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1. Introduction

We consider the following system of neutral differential equations of the
form

1, %[-xi(t) + (= D a()x;(hi()] = _;1 P(t) fii(x(g:;()),

i=1,2,..,N,N>2, n>1, ue{0, 1}, to > 0, where

(@) a;:[to, ©)—=(0, 1, 0<p;<1, h, g P;:[ty, ©)—R, and f;: R—
R,i,j=1,2,...,N are continuous functions

(b) h() <t t=>t,, tllrg h;(t) = oo, tllrg gij(t) = 00,i,j=1,...,N;

(c) ufijuy>0for u#0,i,j=12,..,N;
(d) lim a;(t) = a;,0€[0, B], i=1,2,..,N.
t— oo

Let t;, >t,. Denote
t, = min {inf hy(?), inf g;;(¢);i,j=1,...,N}.
t>ty t>ty

A function X = (x,,...,xy) is a solution of (1,), if there exists a t; > t, such
that X(t) is continuous on [t,, ), x;(t)+(—1)*a;(t)x,(h;,(t)), (i=1,...,N) are
n-times continuously differentiable on [¢,, c0) and X satisfies (1,) on [t,, o).

A solution X = (x;,...,xy) of (1,) is nonoscillatory if there exists an a > ¢,
such that every its component is different from zero for all large ¢t > a.

The asymptotic properties of nonoscillatory solutions of neutral differential
equations with variable coeficients and systems of nonlinear differential
equations with deviating arguments have been studied for examle in
[1-3, 4, 6, 7].

In this paper we prove the existence of nonoscillatory solutions of the
system (1,) which approach to nonzero constant vectors as t — co.

Denote

2) H,0, )=t Hyk, ) = Hi(k — 1, hy(t)), i=1,...,N, k=1,2,...,
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k-1

(3) Ai(O’ t) = 19 Ai(k’ t) = H ai(Hi(j, t)), l = 1,...,N,

Jj=0

2. Main results
THEOREM 1. Let the conditions (a)-(d) hold and

© N
(€)) J "1 Y |Py(0)ldt <0, i=1,..,N.
t j=1

0

Then for any (b,,...,by) (b;>0,i=1,...,N) there exists a nonoscillatory
solution X = (xy,..., xy) of the system (1,) such that lim x,(¢) = b; (i = 1,..., N).
t—= o

Proor. Let ¢;>0,i=1,...,N, be given constants.
(I) Let u=0. Choose 6;>0, M;>0,i=1,...,.N, T>t, such that

0<é;<(1—B)/(1+B),

&) M; = max { f;;(2); ze(c;(1 — B) — 6;(1 + B), c; +6), j=1,...,N},
i=1,..,N,
© N
(6) f (t—Ty=' Y [Py < 6/M, i=1,..,N
T j=1
and
7 T, = min {glg hi(t), [i;l; g:i(0); 1, j = L...,N} >t,.

We denote C[t,, o) the locally convex space of all vector continuous
functions X (t) = (x,(¢),...,xy(¢)) defined on [T;, o), which are constant on
[T, T] with the topology of uniform convergence on any compact subinterval
of [Ty, o). Thus C[T,, o) is a Fréchet space.

We put

@®) xi(t) + a;(t)x;(h; (1)) = u;(1), t > T, i=1,..,N.
We consider the closed, convex subset S of C[T,, co) defined by

S ={U = (uy,...,ux)€ C[ Ty, ), U(®) = U(T) on [T, T], [(t) — c:l <0

9
©) for t>T, i=1,...,N}.

From (9) in view of u;(f) = u,(T) for te[T,, T],i=1,...,N, (2) and (3)
we obtain for i=1,...,N:
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u(T)
1+ a/(T)

ni(t)—1

(10) () =1 ¥ (= DAk DuHk, 1) + (= D"O(4(n,(0), 1)
k=0

te[To, T1,

u(T)

) s
1+ a,(T)

where n;(t), (i = 1,...,N) are the last positive integers such that T, < H;(n;(t), t)
< T. It is easy to see that x,(t), i =1,...,N are continuous on [T, o0). The
functions in (10) are adaptation of the function introduced in [3, 5].

We now prove if U = (uy,...,uy)€S for ¢ > T then

(11) 0<¢—6,<x()<ult)y<c; + 6,

where ¢ = c;(1 — B;), 6; = 6;(1 + B), i = 1,...,N. The inequalities x;(t) < u;(t)
<¢+6;,i=1,..,N follow from (8) with regard to (9). From (10) in view
of the observation ¢; — 6, <u;(t)<c;+9; for t >T (i=1,...,N), and (3) we
get x;(t) = ¢; — 6; — a;(t) (c; + 0) + Ai(2, ) [c; — Oy — a;(H;(2, 1)) (c; + 6)] + - +
A;2m;, t)[c; — 6; — a;,(H,(2m;, 1)) (c; + 6,)] for ny(t) = 2m; + 1 or n,(t) = 2m; + 2,
m;=0,1,...,,i=1,...,N. From the last inequality with regard to the
assumption (a) we have

xi(t) = [e; — 6 — Bilei + )1 [1 + Ail2, 1) + -+ + Ai(2my, )]
2c(l—B)—-61+p)i=1.,N
We define the operator F = (F,,...,Fy): S > C[T,, «) by

(12)

¢+ (= 1y (: - _t):)' 3 Py Sy ))ds, 12T,
1) (FU0=
) -7y 1
G+ (= 1y % 3 Pylofye o))

T,<t<T, i=1,.,N.

We shall show that F maps S into inself. Let U = (u;,...,uy)eS. Then using
(5), (6), (11) and the assumption (c), we get for t > T and i=1,...,N

[eo)

N
FU)O <c+ J (s =Tt Y |Py(9)] fij(x;(g:(5))) ds

T j=1

© N
e+ M| (s—T)y " ) [Py(s)lds <c: + 3,
T

i=1
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) N
F:U)O) 2 ¢ — J s—1r" .Zl [Pij(s)] fij(x(gi;(s)) ds
T j=

=) N
>c— Mif (s—T)yr ! Z |P;(s)|ds > c; — ;.
T j=1

We prove that F is continuous. Let U, = (uy,,...,uy,)€S for r=1,2,...

and u, > u; for r-> o0, i=1,...,N in the space C[T;, ). Denote

ni(t)—1

xy() = Y, (= DAk, ) u(Hilk, 1) + (— 1)"O 4;(ny(e), 1)
k=0
u (T)/1 +a(T), t>T i=1,.,N, r=12,..

From (13) we obtain for i=1,...,N

© N
I(F:U,) (1) — (F;U)(®)] sf (s =T 1 Y IPyls)l x
T i=1

|fij(xjr(gij(s))) "fij(xj(gij(s)))l ds < J st 1P?(S) ds,

T

where

N
Pi(t) = Z [P fi(x;(9:;0) — fi0¢;(9:;0)), t = T.
j=1
It is easy to see that lim Pi(t) =0 and

N
Pity<2M; Y |P;0l, t=>T i=1,.,N

i=1

With regard to (4) and the Lebesque’s dominant convergence theorem we
get (F;U)(@®)— (F,U)(t) uniformly in C[T;,0) for r—> o0, i=1,...,N. This

implies the continuity of F.

Using the Arzela-Ascoli theorem we can prove in a routine manner that
F(S) is relative compact in the topology of C[T,, o). Therefore by the
Schauder-Tychonov fixed point theorem, there exists a U = (i1, ..., iy)€S such

that FU = U. The components of U satisfy the following system:

Gi(t) = ¢ — f i iP.,(s)f,,(x @) ds, 1> T,

(14)
i=1,.,N,

for which

b
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lim u;(¢) = ¢; > 0, i=1,..,N.
t— o

The system (14) in view of (8) can be rewritten as

%) + a;(O)%,(h(0) = ¢; — f Gl i P, (s) x
1 1 1 1 12 . (n _ 1)! j=1 1)

fii(%5(gii(s))ds, t = T, i=1,..,N.

(15)

From (10) with regard to (a), (d) and (12) there exist b, >0, i =1,...,N such
that tlim x;(t) = b;. Differentiating (15) we get X(f) = (X,(t),...,Xy(t)) is a

nonoscillatory solution of the system (1) on [T, o0) such that lim X;(t) = b;.
t— o0
i=1,..,N.
(I) Let u=1. Choose d;>0, M;>0 (i=1,...,N), T>t, such that

0 < d; <c;, M; = max {fij(z): ze(e;—d;, (c; +d)/(1 — B)), 1 <i< N},

i=1,.,N,
) N _
(16) I =Ty 'Y |Py@t)dt <d;/M,, i=1,..,N,
T j=1
and (7) hold.
We put
17 x;(2) — a;(t )x;(h;(t)) = v,(¢) fort>T, i=1,..,N.

Let S, = {V=(vy,...,v,)€C[Ty, 0), V(t) = V(T) on [Ty, T], |vi(t) —c;l
<dfort>T i=1,..,N}.

From (17) in view of v,(t) = v(T) for te[T,, T], i=1,...,N, (2) and (3) we
obtain for i=1,...,N:

i(lL, te[]b’ T]’
1 —a(T)
(18 x=
ni() -1 U(T)
Y Ak, Yoi(Hik, 1) + Ai(m(0), ) ———, t>T,
k=0 1 —ay(T)
where n;(t), i = 1,...,n are as in the case (I). From (18) with regard to (17),
V=(vy,...,v,)€S; and the assumption (a) we get ¢; — d; <v;(t) < x;(t) <(c; + d))/
1-p)fori=1,..,N.
Define the operator F = (F,,...,Fy): S; = C[T,, ) by (12), in which u;(t)
we replace by v;(t), i=1,...,N.
Proceeding in the same way as in the case (I) we show that there exists
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a fixed point V= (v,,...,0y)€S,;, FV= V and for its components the following
holds: lim o;(t) = lim (x;(t) — a;(t)x;(h;(t))) =¢; >0, i=1,...,N. Then it is
t— o0 t— o0

easy to see that (x,(t),...,Xy(t)) satisfies the system (1,) on [T, o) and
lim x,(t) = b; for some b;e[c;, (c; + d)/(1 — B)], i=1,...,N.
t— oo

The proof of theorem is complete.

Let now

pij(t) = 0,q;(t), o;€ {— 1, 1}, g;;: [to, 00) —> (0, 0)

(19
for all i,j=1,...,N.

THEOREM 2. Let the assumptions (a)-(d), (19) hold. System (1,) has a
nonoscillatory solution (x,...,xy) with the property

(20) lim x(t) =¢,>0, i=1,. N
t—

if and only if

© N
(21) j "1y g t)dt < oo, i=1,..N.
to j=1
Proor. (i) Letc; > 0,i=1,...,N, be fixed constants and X(t) = (x,...,Xy)
be a nonoscillatory solution of (1,), which satisfies (20). If we put
y:(t) = x;(t) + (— D)*a;(t)x;(h;(t)), then with regard to (a) and (20) we obtain

(22) lim y®(t)=0, k=1,..,n—1,i=1,..,N.

t— oo
Integrating (1,)(n — 1)-times from t(>¢,) to T— 0o and using (22) we have
fori=1,...,N:

@3) oi(— 11yl = f TET S 650 d.
L -2l A

In view of (a), (c) and (20) there exist 6 > 0, T; > t, such that
(24) fij(x;(g:;(1))) = 6 for t>Ty,i,j=1,...,N.

Then integrating (23) from T, to 7 — oo, using (20), (24) and (d) we get for
i=1,...,N:

© _ n—1
(= 1oilell + (= Wa) — y(T)] = 6 f (S(—T)— S ay(9)ds.
T,

n— 1)' j=1
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From the last inequalities after modification we get (21).
(ii) The “if” part follows from Theorem 1.
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