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1. Introduction

Every open Riemann surface of finite genus can be embedded conformally
into a compact Riemann surface of the same genus. On the basis of [5],
M. Shiba and K. Shibata gave in [7] a new proof of this classical theorem,
and introduced the notion of hydrodynamic continuation. Their proof was
of global character.

In [6] M. Shiba studied the set of compact continuations of an open
Riemann surface of genus one in detail. He proved, among others, that the
moduli set of compact continuations of a fixed marked open Riemann surface
R of genus one is precisely a closed disk (or a point) in the upper half plane
and that there is a bijection between the boundary of the closed disk and the
set of hydrodynamic continuations of R. These results considerably improved
Reins' result [2, Theorem 2]. The euclidean (resp. noneuclidean) diameter of
the closed disk is called the euclidean (resp. hyperbolic) span for R (cf.
Shiba-Shibata [8]). These spans represent the size of the ideal boundary of
R. For example, the hyperbolic (or euclidean) span vanishes if and only if
RεOAD (see [6, Theorem 6]).

It seems that only few quantitative results about the moduli set are
known. Shiba-Shibata [8] have calculated, using Jacobi's elliptic functions,
the hyperbolic span explicitly for a strongly symmetric marked torus with a
horizontal slit, and applied the formulae to estimate the hyperbolic span for
an arbitrary marked torus with a horizontal slit. The results are rather
complicated, however.

In this paper we consider an open Riemann surface (of genus one) of the
form R = R/G, where G is a group generated by two translations of C and
K is a G-invariant domain of C. By applying the length-area method we
will give simple estimates of the euclidean span for R.

In the next section, after summarizing Shiba's results [6], we will state
our main results. One of the hydrodynamic continuations of R has the
smallest (normalized) area among the compact continuations of R. In §3 we
will characterize the area in terms of the moduli of ring domains on R and
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the modulus of a curve family. Our main results will be proved in §4. In

the final section we treat the case where R is a torus with horizontal slits.

2. Main results

Let Γ be a torus (i.e., a compact Riemann surface of genus one). An

ordered pair {aT9 bτ} of generators for the fundamental group of T is called

a marking of T if the intersection number of aτ and bτ is 1. The modulus

of T with respect to the marking (αr, bτ}9 or the modulus of the marked

torus (T, {aτ, bτ}), is the period

τ =

of φτ along bτ, where φτ is the holomorphic differential on T with period 1

along aτ. It is well known that Im τ > 0.

Now, we summarize some results of Shiba [6], Let R be an open

Riemann surface of genus one, and fix a canonical homology basis {a, b} of
R modulo dividing cycles. The system {α, b} may be regarded as a set of

generators for the fundamental group of the Kerekjartό-Stoϊlow compactifica-

tion of R (cf. Richards [3]). The pair (R, {α, b}) is called a marked open

Riemann surface. If there is a conformal embedding j of R into a torus T

with marking {αr, bτ} such that j(d) and j(b) are freely homotopic to aτ and

bτ in T respectively, then the triple (7^ {aT9bτ}9j) is said to be a marked

realization of (R9{a9b}). Two marked realizations (T9 {aT9 bτ}9j) and

(T', {a'τ.9 b'τ>}9j') are defined to be equivalent if there exists a conformal

mapping / of T onto T' such that foj=j'. An equivalence class

[7^ [aτ, bτ}9j] is called a compact continuation of (R, {a, b}).

By the modulus of a marked realization (T9 {aT9bτ}9j) we mean the

modulus of T with respect to (αr, br}. Then equivalent marked realizations

have the same modulus so that we can speak of the modulus of a compact

continuation. Let M(R, {a, b}) denote the set of the moduli of all compact

continuations of (R, {a, b}). Then, by Shiba [6, Theorem 5], M(R, [a, b}) is

a closed disk (or a point), say {τeC| |τ — τ*| < r}, in the upper half

plane. The euclidean (resp. noneuclidean) diameter of M(R, {a, b}) is called
the euclidean (resp. hyperbolic) span for the marked open Riemann surface

(R9 {α, b}) (cf. Shiba-Shibata [8]).

For each f e ( — 1, 1] there is a unique holomorphic differential φt on R

with \ φt = 1 such that Im [e ~ίπt/2 φj is a distinguished harmonic differential
J a

of Ahlfors (cf. [1, V.21D]). Furthermore, there is a marked realization
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(Tf, {α,, bt}9jt) of (R, {α, b}) such that the transplant of φt via jt~
l extends to

a holomorphic differential φTt on Tt with period 1 along at and that Tt\jt(R)

is of zero area. We can choose at and ft, to be geodesies with respect to the
metric \φTt\. Then each component of Tt\jt(R) is a point or a geodesic arc
of inclination πί/2 with αr The compact continuation [7J, {αί9 &,},./,] is called
the hydrodynamic continuation of (R, {α, b}) with respect to φt. Its modulus
is τf = τ* + r exp [iπ(ί — l/2)]edM(R, {α, b}), and it is the unique compact

continuation of (R, {α, ft}) whose modulus is τt ([6, Theorems 3 and 4]).
When K is a strongly symmetric torus with a horizontal slit, Shiba-Shibata

[8] have explicitly calculated the hyperbolic span using Jacobi's elliptic
functions. Also, they have obtained an estimate of the hyperbolic span for

an arbitrary marked torus with a horizontal slit. The purpose of this paper

is to estimate the euclidean span for the marked open Riemann surface

(R, {a, b}) given in the following way. Let G be the group generated by the

translations α(z) = z + 1 and β(z) = z + τ' of the complex plane C, where
Imτ' > 0. Let R(^0) be a G-invariant proper subdomain of C. Then the
orbit space R = R/G is an open Riemann surface of genus one. We choose

a canonical homology basis {α, b} of R modulo dividing cycles so that a (resp.
b) is covered by a Jordan arc in jR from a point z0 to α(z0) (resp. β(z0)). Let

T' = C/G. The inclusion map of R into C induces an embedding /: R -> T".
Setting a' = j'(ά) and b' =j'(b), we obtain a marked realization (Γ', {#', b ' } , j ' )
of (R, {α, b}). In particular, τ'eM(R, {α, b}). As before, we denote by φt

the holomorphic differential on R with \ φt = 1 such that Im [e~lπί/2φj is
Jα

distinguished. Also, we assume that M(K, {α, b}) = {τeC| | τ — τ*| < r} and

set τf = φ, = τ* + r exp [iπ(ί - 1/2)].
Jb

We denote one and two dimensional Lebesgue measures by μ± and μ2,

respectively. They naturally induce measures on T', which will be denoted
by the same letters. Also, we denote by / the orthogonal projection onto the
imaginary axis: /(z) = ί lmz. The closed segment joining zί to z2 is denoted

by |>ι,z2].

THEOREM 1. Let / x = sup μ 1(I(E))ί where the supremum is taken over all

components E of C\R. Set L= max {lγ — Im τ', 0}. Then

and the euclidean span σ for (R, {a, b}) satisfies
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Theorem 1 makes sense when C \ R is large, while the following theorem

does when C\R is small.

THEOREM 2. Let 12 = μx (/(C \ R ) n [0, /(τ')]). Then

Im τ0 > Im τ' — 12

In particular, if [T', {a', £'},/] is the hydrodynamίc continuation of (R, {a, b})
with respect to φt, te( — 1, 1], then the euclidean span σ for (R, {α, b}) satisfies

sin2(πί/2)

In the next section we give a proposition which is useful in estimating

Imτ 0. The above theorems will be proved in §4.

3. Extremal properties of φQ

A linear density (or a metric) p = p(z)\dz\ on a Riemann surface R is an
assignment of a Borel measurable nonnegative function p(z) to each local
coordinate z on R such that p(z)\dz\ is invariant under coordinate
changes. For a linear density p = p(z)\dz\ we set

l/2

P(z)2dxdy

If φ = φ(z)dz is a holomorphic differential on R, then p = \φ\ = \φ(z)\ \dz\ is

a linear density on R. We define || φ \\ = \\ p \\ . Note that 2 1| φ \\2 = \\ φ Λ * φ.

Let D be a ring domain (i.e., a doubly connected domain) of R. It can
be mapped conformally onto an annulus {zeCI^ < |z| < r2}, 0 < rx < r2 < + oo.
The modulus of D is defined to be (!/2π)log(r2/r1), and denoted by
mod D. Let c be a closed Jordan curve on R. If a closed Jordan curve on
D which is homotopically nontrivial in D is freely homotopic to c on R, then
D is said to be of homotopy type c. More generally, let {cn}n be a sequence
of finitely or countably many closed Jordan curves on R. A sequence {Dn}n

of non-overlapping ring domains of R is said to be of homotopy type {cn}n

if each Dn is of homotopy type cn.
Now, let R be an open Riemann surface of genus one, and a a closed

Jordan curve on R which is homotopically nontrivial. We denote by ^(R9 a)
the family of all rectifiable closed Jordan curves on R that are homologous
to a on R modulo dividing cycles. The modulus mod ^(R, a) of the family

, a) is defined by
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p

where the infimum is taken over all linear densities p on R such that

p\dz\> 1 for all ce«(K,α).ί
Next, let £(R9 a) be the set of all sequences of finitely or countably many

curves in ^(R, a). We denote by ΐ*(R, a) the class of all sequences {Dn}n of

non-overlapping ring domains of R such that {Dn}n is of homotopy type {cn}n

for some {cM}πe(£(-R, a).

PROPOSITION 1. Let (R, {α, b}) be a marked open Riemann surface of

genus one, and φ0 the holomorphίc differential on R with φ0 = 1 such that
J a

Im φ0 is a distinguished harmonic differential of Ahlfors. Then

(1) II φ0 I I 2 = mod V(R, a) = sup £ rnodD,,
n

where the supremum is taken over all {/)„}„ eT>(β, a).

PROOF. First, we have |φ0| > 1 for all CG^(R9 a) since φ0 = φ0 = 1.
Jc Jc Jα

Thus, by the definition of the modulus of the curve family Ή(R> α),

(2) ||φ0||
2

Next, let p be a linear density on R such that p > 1 for all

9 a). Since the modulus of a ring domain D is identical with the

modulus of the family of closed Jordan curves in D which are homotopically

nontrivial in D, we have

Σίίn J J Dn

\p\2dxdy>^moάDn

for all {Dn}neΐ)(R, a). Therefore, denoting by s the supremum in (1), we

obtain

(3) mod ^(R, a) > s.

Finally, in order to show that s > | | < p 0 H 2 > we choose a regular exhaustion
{Rv} of # such that the cycles a and b are contained in Rlt For each v

there is a unique holomorphic differential φ(

0

v) on Rv with φ(

0

v) = 1 such that
Jα
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Im <p(

0

v) is a distinguished harmonic differential on Rv. Let [Γv, (0V, £>v},yv] be
the hydrodynamic continuation of (Rv, {α, b}) with respect to φ(

0

v). Let Gv be
the group generated by the translations α(z) = z + 1 and βv(z) = z + τv, where
τv is the modulus of the continuation [Tv, (αv, fev},7v]. We can identify Γv

with C/GV, and assume that av and fev are covered by the segments [0, 1]
and [0, τv], respectively. Let π v :C->Γ v be the natural projection, and set

jRv = π710'v(*v)) Then Rv is a Gv-invariant horizontal slit domain, and
Fv = I(C\RV) is a discrete set of the imaginary axis iU, where /(z) = ί Im z. If
J is a component of (ιΊR)\Fv, then D = j ~ ί ( π v ( I ~ 1 ( J ) ) ) is a ring domain of
Rv(<^ R), whose modulus is equal to

μ ι(J)= jϊ d x d y = jϊ \φW\2dxdy.
JJ[θ,i]χJ •>•>/>

Now, let D%\m= l,...,mv, be the ring domains on Rv obtained as above
from the components of (iR)\F v . Then {D(^}meΐ>(RV9 a) c £(#, α). Since
Um^^ differs from Rv by a set of zero area, we obtain

s > mod = £ (ϊ |
ro J J D(v)

Since ||φ(ov)||2 tends to | |Φ 0 II 2 as v->oo, we have

(4) s > \\φ0\\2.

Combining (2), (3) and (4), we obtain the desired result (1).

REMARKS, (i) We could apply [9, Theorem 20.3] to prove inequality (3).
(ii) Since the differential ψ = Reφ0/||φ0 | |

2 is the ΓΛsβ-reproducer for α,
it follows from Rodin's theorem [4] that

1 ΓΓ , τ 1
> Λ * ψ =

We have thus obtained a half of Proposition 1.

4. Proof of Theorems 1 and 2

We can now easily prove Theorems 1 and 2.

PROOF OF THEOREM 1. Let c be a curve on R whose projection belongs
to ^(R9a). Then c is a rectifiable Jordan arc joining a point z0eR to
α(z0) = z0 + 1 in R. We claim that

j.
Jc

\dz\ >
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This inequality clearly holds when L = 0. Thus we have only to consider
the case L>0. For each εe(0, L), there is a component E of C\R such
that μ1(I(E))>l1 — ε. Since ll—ε>Imτ', we can find geG such that (i)

0(E)Π [z0, α(z0)] Φ 0, (ii) Im ζ+ > Im z0 + (L- ε)/2 for some C+ e£, and (iii)
Im ζ~ < Im ZQ — (L— ε)/2 for some ζ~ e£. Since cn#(£) = 0, we see that

f \dz\ > min {|z0 - C + 1 + |α(z0) - ζ+1, |z0 - ΓI + l« (*o) - Π}
Jc

Letting ε|0, we obtain our claim.

The linear density \dz\/^/L2 + 1 on ί? induces a linear density p on

R. It then follows from the above claim that p > 1 for all ce^(R, a).

Consequently, by Proposition 1,

Imτ 0 = I I Φ o l l 2 = mod#(#, a) < \\p\\2 = 2

Since τ'eM(K, {a, fe}), we have

σ > \τf - τ01 > Im τ' - Im TO > Im τ' - °̂ .
H~ 1

This completes the proof.

PROOF OF THEOREM 2. The set F = I(C\R) is a closed subset of the
imaginary axis ίU. Let π\R^R be the natural projection. If J is a

component of (iR)\F, then D = π ( I ~ l ( J ) ) is a ring domain of R with
modD = μ1(J). Let {Dm}m be the collection of the ring domains of R so

obtained from the components of (iR)\F. Then {Dm}meT)(K, α). Therefore,
by Proposition 1, we have

Im TO = || φ0 I I 2 > Σ mod Dm = Im τ' - 12.
m

Next, assume that [Tr, [a1, &'},/] is the hydrodynamic continuation of
(R, {α, 6}) with respect to φt. Then τr = τt = τ* + r exp [iπ(t — 1/2)]. Hence

/2 > Im τr — Im TO = r 1 + sin π I t 1 = 2r sin2 —,

which implies that
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σ = 2r <
sin2(πί/2)

We have proved the theorem.

5. Tori with horizontal slits

In this section we consider the case where [T', {α', ft'},/] is the
hydrodynamic continuation of (R, {a, b}) with respect to φ0. Then τ' = τ0.
In this case Theorem 1 or 2 gives us no information about the euclidean

span. However, by changing homology bases, we can prove the following

THEOREM 3. Set θf = arg τ', 0 < θ' < π, and 13 = μi(Γ(C \R)n [0, /'(I)]),
where Γ is the orthogonal projection of C onto the line which passes through the

origin and is orthogonal to the segment [0, τ']. If [Γ', {a', ft'},/] is the
hydrodynamic continuation of (R, {α, b}) with respect to φ0, then the euclidean
span σ for (R9 {α, b}) satisfies

(5)

PROOF. Let

t =

σ<

20'

π

20'

/3 I τ ' l

sin 0' — /3 sin 0'

if 0<0'<-,

1 such that Im \JJQ is

- 2 if - < 0' < π,
π 2

and consider the hydrodynamic continuation [7J, {#„ fcJ,Λ] °f (^>
respect to φr Note that the origin 0, τ' and τ, are collinear. Thus, denoting

by ψ0 the holomorphic differential on R with ^0 =

distinguished, we have φt = τtψ0 so that

(6) ί *. —I.
J-. τ.

Moreover, Theorem 2 implies that

(7) Im

Since arg τ, = arg τ' = ff,

Γ , sin 0' - /3^o > -.
J-7 IτΊ
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1 \ sin ff
(8) Im --=-—.

By (6), (7) and (8) we obtain

, , sifl^' , MτJ < τ' ,I I I . Λ. i I I '

sin θ — L

and hence

-HlτΊ= . /3 . IτΊ.
smff-l3

Since |τ, — τ'| = σ sin &, we conclude that

sin ff — /3 sin ff

The proof is complete.

In particular, assume that T'\j'(R) is connected; let / be the length of the
horizontal slit. Then, since / = /3/sin#', inequality (5) can be rewritten as

/ Imτ'
σ <

I-I sin20'

Now, choose keZ such that |Re τ' + k| < 1/2, and set θ = arg (τ' + k). Observe

that [T' {d', kαr f ft'},/] is the hydrodynamic continuation of (R, {a, ka + b})
with respect to φ0, whose modulus is τ' + k. Since the euclidean span for
(R, {a, ka + b}) is the same as that for (R, {a, ft}), we finally obtain

/ Imτ'
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