leq \frac{l_{3}}{\sin \theta^{\prime}-l_{3}} \cdot \frac{\left|\tau^{\prime}\right|}{\sin \theta^{\prime}}
$$

The proof is complete.
In particular, assume that $T^{\prime} \backslash j^{\prime}(R)$ is connected; let l be the length of the horizontal slit. Then, since $l=l_{3} / \sin \theta^{\prime}$, inequality (5) can be rewritten as

$$
\sigma \leq \frac{l}{1-l} \cdot \frac{\operatorname{Im} \tau^{\prime}}{\sin ^{2} \theta^{\prime}}
$$

Now, choose $k \in \mathbb{Z}$ such that $\left|\operatorname{Re} \tau^{\prime}+k\right| \leq 1 / 2$, and set $\theta=\arg \left(\tau^{\prime}+k\right)$. Observe that $\left[T^{\prime}\left\{a^{\prime}, k a^{\prime}+b^{\prime}\right\}, j^{\prime}\right]$ is the hydrodynamic continuation of $(R,\{a, k a+b\})$ with respect to φ_{0}, whose modulus is $\tau^{\prime}+k$. Since the euclidean span for $(R,\{a, k a+b\})$ is the same as that for $(R,\{a, b\})$, we finally obtain

$$
\sigma \leq \frac{l}{1-l} \cdot \frac{\operatorname{Im} \tau^{\prime}}{\sin ^{2} \theta}
$$

References

[1] L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton Univ. Press, Princeton, 1960.
[2] M. Heins, A problem concerning the continuation of Riemann surfaces, Contributions to the Theory of Riemann Surfaces, ed. by L. V. Ahlfors et al., pp. 55-62, Ann. of Math. Studies 30, Princeton Univ. Press, Princeton, 1953.
[3] I. Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259-269.
[4] B. Rodin, Extremal length of weak homology classes on Riemann surfaces, Proc. Amer. Math. Soc. 13 (1962), 369-372.
[5] M. Shiba, The Riemann-Hurwitz relation, parallel slit covering map, and continuation of an open Riemann surface of finite genus, Hiroshima Math. J. 14 (1984), 371-399.
[6] M. Shiba, The moduli of compact continuations of an open Riemann surface of genus one, Trans. Amer. Math. Soc. 301 (1987), 299-311.
[7] M. Shiba and K. Shibata, Hydrodynamic continuations of an open Riemann surface of finite genus, Complex Variables Theory Appl. 8 (1986), 205-211.
[8] M. Shiba and K. Shibata, Conformal mapping of geodesically slit tori and an application to the evaluation of the hyperbolic span, to appear in Hiroshima Math. J.
[9] K. Strebel, Quadratic Differentials, Springer-Verlag, Berlin-Heidelberg-New York, 1984.

> Department of Mathematics,
> Faculty of Science,
> Hiroshima University
> Current address:
> Department of Mathematics,
> Nagoya Institute of Technology

