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We consider the n-th order differential equation with deviating argument
of the form

(1) LHu(t) + p(t)\u(g(t))\*sgn u(g(t)) = 0,

where α > 0,

L2ιι(ί) = (r(t)ιι'(ί))',

and

Lnιι(ί) = (r(ί).. (r(ί)(r(ί)ιι/(ί))T -)/,

for n > 2.

We always assume that p, 0eC([ί0, oo)), reCn~l([tθ9 oo)), r(t) > 0, and

g(t)-> oo as ί-> oo.
We consider only nontrivial solutions of (1). Such solution is called

oscillatory if the set of its zeros is unbounded. Otherwise, it is called

nonoscillatory. Equation (1) is said to be oscillatory if all its solutions are

oscillatory, otherwise it is said to be nonoscillatory.

The oscillatory behavior of equation (1) has recently been studied by

many authors (see e.g. [3], [5] and [6]) in the case

(2)
f0 0 ds

= 00.

Λo r(s)

In this paper we present a technique that enables to tranfer many oscillatory

results from equation

(3) y(n)(t) + p(ί)|yfe(ί))|βsgn y(g(t)) = 0

to equation (1) provided that

(4,
ro

This technique is related to υ-transformation of an equation (see [5]), which
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permits to tranfer oscillatory and asymptotic results from (3) to (1) if condition
(2) holds.

Now we define the function

p(t)
_ Γ00 ds
— I ,

Jt r(s)

which belongs to the class (^([ίo, oo)), is decreasing and maps the interval
[ί0, oo) onto the interval (0, p0]> where Po = ρ(t0). Let δ be the inverse
function to p. Then a composite function δ(l/s) belongs to the class C^SQ, oo),
where s0 = l/p0, is increasing on this interval and maps the interval [s0, oo)
onto [ί0, oo).

Let us denote

(5) P1(s) = (l/sr

and

(6)

then we have the following:

THEOREM 1. Assume that (4) holds. Let u(i) be a solution of (1) on the
interval [ί0, oo). Then the function

(7) y(s) = f - 1 u t f ( l / s ) ] 9 s>s 0

is a solution of

(8) y(n\s) + p1(s)|^(w(5))|αsgn);(w(s)) = 0

on the interval [s0, oo).

Conversely, if y(s) is a solution of (8) on [s0, oo), then the function u(t)
determined by relation (7), i.e.

(9) w(ί) = P" 1(ί)y[l/p(ί)], ίe[ί0,oo),

satisfies (1) on [ί0, oo).

PROOF. We will use the notation:

L0ιι(ί) = ιι(t),

Lku(t) = r(ί)[Lfc_lM(ί)]', 1 < k < n - 1,

Differentiating the relation (9) and considering p'(i) = - l/r(ί) we easily verify
(by induction on i), that for every ίe{l, 2,...,n - 1}
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do) L ί M(o= Σ (-

Differentiation of relation (10), where i = n — 1 leads to

From the last equality using t = δ(i/s) and (5) and (6) it follows

r(t)lLnu(t)

for ίe[ί0, oo) and se[s0, °o)
Now we see that u(t) is a solution of (1) on [ί0, oo) if and only if

y(s) = sn~1u\_δ(l/s)~] is a solution of (8) on [s0, oo). The proof is complete.

COROLLARY 1. Let (4) hold. Then a function u is an oscillatory
(nonoscillatory) solution of (1) if and only if the function y given in (7) or (9)
is an oscillatory (nonoscillatory) solution of (8).

For the linear differential equation

(U) (r(ί)uW + p(t)u(t) = 0, ί e [t0, oo),

which is a special case of (1) we have:

COROLLARY 2. Let (4) hold. Then equation (11) is oscillatory (nonoscilla-
tory) if and only if the equation

(12) y"(t) + (l/ί4)r[5(l/ί)]p[<5(l/ί)]y(ί) = 0, ίe[l/p0, oo)

is oscillatory (nonoscillatory).

Now using sufficient conditions for equation (12) to be oscillatory
(nonoscillatory) we can obtain sufficient conditions for equation (11) to be
oscillatory (nonoscillatory). We present an example of that.

THEOREM 2. Let (4) hold. Let p is of constant sign,
(i) Equation (11) is oscillatory if

(13) Hi
t~β> P(t)J,

(ii) Equation (11) is nonoscillatory if

1 f°° 1
(14) lim sup — p2(s)p(s) ds<-.

>-"> p(t)J, 4
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PROOF. Condition (13) ((14)) is equivalent to

I Λ. 1l iminfί (\/x*)r[δ(\/x)~\p[δ(\lx)~\dx > -,
ί-αo I 4^(i/χ4:

/ f00

lim sup t (l/x
V '— J,

which is sufficient condition for equation (12) to be oscillatory (nonoscillatory)
as it follows from [1] or [2].

For our next consideration we need the concept of a principal system
for the operator Ln. By a principal system for Ln we mean a set of n solutions
^(ί),...,^-!̂ ) of the equation

(15) Lnu(t) = ^

which are eventually positive and satisfy the relation

X (i\
lim — — = 0, for 0 < m < k < n - 1.
—>Xk(t)

A basic property of a principal system is involved in the following:

LEMMA 1. If both {X0(ί),..., *,,-ι(ί)} and [YQ(t)9..., Yn-M} are principal
systems for Ln, then for each fc, 0 < k < n — 1, Xk(t) and Yk(t) have the same
order of growth (or decay) as t -> oo, that is, the limits

X (t\
lim -̂  > 0, 0<k<n-l

exist and are finite.

For the proof see [7]. Now we can modify well-known properties (A),
(B) and some other properties.

Let X0(t),...,Xn-ί(t) be a principal system for Ln. Let k be an integer
number, 1 < k < n — 1. We say that a nonoscillatory solution u(t) of (1)
satisfies condition (Pfc), if

and lim = 0.

DEFINITION 1. Equation (1) is said to have property (A) if for even n
equation (1) is oscillatory and for odd n every nonoscillatory solution u(t) of
(1) satisfies
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(P0) lim 1̂ - = 0.

DEFINITION 2. Equation (1) is said to have property (B) if for even n every
nonoscillatory solution u(t) of (1) satisfies either (P0) or

= 00

and for odd n every nonoscillatory solution u(t) of (1) satisfies (Pn).

REMARK 1. If function r(t) satisfies (2), then Definitions 1 and 2 are
equivalent to well-known definitions of properties (A) and (B) (see e.g. [3]).

Let k !,..., km be all mutually different integers, such that 0 < kt < n for
i = 1, 2,...,m, where m is an integer.

DEFINITION 3. Equation (1) is said to have property y4k l,...,k m if for even
n every nonoscillatory solution u(f) of (1) satisfies condition (Pki), 1 < i < m
and for odd n every nonoscillatory solution u(t) of (1) satisfies either
condition (P0) or (Pki), for some i.

DEFINITION 4. Equation (1) is said to have property Bkl,...,km if for even
n every nonoscillatory solution u(t) of (1) satisfies either (P0) or (Pn) or (Pfc.),
1 < i < m and for odd n every nonoscillatory solution u(t) of (1) satisfies either
condition (PJ or condition (Pfc.) for some i.

Similarly as in [1] we use the following notation. Let {Mj =1 be
decreasing sequence of all mutually different local maxima of the polynomial

Let C/V, )f=ι be increasing sequence of all mutually different local minima of
the polynomial Pn(k). Now, if

n = 4j then τ = λ = j
n = 4j + 1 then τ = λ = 2j
n = 4j + 2 then τ =;'+!, λ =7';
n = 4j + 3 then τ = A = 2j + 1,

where ;' = 0, 1,... (and n > 2).
Let us denote

(16) β = (n - 1) lim inf [l/p^ί))]"-1 Γ p"
'̂  Λ

and
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(17) y = (n - 1) lim sup 1 f V~ W'1

Jr

Suppose that function g satisfies the following conditions

(18) g(t)eCl([t09 oo)), g'(t) > 0, g(t) < t.

It is useful to notice that if (18) holds then function w(ί) given in (6) satisfies:

w(s)eCl([sQ, oo)), w'(s) > 0, w(s) < s.

Now we are prepared to present several results concerning of the equation

(19) Lnu(t) + p(t)u(g(t)) = 0,

which is a special case of (1) for α = 1. In the sequel we will assume that

function p is of constant sign.

THEOREM 3. Suppose (4) and (18) hold.

(i) If β > M19 then equation (19) has property (A).

(ii) If y < N! and n > 2, then equation (19) has property (B).

THEOREM 4. Suppose (4) and (18) hold. Let n be even.

(i) If Mk>β>Mk + 1, for some fcejl, 2,...,τ — 1}, then equation (19) has

property Xι i 3 f... i2k-ι f.-2t + ι....i.-ι
(ii) If Nk<γ<Nk+l, for some /ce{l, 2,...,/l — 1}, then equation (19) has

property JJ2.4....i2*.»-2*i.....-2-

THEOREM 5. Suppose (4) and (18) hold. Let n be odd.

( i ) If Ml > β > M2, then equation (19) has property (An_1).

(ii) If Nl < y < N2, then equation (19) has property (BJ

(iii) If Mk > β > Mk + ί, for some fee {2, 3,...,τ — 1}, and if k is even (odd),

then equation (19) has property

^2,4,...,fc,n-fc+l,...,n-l (^2,4,...,fc- l,n-fc,.. .,n- l)

(iv) If Nfc < y < Λ / f c + i , for some fce{2, 3,...,λ — 1} and if k is even (odd),

then equation (19) has property

THEOREM 6. Let (4) and (18) hold.

(i) If Mτ > β > 0 and n is even (odd), then equation (19) has property

^1,3 ..... π-1 (^2,4,...n-l)

(ii) If Nλ < y < 0 and n is even (odd), then equation (19) has property

^2,4,...,«-2(^l,3,...,/ι-2)

PROOF OF THEOREM 3(i). Let u(t) be a nonoscillatory solution of (19) on

[ί0, oo). We may assume that u(t) is positive. By direct computation we
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can easily verify that functions ρn~l(t), pn~2(t),...,p(t)9 1 form a principal
system for operator Ln. Hence, with regard to Definition 1 and Lemma 1
we have to show that

(20) lim - — = 0 .
'-"op"-i(ί)

Theorem 1 implies that function y(s) given in (7) is a positive solution of the
equation

(21) /Λ)(s) + Pl(s)y(w(s)) = 0, se [s0, oo),

where functions p^ and w are given in (5) and (6) with α = 1. We know (see
Theorem 5 in [1]), that equation (21) has property (A) if

Γ°
i)]"-1

J s

(22) (n - l)liminf [w(s)]"-1 p,(x)dx > M t.
Js

One can see that (22) is equivalent to condition β > M1 for β determined
by relation (16). Therefore equation (21) has property (A) and generalization
of well-known lemma of Kiguradze implies that n must be odd (for n even
we have a contradiction because of existence of nonoscillatory solution y(t)
of (21)).

Since functions 1, s, s2,...^""1 form a principal system for the operator
Dn (Dny(t) = y(n)(t)) of the equation (21) we obtain

lim y(s) = 0.
s-» oo

Now, from relation (9) we have

lim - - = lim y[l/p(t)] = 0.

(ii) Let u(t) be a positive solution of (19) on [ί0, oo). We shall show
that u(t) satisfies either (20) or

lim u(t) = oo.
r->oo

Again, Theorem 1 implies that function y(s) given in (7) is a positive solution
of (21). From Theorem 5 in [1] we see that equation (21) has property (B) if

)]"-1 P
Js

(n - l)lim sup [w(s)]"-1

 Pl(x) < N,,
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which is equivalent to condition y < N±. Hence, taking definition of property

(B) into account we see that y(s) satisfies either

lim y(s) — 0 or lim y(s)/sn~1 = oo.
S~* 00 S~* 00

In the first case arguing as in the proof of part (i), it follows that u(t) satisfies

(20). In the second case taking relation (9) into account it is easy to see that

lim u(t) = lim p n ~ l ( t ) y ( l / p ( t ) ) = oo.
f->oo ί-»oo

The proof of Theorem 3 is complete.

PROOF OF THEOREM 5(i). Let u(t) be a positive solution of (19) on

[ί0, oo). Then y(s) given in (7) is a positive solution of (21). Conditions

M1 > β > M2 and n is odd imply (see [1]), that (21) has property An_l and

so we have that either lim y(s) = 0 or y satisfies (Pπ_!), i.e.

lim y(s)/sn~2 = oo and lim y ( s ) / s n ~ ί = 0.
s-*ao s-*oo

First case leads to the condition (20) and so we may suppose that y satisfies

(Pn_i). But then from (9) we have

lim u(t)/p(t) = lim pn-\t)y(\/p(t)) = ao
f-*oo f->oo

and

lim u(t) = lim pn~l(t)y(\lp(t)) = 0.
ί-*oo ί-*oo

Hence, equation (19) has property An_ί.

To prove the other parts of Theorem 5 and also other mentioned theorems
we can proceed similarly as above. The only one thing we should realise is
following. A solution y(s) of (21) satisfies (Pk) for some fce{l, 2,...,n — 1} i.e.

lim y(s)/sk~1 = oo and lim y(s)/sk = 0
s~* oo s-» oo

if and only if the solution u(t) of (19) given in (9) satisfies

lim u(t)/p"-k(t) = lim pk-l(t)y(l/p(t)) = oo
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and

lim u(t)ipn-l-k(t) = lim pk(t)y(l/p(t)) = 0.
ί->oo ί-»oo

Therefore u(t) satisfies (Pk) too.
Now we consider another special case of equation (1), i.e.

(23) y(n}(t) + p(t)y(g(t)) = 09 ίe[ί0, oo),

for which moreover we assume that

(24) p(t) > 0 and n is even.

Recently M. Naito [4] has established the following results:

THEOREM A. Let (18) and (24) hold. Let lim inf g(t)/t > 0.
ί-*oo

(i) The equation (23) is strongly oscillatory if and only if either

ί
oo Λoo

sn~2p(s)ds =00 or lim sup t sn~2p(s) = oo.
f->oo

o Jί

(ii) The equation (23) is strongly nonoscillatory if and only if

Λoo Λoo

sn~2p(s)ds < oo and lim t sn~2p(s)ds = 0.
ί->oo

J to J t

The notions of strong oscillation and strong nonoscillation mentioned
above are defined as follows: An equation of the form (19) is said to be
strongly oscillatory (strongly nonoscillatory) if the related equation

(r(t)-(r(t)(r(t)u'(t))')'-)' + θp(t)u(g(t)) = 0

is oscillatory (nonoscillatory) for all positive values of θ.
In the paper [5] the above theorem is extended to the equation (19)

provided that condition (2) holds. The purpose of the following theorem is to
extend Theorem A to the equation (21) if condition (4) is satisfied.

THEOREM 7. Suppose (4), (18) and (24) are satisfied.
Let

(25) Bminfp(ί)/p(flf(ί))>0.
f-»αo

(i) The equation (19) is strongly oscilatory if and only if it satisfies either

(26) Γ p(s)Lp(g(smn-1p(s)ds=ao
Λo
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or

(27) lim sup [l/p(ί)] Γ p(s)[p(g(s))γ-lp(s)ds = oo.
t ~* oo I

«/ί

(ii) The equation (19) is strongly nonoscillatory if and only if

Γ00

(28) p(s)[p(0(s))]n 1p(s)ds<cc
Jfo

and

(29) lim [l/p(ί)] f%(s)[p(0(s));r Ms) < oo.
~"°° Jί

PROOF. If we use functions Pl and w from Theorem 1, with α = 1 we

can easily verify that

liminf p(f)/p(0(£)) = lim inf w(s)/s

and moreover

/*oo (*ao

f-2

Pl(s)ds.fC°p(s)l>(flf(s))]J|-1p(s)ώ=
Jt Jll/P(0

That is why

t \
Jf

limsup[l/p(ί)] p(s)[pto(s))]"-1p(s)ds= lim sup t sn-2

Pl(s)ds

and

lim [l/p(ί)] I °°p(ί)[pte(s))]"-1p(5)Λ= lim ί \ f'2Pl(s)ds.
ί-*oo

From this according to Theorem A we see that conditions (25) and (26) or

(27) are necessary and sufficient for strong oscillation of equation (21) and
similarly conditions (25) and (28) and (29) are necessary and sufficient for

equation (21) to be strongly nonoscillatory. Now by application of Theorem 1

on equations (19) and (21) we find out that Theorem 7 holds and the proof

is complete.
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