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1. Introduction

The study of coexistence problem of competing species is one of the main

topics in mathematical ecology. In this paper we study the relation between

the coexistence of two competing species and the domain shape of their habitat.

The model system which we use here is the following Lotka-Volterra type

reaction-diffusion equation:

(1.1)

ut = duAu + u(au — buu - cuv),

vt = dvAv + v(av — bvu — cvv), xeΩ, ί > 0,

d _ d

dv dv
xedΩ, t >0,

κ(0, x ) > 0 , u( xeΩ,

where A is the Laplace operator, Ω a bounded domain in Rw + 1, u and v the

population densities of the two competing species. The constants au and av

are the intrinsic growth rates, bu, cv and bv, cu the coefficients of intraspecific

and interspecific competition, respectively, du and dv the diffusion rates. We

assume that all these constants are positive.

By a suitable normalization, we can rewrite (1.1) as

(1.2)

ut = ε2Au + M(1 — u — cv),

vt = ε2dAv + v(a — bu - v), xeΩ, t > 0,

d d
— u (ί, x) = 0 = —υ(t, x), xedΩ, t > 0,
dv ov

M(0, X ) > 0 , Ό(0, xeΩ,

where α, fc, c, d, ε are positive. The following result is well-known (for example,

see de Mottoni [7]):

( I ) If a < min{fc, 1/c}, then li , x), v(t, x)) = (1, 0).
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1 — ac a — b
(II) If b < a < 1/c, then l i m ^ ^ ί , x), v(t, x)) =

1-bc 1-be

(III) If 1/c <a<b, then (1, 0) and (0, a) are locally stable.

(IV) If max {b, 1/c} < a, then lim^^Mί, x), v(t, x)) = (0, a).

By using Lyapunov's second method, it is also shown that the above results
except for Case (III) are independent of the domain shapes. In Case (III), it
was shown by Kishimoto and Weinberger [2] that any non-constant stationary
solution of (1.2) is unstable if the domain Ω is convex, that is, only one species
can survive and the other species becomes extinct due to competition.

Let us consider the case where their habitat is dumbbell-shaped, i.e., the
habitat consists of two distinct domains (a domain A and a domain B) and
a channel connecting two domains. If the channel is sufficiently narrow, then
it is difficult for species on one domain to migrate to another domain through
the channel. This implies that the competition is relaxed by the narrow
channel and two competing species may show a segregated pattern, that is, one
species lives dominantly in domain A and the other dominantly in domain B.
In fact, Matano and Mimura [5] proved that there exists a stable non-constant
stationary solution if the channel is sufficiently narrow.

We guess that the weaker species can not survive due to competition if
the stronger species becomes so active as to migrate to another domain at
will through the channel. Conversely, if the stronger species is not so active,
two competing species may coexist even in the case where the channel is not
so narrow. In other words, the coexistence of two competing species depends
on not only the domain shapes but also the magnitude of the competition-
diffusion. Our aim is to show how these two effects are concerned with the
coexistence.

In this paper, we consider the coexistence problem of two competing
species in domains which are non-convex but not necessarily dumbbell-
shaped. We shall prove that there exists a stable non-constant stationary
solution of (1.2) if the curvature of a boundary of the domain and the
magnitude of competition-diffusion are well-balanced in a sense. To show the
existence of a stable non-constant stationary solution, we shall make use of the
maximum principle (or super-subsolution technique) developed by Matano [4],
i.e., we shall construct stable sets of a dynamical system arising from (1.2).

In Section 2 as the first stage, we study travelling wave solutions of a
one-dimensional equation. In Section 3, we construct stable sets of (1.2) when
Ω is a thin tubular domain or a rotationally symmetric tubular domain. We
also study a spatially inhomogeneous one-dimensional equation.
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2. Travelling wave solutions of a one-dimensional equation

In this section, we consider the one-dimensional equation

'ut = uxx+f(u, υ),

dvt = dvxx + g(u, v)9 xeR, ί > 0,

where /(u, v) = u(l — u — cv) and g(u, v) = v(a — bu — v). A travelling wave

solution (M, V) = (u(ξ), υ(ξ))9 ξ = x — si, where s is the propagation speed,

satisfies the ordinary differential equation

( 0 = uξξ + suξ+f(u, υ),

(2.1) I 0 = dυξξ + sdυζ + g(u, υ)9 ξeR,

{ (M, V)(- oo) = (0, α), (u, Ό)(+ oo) = (1, 0).

Solutions of this equation will play important roles in the proof of the existence

of a stable non-constant stationary solution of (1.2). Since (2.1) does not

depend on ξ explicitly, we assume

iι(0) = 1/2

in order to fix the solution. We shall say that (w, v) is (strictly) positively

monotone if u is (strictly) increasing_and υ is (strictly) decreasing.

From an ecological viewpoint, the propagation speed s represents the

difference of the strength of two competing species. If 5 > 0 (resp. s < 0),

then the travelling wave propagates rightward (resp. leftward). This implies

that the species u is weaker (resp. stronger) than the species v. If s = 0, then

two species are in equilibrium.

Mimura and Fife [6] obtained the following result:

LEMMA 2.1. (Mimura and Fife). Suppose that b o 1. Then there exists

αe(l/c, b) such that (2.1) with s = 0 has a strictly positively monotone solution.

Let b0, c0 and d0 be any constants satisfying

(2.2) 1 < boco < ^— and
c 0 boco — 1

and let α 0 and (w0, v0) be the constant and the strictly positively monotone

solution, respectively, of (2.1) with (b, c, d, s) = (b0, c0, d0, 0) given in Lemma

2.1. The eigenvalues of the linearized operator of (2.1) at (u, v) = (0, a0) (resp.

(1, 0)) for (a, b, c, d, s) = (α0, b0, c 0, d0, 0) are easily obtained as

0 - ao)/do, ± 1).
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From the inequalities (2.2) and l/c 0 < α0 < 2?0, we have

(2.3) aoco - 1 < ao/do and (b0 - ao)/do < 1.

In the following, we fix (a, d) to (α0, d0) and take (b, c) as parameters.

If we put u = \u, uξ, v, vξ) and

F(u;ί>, c, s) =

then (2.1) is rewritten as

(2.4)

— W(l — U — CV) — SUξ

— v(a0 — bu — v)/d0 — svξ

— u = F(u; b. c, s).
dξ

Clearly there is a one-to-one correspondence between a solution of (2.1) and

a heteroclinic orbit of this 4-dimensional dynamical system which connects

(0, 0, α 0, 0) with (1, 0, 0, 0). Hence, by Lemma 2.1, there exists a heteroclinic

orbit for (2.4) at (b, c) = (fc0, c0). We can show that the heteroclinic orbit

persists when we take (fe, c) as bifurcation parameters in a neighborhood of

(b0, c0). In fact, we can prove the following theorem by applying Theorem A

of Kokubu [3] to our problem.

THEOREM 2.1. Suppose that (2.2) holds. Then there exists a (ft, c)-family

of solutions (ύ(ξ; b, c), v(ξ; b, c), s(fe, c)) of (2.1) in a neighborhood of (b0, c0)

such that

= M O ( 3 , l im ( f c t C ) _ ( f t o > C o ) ύ(ξ b, c) = vo(ξ),

(2.5)

d

Jb
— s(fc0, c0) < 0,

dc
s(bθ9 c0) > 0.

Furthermore {ύ(ξ\ b, c), v(ξ; b, c)) is strictly positively monotone and satisfies

{ύ(ξ;b,c)9ΰ(ξ;b9c))

- oo,+ o(exp(7_(b, c)ξ)) as ξ
(2.6)

I ( l , O ) - p + ( l , «

(-γ + (b,c)ξ)) as ζ > + oo,

where β- and β+ are certain positive constants and j-(b, c), y+(b, c), c_(fc, c)
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and e + (b, c) are continuous in (b, c) and satisfy

7 + Φo, c0) = y/(b0 - ao)/dO9

~ do(aoco -

codo

Since the proof of this theorem needs lengthy argument, we state the

proof in Appendix.

Let (£(ε), c(ε)) be a function which depends on a small parameter ε

smoothly and satisfies

(2.8) (ί(ε), c(ε» = (b0 + btε + o(ε), co + Clε + o(ε)) as ε — • 0,

where bί and cx are constants. Then, by virtue of Theorem 2.1, the

propagation speed s(£(ε), c(ε)) of (w(ξ; ί(ε), c(ε)), v(ξ; ί(ε), c(ε))) satisfies

(2.9) s(ί(β), c(β)) = (M6fti + McCi)ε + o(ε) as ε — > 0,

where we put M b = —s(b θ 5 c0) < 0 and M c = —s(b 0 , c0) > 0.
db dc

Throughout this paper, we shall use the following notations:

b 0 , c0 and d0 are constants which satisfy (2.2).

a0 and (M0, V0) are the constant and the strictly positively monotone

solution, respectively, of (2.1) with (b, c, d, s) = (b0, c 0, d0, 0) given in

Lemma 2.1.

(«, t5) is the strictly positively monotone solution of (2.1) with

(α, b, c, d, s) = (α0, b, c, d0, s(ft, c)) given in Theorem 2.1.

, c(ε)) is a function of ε which is represented as (2.8).

3. Existence of stable stationary solutions

3.1. Supersolutions and subsolutions

We introduce an order relation into the space C(Ω) x C(Ω) in the

following manner:

(Mi, ι>i) > (u2, v2)<=>u^x) > u2(x) and vt{x) < v2(x) in Ω.
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Let Φ(t) be a local semiflow on C(Ω) x C(Ω) defined by (1.2).

DEFINITION 3.1. qeC(Ω) x C(Ω) is called a. (time-independent) supersolu-

tion (resp. subsolution) of (1.2) if

Φ(t)q < 4 (resp. Φ(t)q > q) for all t > 0.

If, in addition, q is not a stationary solution of (1.2), then it is called a strict

super solution (resp. strict subsolution).

The following result was proved by Matano [4] :

LEMMA 3.1. (Matano). Let q9 qeC(Ω) x C(Ω) be α strict supersolution and

a strict subsolution of (1.2) respectively satisfying q>q, qφq. Then there

exists a stable stationary solution p — (u, v) of (1.2) satisfying q> p > q.

From the maximum principle in a generalized sense, the following is

obtained.

LEMMA 3.2. (Matano and Mimura [5]). Suppose that (u, v) is a continuous

piecewise C2-class function satisfying

U2Au+f(u9v)<09

\ε2dAυ + g(u, v) > 0, xeΩ

(in the sense of distribution) and

— u(t, x) > 0 > — v(t, x), x e dΩ.
dv dv

Then (u, v) is a supersolution of (1.2). If (u, v) satisfies the reversed differential

inequalities, then it is a subsolution of (1.2).

3.2. One-dimensional equations

In this subsection, we consider the equation

ί
ut = ε2uxx + ε2y(x)ux + /(u, v),

vt = ε2d0vxx + ε2doγ(x)vx + g(u, v), xe(0, L), t > 0,

wx(ί, x) = 0 = vx(t,x), x = 0, L, t > 0,

where y(x)eC([0, L]), /(M, V) = u(\ - u - cv) and g(u, v)= v(a0 - bu - v).

We shall construct a supersolution and a subsolution of this equation by using

the technique developed in [9].

Let xe(0, L) and t > 0 satisfy [x - <f, x + /] c (0, L), and let ε > 0 be a

small parameter. Put (ύε(x; y), t5ε(x; y)) = (w((x - y ) / β ; έ(ε), c(e)), ί((x - y)/
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ε; £(ε), c(ε))) and define (ϋ, K) = (ΰ{x; x, ε, /), V{x; x, ε, ί)) by

Ό(x;x,ε,t)

ύε(x-,f;x) + PJ2/4 xe[0, x - <?],

wε (x; x) + Pu(x - x + ίf/2)2 xe(x - (, x - <f/2],

ίίε(x x) x e (x - (/2, x + <f/2],

199

ϋε(x; x) + βu(x - x - ίf/2)2 xe(x + ̂ /2, x

11

V(x;x,ε,η

f,L],

fiε(γ / Ύ\ P / 2 /4 vcΓΠ v /I

ίε(x .x) — Py(x — x + ̂ /2)2 x G (x — /, x — i

ί5ε(x; x) xe(x - tlX x + ^/2],

ί5ε(x; x) - β^x - x - //2)2 XG(X + tIX x + / ] ,

where Pu, Qu, Pv, Qv > 0 are constants given by

Qu = -^{1 - «(«f/ε; 5(ε),P« = -M-

Pυ = - 1 ^ ( - //ε; ί(ε), c(ε)), Qr = ̂ ί ( / / ε ; 6(ε), c(ε))
εί &

(see Figure 1). We note that (Ϊ7, V) is continuous in ξ and is positively
monotone for sufficiently small ε > 0.

x-ί L o x-e x

Figure 1 Supersolution (U, V)

LEMMA 3.3. Suppose that Mbb1 + Mcc1 > y(x) for all xe [x — *f, x H-
(0, L) /or S0we jce(O, L) αnrf ^ > 0. ΓΛe« /Λere exists ε =• ε(/) > 0 swcλ
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if 0 < ε < έ, (U(x; x, ε, /), V(x; x, ε, /)) defined as above is a strict supersolution
of (3.1).

PROOF. By assumption and (2.9), we have εγ(x) — s{f>(ε), c(ε)) < 0 for
x 6 [x — f, x + f\ if ε > 0 is sufficiently small. According to the asymptotic
behavior of (ύ(ξ; b, c), v(ξ; b, c)) as ξ -> ± oo (see (2.6)), we have the following:

( i ) PJPU = - e_ (b0, c0) + o(l), QJQU = - e+ (b0, c0) + o(l),

(ii) (ϋ, V) = (0, a0) + o(l) and (V- ao)/U = e_{b0, c0) + o(l) for xe

(0, x - 1 ) ,

(iii) εPu/iί| = o(l) for xe(x - 3<f/4, x - t/2),

(iv) ερu/M| = o(l) for xe(x + ίβ, x + M/4),

as ε | 0 . Moreover, from (2.2) and (2.3), we have the following inequalities:

/u(0, α0) +/„((), αo)e_(bo, c0) = - (αoco - 1) < 0,

" > °ft «o) + ff.<α α«)e_(*o, Co) = y
«o - do(aoco -

, 0) +/β(l, 0)e+(b0, c0) = - ^ f ^ < o,

!, 0) + Λ ( l , 0)β+(fro, co) =

Hence the following estimates are obtained as ε | 0 .
( i ) For xe(0, x-t),

ε2 Vxx + ε2y(x) Ux + f(Ό, V) = f(Ό, V)

= /u(0, ao)U +fv(0, α o ) ( F - α0) + o(\Ό\, \V- ao\)

= U{fu(0, ao)+fv(0, αo)c_(fto, c0) + o(

(ii) For xe(x-/, x - 3^/4),

ε2ΰxx + ε2γ(x)ΰx+f(ΰ,V)

= {εγ(x) - s(ί(ε), c(ε))} «| + f(0, V) -

+ 2ε2Pu{l + γ(x)(x -x + t/2)}

< {/u(0, ao)Pu -fD(0, ao)Pυ + o(\Pu\, \Pv\)}(x ~x + (β)2

+ 2ε2PB{l + r(x)(x - x

^PuifuΦ, ao)+fυ(O, ao)e^(bo, c0) + o
16
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<0.

(iii) For xe(x - 3//4, x - //2),

ε2ΰxx + ε2γ(x)Ux+f(ΰ, V)

= {εγ(x) - s(S(ε), c(ε))} ύ\ + 2ε2Pu{l + y(x)(x -x + S/2)}

+ f(U,V)-f(ύ\v°)

< ε{y(x) - Mbbx - Mcc, + o(ί)} u|

, ao)+fv(0, αo)e_(fe0, c0) + o(l)}(x - x

(iv) For xeix-f/2, x + έ/2),

ε2 0xx + ε2γ(x) Ux + f(0, V) = {εy(x) - s(S(ε), c(ε))} ύ\ < 0.

(v) For xe(x + ̂ /2, x + 3^/4),

ε2ΰxx + ε2γ(x)Ux+f(ΰ, V)

= {εy(x) - sφ(ε), c(ε))} ώj + 2ε2Qu {1 + γ(x)(x - x - ίβ)}

+ f{V,V)-f(ύ\v<)

< ε{y(x) - Mbbi - McCl + o(l)} ώj

l 0) +Λ(1, 0)e+(60, c0) + o(l)} (x - x -

(vi) For xe(x + 3//4, x + <f),

ε

2 i/ x x + ε2y(x)ί7;c+/(i7, F)

- s{6(ε), c(ε))} ύ\

2ε 2ρ a{l+y(x)(x-x-//2)}

-/Γ(l, 0)βΓ + 0(16.1, 16.1)} (x - x - //2)2

0) +/Γ(1, 0)e+(b0, c0) + o
1 0

(vii) For xe(x+ /, L),

ε2Uxx + ε2y(x)Ux+f(U,V) = 0.

Therefore the following inequality holds if ε > 0 is sufficiently small:
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ε2y{x)Ux +f(Ό, F) = 0

for all xe(0, L)\ {x ± t, x ± <̂ /2}. Moreover, we have

0

X = X + (9

x = x ± tj% x - £,

where [«](x) = u(x + 0) — w(x — 0). In summary, we have shown that the
following inequality holds in the sense of distribution:

ε2Uxx + ε2γ(x)0x + f{ϋ9 V) < 0 (# 0) for all xe(0, L).

Similarly, we can prove that the following inequality holds in the sense
of distribution:

ε2d0Vxx + ε2doγ(x)Vx + ̂ (ϋ, V) > 0 (# 0) for all xe(0, L).

Finally, from the definition of (ΰ9 V), we have

Όx(x; x, ε, /) = ίς(x; x, ε, /) = 0, x = 0, L.

Now, by virtue of Lemma 3.2, if ε > 0 is sufficiently small, (ΰ(x; x, ε, *f),
F(x; x, ε, /)) defined as above is a supersolution of (3.1).

Let (U, V) = (ζ/(x; x, ε, 0, K(x; x, ε,.O) be a function defined by

U(x; x, ε, /)

0

wε(x; x ) - Pu(x ~x +

ϋε(x;x)

u ε ( x ; x ) - ρ u ( x - x -

XG[O, x-/],

xe(x-Λx-'/2],

XG(X + (J19 x

XG(X -f /, L],

K(x;x,ε,<)

XG[0, X - / ] ,

XG(X — £, x — ί/2],
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where PM, Qu, PV9 Qv > 0 are given by

4 1 A

-u j 2 , , , _u ^ ξ

4 1 A

(see Figure 2). Then (ζ/(x; x, ε, /), V(x; x, ε, /)) is continuous and positively

monotone for sufficiently small ε > 0. Similar to Lemma 3.3, the following

lemma holds:

LEMMA 3.4. Suppose that Mbbι + Mccx < γ(x) for xe\_x — ί, x + <f] c:

(0, L) for some x e (0, L) and t° > 0. Then there exists ε = ε(*0 > 0 5MCΛ that,

if 0 < ε < ε, (ζ/(x; x, ε, /), K(x; x, ε, /)) defined as above is a strict subsolution

of (3.1).

x-ί x+ί L 0

Figure 2 Subsolution (ζ/, K)

As a direct consequence of Lemmas 3.1, 3.3 and 3.4, we obtain the

following result:

THEOREM 3.1. Suppose that

(i) there exists X O G(0, L) such that y(x) is strictly increasing in a

neighborhood of x = x 0, and

(ii) Mbbι + Mccι = y(x0).

Then there exists ε0 > 0 such that, if 0 < ε < ε0, (3.1) w/Yλ (α, ft, c, d) = (α0, έ(ε),

c(ε), d0) A^ α stable non-constant stationary solution.

PROOF. By assumption (ii) and (2.9), there exists a solution family

(ύ(ξ; ί(ε), c(ε)), v(ξ; ί(β), c(ε)), s(ί(e), c(ε))) of (2.1) such that

), c(ε)) = εy(x0) + o(ε) as ε 0.
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By assumption (i), we can choose x, xe(0, L) and ί > 0 such that

) < y(Xo) xe(x — ί, x + i) c= (U, x0),
(3.2) y(x)< .. , π

V. **̂  / V 0 / \— ' — "̂  / — v 0 ' ) '

From Lemmas 3.3 and 3.4, for sufficiently small ε > 0, there exist a strict

supersolution (U(x; x, ε, /), V(x; x, ε, /)) and a strict subsolution (ζ/(x; x, ε, /),

K(x; x, ε, /)) of (3.1) for (a, b, c, d) = (a0, b(ε), c(ε), d0). Moreover, it is easy to

see from the definitions of (ΰ, V) and (17, V) that

(Ϊ7(x; x, ε, /), V(x; x, ε, ί)) > (U{x; x, ε,/), K(x; x, ε, i))

for all X G [ 0 , L ] . Hence, by Lemma 3.1, there exists a stable non-constant

stationary solution of (3.1).

REMARK 3.1. By applying the result of Kishimoto and Weinberger [2]

to (3.1), we see that any non-constant stationary solution of (3.1) is unstable

if y'(x) < 0 for all xe(0, L). Theorem 3.1 implies that their result is optimal.

3.3. Thin tubular domains

In this subsection, we consider the existence of a stable non-constant

stationary solution of (1.2) in the case where Ω is a thin tubular domain. We

characterize Ω = Ω(μ) as follows. Let p(x)(xe[0, L]) be a smooth curve in

Rn + 1 which does not intersect itself, where x denotes the length parameter

(i.e., \px(x)\ = 1). Let {^(x)}"=1 be an orthonormal basis of an n-dimensional

normal plane at p(x), and let D(x) c Rn be a simply connected bounded domain

with a smooth boundary. We assume that p(x), {g, (x)}"=i and D(x) depend

on x 6 [0, L] smoothly. We define

(3.3) Ω = Ω(μ) = {p(x) + μΣ%iVjφ)\y = (yi — y J e D ( x ) , xe(0, L)},

and

α(x)= I .dy, xe[0,L].= ί .dy,
JD(X)

We introduce the equation

(3.4)

[ ut = ε2-—{a(x)ux}x+f(u, υ),
α(x)

υt = ε2d0-~—{cc(x)vx}x 4- g(u, Ό), xe(0, L), t > 0,
α(x)

ux(t9 x) = 0 = υx(t9 x), x = 0, L, t > 0.
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It was shown in the proof of Theorem 1.1 of Yanagida [10] that a

supersolution (resp. a subsolution) of (1.2) can be constructed by slightly

perturbing a strict supersolution (resp. a strict subsolution) of (3.4) in the

direction of the normal plane of the curve. (In [10], scalar reaction-diffusion

equations are studied, but his technique can be also applied to competition-

diffusion equations without much change.)

Hence the following result is obtained:

LEMMA 3.5. Suppose that (3.4) has a strict supersolution (ΰ, v) and a strict

subsolution (u, v) which satisfy (ΰ, v) > (u, v). Then, there exists μo>0 such

that, ifO < μ < μ0, (1.2) with Ω given by (3.3) has a stable stationary solution.

As a direct consequence of this lemma and Theorem 3.1, we obtain the

following result.

THEOREM 3.2. Suppose that

( i ) Ω is given by (3.3),

(ii) there exists x o e(0, L) such that α'(x)/α(x) is strictly increasing in a

neighborhood of x = x 0, and

(iii) Mbbί + Mccx = α'(xo)/α(xo).

Then there exist ε0 > 0 and μ0 = μo(ε) > 0 such that, if 0 < ε < ε0 and

0 < μ < μ0, (1.2) with (a, b, c, d) = (a0, £(ε), c(ε), d0) has a stable non-constant

stationary solution.

By taking (£(ε), c(ε)) = (b0, c0), we obtain the following corollary:

COROLLARY 3.1. Suppose that

(i) Ω is given by (3.3), and

(ii) there exists xoe(0, L) such that oc(x) attains its strict local minimum

at x = x0.

Then there exist ε0 > 0 and μ0 = μo(ε) > 0 such that, if 0 < ε < ε0 and

0 < μ < μ0, (1.2) with (a, b, c, d) = (a0, b0, c0, d0) has a stable non-constant

stationary solution.

3.4. Rotationally symmetric tubular domains

In this subsection, we consider the existence of a stable non-constant

stationary solution of (1.2) in the case where Ω is a rotationally symmetric

domain given by
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(3.5) Ω = {(x, y)eR x R"|0 < x < L, \y\ < α(x)},

where α(x) > 0 is a C1-class function.

Let /c(x), p(x), φ(x) and ψ(x) be functions on [0, L] defined by

α'(x)
κ(x) =

φ(x) = x -

if α'(

α(x)
if αr(x) # 0,

= x +
+ 1 4- 1

(see Figure 3). We have the following result:

( = φ(χ) + p(χ) if α'(x) # 0)

0 ' φ(χ) x ψ(χ) L

Figure 3 Rotationally symmetric tubular domain Ω

THEOREM 3.3. Suppose that

( i ) Ω is given by (3.5),

(ii) there exists x o e(0, L) such that κ(x) is strictly increasing in a

neighborhood of x = x 0, and

(iii) Mbb1 + Mcc1 = nκ(x0).

In case α;(x0) Φ 0, suppose further that

(iv) 0 < ^(x0) < L, and

(v) (x-φ(x o )) 2 + α(x)2>p(xo)2 for min{x0, φ(x0)} < * <max{x 0 , }

Then there exists ε0 > 0 such that, if 0 < ε < ε0, (1.2) with (α, b, c, d) = (α0,
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c(ε), d0) has a stable non-constant stationary solution.

PROOF. By the symmetric transformation with respect to the plane

x = L/2 if necessary, we may assume that α'(xoj > 0.

By assumption (iii) and (2.9), there exists a solution family {ύ(ξ; £(ε), c(ε)),

ϋ(ξ; ί(ε), c(ε)), s(ί(ε), c(ε))) of (2.1) such that

s(£(ε), c(ε)) = εnκ(x0) + o(ε) as ε —-• 0.

By assumption (ii), there exist δ0 > 0 sufficiently small and x, xe(0, L)(x <

x0 < x) close to x0 such that κ{x) is strictly increasing in [x — δ0, x]

U [x, x 4- SQ] a (0, L) and satisfies

(3.6) κ(x) < κ(x0) < κ(x).

It is easy to check that, if α'(x) φθ in [x - (50, x] (resp. [x, x + (50]), then

α'(x) is increasing in [x — δ0, x] (resp. [x, x + <50]).

First we consider the case where α'(x0) > 0. Then, by taking δ0 and x

suitably, we may assume that α'(x) is increasing in [x — δ0, x]U[x, x + ^0]

Moreover, by assumptions (iv) and (v), the spherical segment

{(x, y)\(x- φ(x0))2 + \y\2 = p(x0)
2, x > x0}

is entirely contained in Ω. By (3.6), we can choose positive constants /, γ

and γ such that

p(χ-)-2/ °; ι

(3.7) x-δ0 <max{x |x < x , XGS(X, -

x + ^o ^ max{x|x > x, xe5(x,

where

S(x, /) = {y |0 < y < L, |p(x) + t\ = J{y - φ(x))2 + a(y)2}.

Let us consider the equation

(3.8)

ut = ε2urr + ε27wr+/(w, υ\

vt = ε2d0vrr + ε2d0γvr + (̂w, ι;),

re(p(x)-2ί-δyp(x) + δ)9 t > 0,

uΓ = 0 = t;r, x = p(x) - 2/ - (5, p(x) + δ, ί > 0,

where δ is an arbitrary positive constant and

r = y/(x-φ(5c))2 + \y\2.
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Similar to Lemma 3.3, this equation has a supersolution (U(r), V(r))

iϋ{r; p(x) - /, ε, ί), V(r; p(x) - Λ ε, ί)).
Let Ωί9 Ω2, Ω3 be subdomains of Ω defined by

x, r

y)eΩ\Ω[\x> x,, p(x) - 2/ < r < p(χ)},

(see Figure 4). Now we define (M(X, y), t;(x, y)) by

(M(X, y), ϋ(x, y))

ί (1, 0)

(f/(p(x) - 2/),.

(x9y)eΩl9

(xiy)eΩ2,

(x,y)eΩ3.

We shall prove that (κ(x, y), t;(x, y)) defined as above is a supersolution of

(1.2).

Figure 4 Position of Ωu Ω2 and Ω3

First we prove that (κ(x, y), t;(x, y)) satisfies

(3.9)
εzdQΔv + #(w, v) > 0, (x, y)ei2,

in the sense of distribution. By substitution, we obtain
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- ί/ r
r

ε2Au+f(ΰ, v)

7(1,0) = 0 (x,y)eΩlt

(ΰ,V) (χ,y)eΩ2,

{ f(U(p(x) - If), V(p(x) - 2ί)) < 0 (x, y)eΩ3.

Here, by (3.7), we have

- < γ for (x, y)sΩ2.

Hence, by using the fact that (£7(r), V(r)) is a monotone supersolution of (3.8),

we obtain

< ε2ΰrr + ε2yΰr +/(£/, V) < 0 for (x, y)eΩ2.

Hence it holds that

ε2Aύ+f(ύ, v)<0, (x,y)eΩ,

in the sense of distribution.

Similarly we can also prove

ε2d0Av + g(ΰ, v)>0, (x, y)sΩ9

in the sense of distribution. Hence (3.9) holds.

Next we prove that

(3.10)
d _ d _

— u > 0 and — i; < 0, (x,
5 3

The outer unit normal vector v at (x, y)e{(x, y)\0 < x < L, \y\ = α(x)} is

represented as

v =

On the other hand, we have

(x, y)eΩ2.

Hence, on dΩ(]dΩ2i we obtain
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d
— u = v Vu
δv

Since {x\(x, y)edΩf)dΩ2} <= [x — δ0, x] and since α'(x) is strictly increasing

in [x — δ0, x] (i.e., α(x) is convex),

x — φ(x) x — φ(x)

for all xe{x|(x, y)edΩ2()dΩ}. This means that — ΰ > 0 on dΩc\dΩ2.

Similarly we obtain — v < 0 on dΩ2 n dΩ. Moreover, since (ΰ, v) is constant
dv

in Ωx [jΩ3, we have — ΰ = — v = 0 on dΩ[)(dΩ1[}dΩ3). Thus we have shown
dv dv

that (3.10) holds. Hence, by Lemma 3.2, (3.9) and (3.10), (w(x, y), v(x, y)) is

a strict supersolution of (1.2).

Next let (ζ/(r), V(r)) = (ζ/(r; p(x) + Λ ε, /), K(r; p(x) + /, ε, /)) be a sub-

solution of

ε2yur+f(u, v),

+ ε2yvr + g(u, v),

re(p(x)-δ,p(x) + 2S + δ), t > 0,

I Ur = 0 = i;Γ, r = p(x) - (5, p(x) + 2/ + (5, ί > 0,

where δ is an arbitrary positive constant and

Let ί2 4, Ω5, Ω6 be subdomains of Ω defined by

Ω 4 = {(*, y)eΩ\x >x,9r> p(x) + 2/},

r < p(x)

and let (M(X, .y), v(x, y)) be defined by
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y), v(χ, y))

(U(p(x) + 2ί\ V(p(x) + 20) (

(O,fl0) {x9y)eΩ6.

Then we can show that (u(x, y), v(x, y)) is a strict subsolution of (1.2).

Moreover, it is easy to see from the definitions of (ΰ(x, y), v(x, y)) and

(u(x,y), v(x, y)) that (ΰ(x, y), ϋ(x9 y)) > (u(x, y)9 v(x, y)) for all (x, y)sΩ. Hence,

by Lemma 3.1, there exists a stable non-constant stationary solution of (1.2).

Next we consider the case where α'(x0) = 0. By (3.6), we have

κ(x) < 0 < κ (x),

i.e. α'(x) is increasing in [x — δ0, x] U [x, x 4- <50] A strict subsolution of (1.2)

can be constructed precisely in the same manner as in the case αr(x0) > 0. A

strict supersolution of (1.2) can be constructed with a slight change if we take

account of the fact that κ(x) < 0 and p(x) < 0.

We can choose constants f > 0 and γ < 0 such that

< γ < 0 and x — <50 < xe < x.
p(x) -

Then, similar to Lemma 3.3, (3.8) has a supersolution (Ό{r), V{r)) = (U(r; p{x)

Let ΩΊ, ΩSΩ9 be subdomains of Ω defined by

ΩΊ = {(x9y)cΩ\x < x,, r > - p(x) + 2/}.,

Ω8 = {(x9y)eΩ\Ω~Ί\x<x, -p(x)<r< -

and let (ΰ(x, y)9 v(x, y)) be defined by

(M(X, y)9 v{x9 y))

( (Ό(p(x) - 2ί\ V(p(x) -

= I (ί/(-r),F(-r)) (x,y)eΩΛ9

1(1,0) (x,y)eΩ9.

Since α(x) satisfies

^ α(x)
α'(x) < α'(x) =

x - φ(x) x - φ(x)
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for all xe\_x-δ0, x], we can prove that (ΰ(x, y), ϋ(x, y)) is a strict super-

solution of (1.2). We omit details of the proof.

Since (w(x, y), v(x, y)) > (w(x, y), v(x, y)), by Lemma 3.1, there exists a

stable non-constant stationary solution.

By taking (b(ε), c(ε)) = (b0, c0), we obtain the following corollary:

COROLLARY 3.2. Suppose that there exists x oe(0, L) such that α(x) attains

its strict local minimum at x = x 0. Then there exists εo>0 such that, if

0 < ε < ε0, (1.2) with (a, b, c, d) = (α0, b0, cθ9 d0) has a stable non-constant

stationary solution.

REMARK 3.2. As is easily seen from the proof above, it is sufficient for

Theorem 3.3 and Corollary 3.2 that the domain Ω is rotationally symmetric

only in a neighborhood of x 0 .

4. Concluding Remarks

As we have seen in Section 3, whether or not there exists a stable

non-constant stationary solution of (1.2) strongly depends on the domain shape

and the magnitude of competition-diffusion—at least, as far as the solutions

obtained by our techniques are concerned.

When α(x) is a C2-class function in a neighborhood of x = x 0, the

assumption (ii) of Theorem 3.2 for the function α(x) is equivalent to

(4.1) α"(xo)α(xo) - o φ o ) 2 > 0,

while the assumption (ii) of Theorem 3.3 for the function κ(x) is replaced by

(4.2) α"(xo)α(xo) - α'(x0)
2 - α'(x0)

4 > 0.

The shape of the thin domain defined by (3.3) is quite different from that of

the rotationally symmetric domain defined by (3.5). It seems interesting to

note that, if the higher order term of α'(x0) in (4.2) is neglected, then (4.2)

reduces to (4.1).

The stable non-constant stationary solutions of (1.2) which we have

obtained in this paper arise from the situation in which the effect of the

curvature of the boundary and that of the competition-diffusion are

well-balanced. If these effects are unbalanced, we guess that such a stable

non-constant stationary solution of (1.2) no more exists unless the domain is

dumbbell-shaped with a sufficiently narrow channel.

Acknowledgement. We express our sincere thanks to Professors

M. Mimura and H. Matano for valuable comments.
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Appendix.

In this appendix, we state the proof of Theorem 2.1. Rewrite

F(u; b, c, s) — f(u) + g(u; b9 c, s), where

f(u) =

\

- u(l - u - cov)

and
\ - v(a0 - bou - v)/d0

g(u; b,c,s) =
— suξ + (c — co)uv

0

\ - svξ + (b - bo)uv/do

Let J_ = —(0, 0, α 0, 0) be a Jacobian matrix of f at u = HO, 0, a0, 0), and let
δu

λt and p f, i = 1, 2, 3,4, be eigenvalues and corresponding eigenvectors,

respectively, of J_. By an elementary calculation, we get

= y/ajd~o,

p t = '(0, 0, 1, λj,

p 2 = ' ( M 2 , e _ , e _ λ 2 ) ,

p 4 = '(0, 0, 1, λ4),

(A.1)

where

- 1 )

Note that, by (2.3), we have λy < λ2 < 0 < λ3 < A4.

Similarly let σj and qf, i = 1, 2, 3, 4, be eigenvalues and corresponding

eigenvectors, respectively, of the Jacobian matrix J+ = — (1, 0, 0, 0) of f at

u = ' (1 , 0, 0, 0). Then

(A.2)

du

ox = - 1,

σ2 = — ̂ /(bo ~ αo

σ 4 = 1,

q i = ' ( l ,

)/do, q 2 = ' ( l ,

q4 = '(i.

—

σ2

1,

1,

0,

0,

>

0),

0),

e+

e+
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where σ1 < σ2 < 0 < σ3 < σ4 and

Let Wl and W" be a stable manifold and an unstable manifold of (2.4)

with (ft, c, s) = (b0, cθ9 0) with respect to the equilibrium point (0, 0, a0, 0).

Then, by (A. 1), Wl and WO. are two-dimensional and are tangent to p l 5 p 2 , and

p 3 , p 4 , respectively. Further let Wls and W"u be a Ax-stable submanifold of

Wl and a ^-unstable submanifold of Wl, respectively. Then Wίs and W™

are one-dimensional and are tangent to p t and p 4 , respectively.

Similarly, let Wl and Wl be a stable manifold and an unstable manifold

of (2.4) with (b, c, s) = (b0, c0,0) with respect to the equilibrium point

(1, 0, 0, 0). Then, by (A.2), Wl and Wl are two-dimensional and are tangent
t 0 Qi»Q2» a n d q3 9 q4, respectively. Further let W+ and W™ be a σ^stable

submanifold of Wl and a σ4-unstable submanifold of Wl, respectively. Then

W+ and Wlu are one-dimensional and are tangent to qx and q4, respectively.

Let j£? be a linearized operator of (2.1) with 5 = 0 around (w, t;) = (w0, v0),

and let Ĵ f* be its adjoint operator defined by

respectively, where fu°(ξ) = —(u o(ξ), vo(ξ)), and so on. The adjoint equation
du

can be written as

(A.3) l v = _ v ^ ( u 0 ) ,

where u 0 = \u0, uOξ9 v0, vOξ) and v = ( - uξ9 u, — dovξ, dov). Differentiating

(2.1) with respect to ξ, we see that (u9 v) = (uOξ(ξ)rvOξ(ξ)) is a non-trivial

bounded solution of i f (u, v) = 0. Hence its adjoint equation i f *(u, v) = 0

must also have a non-trivial bounded solution, say (w*(ξ), υ*(ξ)). Then

v* = (— wj, w*, — dov%, dov*) satisfies (A.3). It can be proved that the

non-trivial bounded solution of i f *(w, υ) = 0 is unique up to multiplication

by constants.

It was proved in Theorem A of Kokubu [3] that, when (£?, c) is in a

neighborhood of (fc0, c0), the heteroclinic orbit of (2.4) persists if the following

conditions are satisfied:



Competition-diffusion equations 215

(HI) The heteroclinic orbit uo(ξ), ξeR, is on neither W™ nor W?.

(H2) WO. and Wl have one-dimensional intersection.

(H3) WL is transversal to W?9 and W% is transversal to Wίs.

(H4) g satisfies

0.Ir-oo d(s,b,c)

Moreover it was also shown in [3] that s(b, c) satisfies

Γ
J - a

— - s φ 0 , c0) - - -

J-oo SS

(A. 4)

I
We shall prove in the following that the conditions (H1)-(H4) do hold for (2.4).

First we prove that the condition (HI) holds.

LEMMA A.I. The heteroclinic orbit uo(ξ), ξeR, is on neither W"u nor W+.

PROOF. Let us consider the equation

(A. 5) doVξξ+V(ao-V) = 0, ξeR.

Then V = '(0, 0, V, Vξ) is a solution of (2.4) with (b, c, s) = (bOyco, 0). It is easy

to verify that, for an arbitrary constant C, there exists a solution of (A. 5)

satisfying

V(ξ) = a0 + C exp(A4{) + o(exp(λAξ)) as { — • - oo.

or equivalently,

\(ξ) = \0, 0, a0, 0) + Cp4 exp(A40'+ o(exp(X^)) as ξ —> - oo.

This means that V(ξ) is on W"u. Since W"u is one-dimensional, if uo(ξ) is

on W"u, then uo(ξ) = \{ξ) for some C. However this contradicts that (u0, t;0)

is a solution of (2.1). Hence uo(ξ) is not on W™.

Similarly, if uo(ξ) is on W+s, then we can prove that (M0, t;0) = (17, 0),

where 17 is a solution of
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Uξξ + 17(1 - U) = 0, ξeR,

U(ξ) — > 1 as ξ — > + oo.

This contradiction implies that uo(ξ) is not on W+.

In order to verify that the condition (H2) holds, we need some lemmas

below.

LEMMA A. 2. Any non-trivial bounded solution (u*, υ*) of !£*(w, v) = 0

satisfies u*(ξ)υ*(ξ) < 0 for all ξeR.

PROOF. First we prove that («*, v*) satisfies w*(^)ι;*(^) < 0 in a

neighborhood of — oo. Since the eigenvalues of J_ is all real, neither u*(ξ)

nor v*(ξ) oscillates in a neighborhood of — oo. Moreover, since fv° < 0 and

g° < 0, neither u*(ξ) nor v*(ξ) is identically zero in a neighborhood of — oo.

Hence we can define ξu and ξv by

ξu = inf {ξeR\u*(ξ) = 0 } e ( - oo, + oo],

ξv = inϊ{ξeR\υ*(ξ) = 0}E(-oo9 + oo].

Without loss of generality, we assume that ξu < ξv and that u*(ξ) > 0 in a

neighborhood of — oo.

If v*(ξ) > 0 for all ξe(~ oo, ξυ)9 then

0 = Γ M u*{(uOξ)ξξ + fu°uOξ + fv°υOξ} dξ
J - o o

= - «J(ξu)u0ξ(ξu) + Γ" {/."CoίM* - ί?«0ί»*
J - o o

This contradiction implies that v*(ξ) < 0 for all ξs(— oo, ξy).

Let us derive a contradiction by assuming that ξu< + oo. First we

consider the case where ξu = ξv. In this case, integration by parts yields

0 = Γ ((uo«^oί)
J - oo

Since w|(ξtt) < 0 and v%(ξu) > 0, the above equality holds only if u$(ξu) = 0

and t;|(ξu) = 0. By the uniqueness of the solution, this implies that u*(ξ) = 0

and v*(ξ) = 0. This contradicts the fact that (w*, v*) is a non-trivial solution.

Next we consider the case where ξu < ξv and u* has at least one zero in

(ξu9ξΌ). Then we have the inequalities uf(ξu) < 0 and uξξ(ξu) = - ^ ι ; * < 0 .
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Since u*(ξ) > 0 for ξ < ξu, these inequalities imply that u%(ξu) < 0. If we put

ξo = inf{ξe(ξu,ξv)\u*(ξ) = 0},

then u*{ξ) < 0 for ξe(ξu, ξ0) so that

0 = P u*{(uOξ)ξξ + fu°uOξ + fv°vOξ} dξ

£ + Γ ° { - θ>oξv* +fv°vOξu*}dξ

This is a contradiction. Hence u* has no zero in (ζu, ξυ).
Finally we consider the case where ξu < ξv and w* has no zero in

(ζu,ξv). Putting «•(£) = max {«•({), 0} and substituting (ΰ*(ξ), v*(ξ)) into
y*(u, v), we obtain

0 ζe(-oo,ξu),

g°uv*(>0) ξe(ξu,ξA,

JD °v l-/.°«*«o)
where δ(ξ) denotes a Dirac's <5-function. Hence we obtain

0 <

J - c

((uOξ, vOξ), 2>*(ΰ\ v*))dξ = υOi(ξβ)υξ{ξv) < 0.

This contradiction implies that ξu = + oo.
Thus the proof is completed.

LEMMA A. 3. Any non-trivial bounded solution (w, v) of 5£(w, t;) = 0 satisfies
u(ξ)v(ξ)<0 for all ξeR.

This lemma can be proved in the same manner as Lemma A. 2 by replacing
the roles of (uOξ, vOξ) and (M*, V*). SO we omit the proof.

The following lemma shows that the condition (H2) holds.

LEMMA A. 4.

Un°°=i{(w> v)\{u, v) is a bounded solution of ^"{u, v) = 0}

= {β(uOξ9vOξ)\βeR}.

PROOF. Suppose that there exists a non-trivial bounded solution (M, V) of
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i f (M, V) = 0 which is linearly independent of (uOξ, vOξ). It is clear that

([/5 v) = (u, t?) + C(w0<*, vOξ) also is a non-trivial bounded solution of if(w, f) = 0

for an arbitrary constant C. If we take C = - u(0)/uOξ(0), then U(0) = 0.

This contradicts Lemma A. 3.

Next let (u, v) be a non-trivial bounded solution of i f "(w, v) = 0 for n > 2

and let (u*, ι?*) be a non-trivial bounded solution of i f *(w, i?) = 0. From the

above argument, we see that there exists βeR such that 5£n~ι{u, v) = β(uOξ, vOξ).

Hence

Γ°°(K, vOξ), (II , ϋ ))dξ = Γ
J — oo J —J — oo J — oo

Here, by Lemmas A. 2 and A. 3, we have

+ oo

Hence we obtain β = 0. Inductively, we obtain (u, ι;)e{/?(uO(«, ι;Oξ)|/?eR}.

The following lemma shows that the former part of the condition (H3)

holds.

LEMMA A. 5. Let (w, v) be any solution of $£ (w, v) = 0 satisfying (w, f) -•

(0, 0) as ξ -• — oo. 7/* |(M, V)\ -• oo α5 ξ -> + oo, rΛ^« ίΛer^ exists a constant

C 4 ^ 0 ^wcA that

(u(ξ)9 v(ξ)) = C 4(l, 0) exp(σ4ξ) + o(exp(σ4ξ)) α5 { — , + oo.

PROOF. By (A.2), the asymptotic behavior of u = \u, uξ, v, vξ) is repre-

sented as

u(ξ) = C 3 q 3 Qxp(σ3ξ) + C 4 q 4 exp(σ4ξ) + o(exp(σ3ξ)) as ξ • + oo,

where C 3 and C 4 are certain constants. It is sufficient for the proof of this

lemma to show that C 4 φ 0.

Contrary to the conclusion, suppose that C 4 = 0. Then, by (A. 2),

(u{ξ),v(ξ)) satisfies u{ξ) > 0, uξ(ξ) > 0, v(ξ) < 0 and vξ(ξ) < 0 in a neigh-

borhood of + oo. On the other hand, by Lemma A.2, we have u*(ξ) > 0,

u%{ξ) < 0, v*(ξ) < 0 and v%{ξ) > 0 in a neighborhood of + oo. Hence,

integrating by parts, we obtain

0 = | ((ii, ι;), &*(u*,Ό*))dξ
J — 00

= u{ξ)u*ξ{ξ) + dov{ξ)v*ξ{ξ) - uξ(ξ)u*(ξ) - dovξ(ξ)v*(ξ)

< 0
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if ξ > 0 is sufficiently large. This contradiction implies that C 4 Φ 0.

The following lemma shows that the latter part of the conditio (H3) holds.

LEMMA A. 6. Let (u, v) be any solution of i?(w, υ) = 0 satisfying (u, v)-+

(0, 0) as ξ -* 4- oo. If \(u, v)\ ~-+ co as ξ -+ — co, then there exists a constant

C1 φ 0 such that

(u(ξ)9 υ(ξ)) = Ci(0, l)exp(λ1ξ) + o(exp(Λ !<!;)) as ξ — • - oo.

This lemma can be proved in the same manner as Lemma A. 5. So we

omit the proof.

Finally, from Lemma A. 2 and

/ 0 0 0 \

δ c -uOξ 0

d(s, b, c ) g ° °'C°' 0 0 0

\ - vOξ uovo/do 0

it follows that the condition (H4) holds.

Thus we have shown that all the conditions (H1)-(H4) do hold.

Moreover, by Lemma A. 2 and (A. 4), we obtain

— - s ( 6 0 , c 0 ) < 0 and — s(b0, c0) > 0.
db dc

The proof of (2.5) is now completed.

Next let us prove that (w, v) is positively monotone in a neighborhood

dF
of (b, c) = (b09 c0) and satisfies (2.6) and (2.7). Let J_ = — ( 0 , 0, aθ9 0) be a

Jacobian matrix of F at u = r(0, 0, a0, 0), and let λh and p ί 5 i = 1, 2, 3, 4, denote

eigenvalues and corresponding eigenvectors of J_. If (b, c) is close to (60, c0),

by continuity, we may assume that lχ < λ2 < 0 < 2 3 < 2 4 .

Similarly let J+ =—(1,0,0,0) be a Jacobian matrix of F at u =
<3u

'(1,0,0,0), and let σh and qf, i = 1, 2,.3, 4, denote eigenvalues and corre-

sponding eigenvectors of J+. If (b, c) is close to (b0, c0), by continuity, we

may assume that σλ < σ2 < 0 < σ3 < σ4.

By virtue of Lemma A.I, there exist constants C_ > 0 and C+ > 0 such

that
t(0909aO90) + C.p3i

as ξ — > - oo,
Uo(ί) = 1

'(1, 0, 0, 0) — C+q 2 exp(σ2£) + ^(exp(σ2ξ))
as ξ • H- oo.
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In view of the proof of Theorem A of Kokubu [3], there exist constants

j?_ > 0 and β+ > 0 such that β. -• C_ and β+ -» C+ as (b9 c) -* (bθ9 c0), and

that u = '(w, ύξ, v, vξ) satisfies

'(0, 0, a09 0) 4- jβ_p

as ξ > - oo,

'(1, 0, 0, 0) - jS+q2 exp(y+£) + o(exp(y+£))

as ξ — • + oo,

where

y_(b, c) = l 3 and y + (fc, c) = σ2.

Moreover the orbit of u converges to that of u0 as (b,c)->(bθ9co). These

imply that there exists ξ1 independent of.(fe, c) such that, if (b, c) is close to

(bθ9 c0), ti((J) is strictly increasing and v(ξ) is strictly decreasing in ( - oo, ξj.

Similarly we can prove that there exists ξ2 independent of (b, c) such that, if

(b, c) is close to (bθ9 co)9 ύ(ξ) is strictly increasing and v(ξ) is strictly decreasing

in (ξ29 + oo).

On the other hand, since (w0, vΌ) is strictly positively monotone and since

u depends continuously on (b, c), ύ(ξ) is strictly increasing and v(ξ) is strictly

decreasing in (ξl9 ξ2) if (b, c) is close to (b0, c0).

Thus we have shown that (ύ(ξ), v(ξ)) is strictly positively monotone.

Moreover, since y_ -+λ3, p 3 - ^ p 3 and y+ -+σ2, ή - ^ h a s (b, c)-^(bOi c0), we

obtain (2.6) and (2.7).

The proof of Theorem 2.1 is now completed.
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