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Abstract. The parabolic index of a locally finite connected graph of bounded degree
is shown to be invariant with respect to rough isomertries. We shall give an elementary
proof of the fact that the parabolic index of the graph of the d-dimensional Euclidean
lattice Z“ is equal to d.

1. Introduction

Let G ={X, Y, K} be an infinite locally finite connected graph, where X
is the countable set of points (= nodes, vertices), Y is the countable set of
edges (= arcs) and K is the node-arc incidence function (= matrix). The pair
N = {G, r} of the graph G and a strictly positive real function r (resistance)
on Yis called an infinite network in [13]. Since we always consider the case
where r = 1 in this paper, we identify the graph G with the network N.

Parabolic and hyperbolic networks (graphs) were studied in the paper
[13], to which we refer for all basic notions. We only recall that the parabolic
index of the graph G is defined as

ind G = inf{p > 1; G is parabolic of order p}.
A neighbour ze X of xe X is a point such that there exists ye Y which satisfies
K(x, y)K(z, yy = — 1. We say that G is of bounded degree if
sup {deg(x); xe X} <M

for some constant M, where deg(x) is the number of neighbours of x.

The geodesic distance between two vertices x, ze X is the number of edges
of the shortest path joining x to z and is denoted by ds(x, z). In particular,
we write x ~ z if x and z are neighbours, ie., dg(x, z) = 1. Clearly {X, dg}
is a metric space.

For a real valued function f on X, the Dirichlet sum of f of order p
(I < p< ) is given by

D(N)=Dy,(f; )= X If(x)—fO].
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If D,(f) is finite, we say that f is p-Dirichlet finite. We choose a reference
vertex oe X and define a norm for p-Dirichlet finite functions by

I f lpway = [f @) + Dy(f)1'.

Let DP(G) denote the Banach space of all real valued, p-Dirichlet finite
functions equipped with the norm above. Let /,(G) denote the linear space
of all real valued finitely supported functions on X. We denote by D¥)(G)
the closure of I,(G) in D®(G).

Let G, ={X,, Y, K,} and G, = {X,, Y,, K,} be graphs as above. We
say that G, is roughly isometric to G, if there exists a map (called a rough
isometry) ¢ from X, to X, which satisfies the following two conditions:

(RI-1) There exist constants a > 0 and b > 0 such that
a”ldg,(x, t) = b < dg,($(x), $(1)) < adg,(x, ) + b
for all x,te X;;

(RI-2) There exists a constant ¢ > 0 such that, for every ze X,, there
exists xe X, which satisfies dg,(z, ¢(x)) < c.

It is not difficult to see that if G, is roughly isometric to G,, then G,
is roughly isometric to G,;cf [S, p. 392]. Therefore we say that G, and
G, are roughly isometric. Notice that to be roughly isometric is an
equivalence relation.

The notion of a rough isometry was introduced by Kanai [5] and is
essentially the same as Gromov’s notion of a quasi-isometry [2]. Kanai
[6] proved that, for roughly isometric Riemannian manifolds R, R, of
bounded geometry, R, is parabolic if so is R;. The discrete counterpart of
Kanai’s theorem was proved, among other results, in [10, Theorem 3.2]: for
roughly isometric connected graphs G, and G, of bounded degree, G, is
recurrent if so is G,. Remember that a graph G is called recurrent (transient)
if the simple random walk on G, which assigns equal probability of passing
from a vertex to any of its neighbours, is recurrent (transient). Moreover G is
recurrent (transient) if and only if it is parabolic of order 2 (hyperbolic of
order 2); see [12], [4] or [11].

As a generalization of the result [10, Theorem 3.2], we shall show that
two roughly isometric graphs of bounded degree have the same parabolic
index. It was proved in [9] that the parabolic index of the graph of the
d-dimensional Euclidean lattice Z? is equal to d. We shall give a more
elementary proof of this fact with the aid of the product of flows due to
Lyons [8].

In this paper we always assume that a graph has no multiple edges nor
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self-loops. Thus, for every pair {x, z} of nodes, there exists at most one edge
y such that K(x, y) =1 and K(z, y) = — 1. We call x (resp. z) the initial (resp.
terminal) point of y and put y = [x, z].

2. Parabolic index and rough isometries

For every graph G = {X, Y, K} and every positive integer k, the k-fuzz
G* = {X* Y* K*} of G is the graph such that X*= X, and dg(x, ) =1
if and only if 1 <dg(x, ) <k.

It was proved in [1](see also [10]) that G is parabolic of order 2 if and
only if G* is parabolic of order 2. As a generalization of this, we have the
following result.

THEOREM 2.1.  Suppose that G is of bounded degree. Then ind G = ind G*.

ProOF. We first prove that the norms in D®(G) and in D" (G*) are
equivalent. On one hand it is clear that, for every function f on X = X*,

Dp(f; G) < Dp(f; Gk), so that “f“D(P)(G) < ”f”D(P)(G“)'
On the other hand, set for every y = [z,, z,] € Y*
Uy, k) = U([z,, 2,1, k):= {[xl’ x,]eY; dG(xja z;)<k, for ij=1, 2}-

Clearly, every edge in G belongs to less than M2**V sets U(y, k). Now, if
doe(x, t) =1, ie., 1 < dg(x, t) = n < k, then there is a path in G with vertices
X=Xy~ X, ~-~x,=t Then we have, with 1/p+ 1/q =1,

S =OF <K 3 170x) — £ (- )"

<kt Y 1fE) =S

[s,uleU([x,t],k)

It follows
2 ) —fOF <kt Y Y fe-fwP
[x,t]leYk [x,tleY¥k [s,uleU([x,t],k)
< KPAMPETD ST f(s) — fw)lP.
s uleY
Hence

I f Iporgry < kKMAMPEDP|| £ 5 6r6)-

Therefore DP(G) contains the same functions as D”(G*) and DY (G) the same
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functions as D{(G*). Hence by [13, Theorem 3.2], G is parabolic of order p
if and only if G* is parabolic of order p. W

Let G, ={X,, Y}, K,} and G, = {X,, Y,, K,} be graphs as above. We
say that a map ¥ from X, to X, is a morphism from G, to G, if dg,(x, t) = 1

implies dg, (¥ (x), ¥(0) < 1.
For a morphism ¥ from G, to G,, we define the image G| = {X, Y{, K}
of G, in G, with respect to  as follows:

X, =y(X,), and y =[x, t']e Y] if there exists y = [x, t]e Y, such that
Y(x)=x" and y(t) =t

It is clear that G is a connected subgraph of G, and has no self-loops nor
multiple edges.

LemMma 2.2. Let G, and G, be graphs of bounded degree, let Y be a
morphism from G, to G, and let G| be the image of G, with respect to
Y. Suppose that there is a constant m such that, for every x, te X, y(x) = y(t)
implies dg (x,t) <m. Then ind G, < ind G}.

Proor. For every function /' on X', we define a function f on X, by

fx)=f"(Y(x) for all xeX.

For every x,teX| with x' ~¢t, there exist x,teX such that x ~t and
Y(x)=x,y@)=t. We have

Y@ -for<s Y X If&®-for

x~t [x',t']eY] Y(x)=x’
@) =t'

= ) fe=frer 3y L
[x,t']eY{ xey~ (x’),
ey~ 1(t')

Let z’e X, and ze X satisfy y(z) =z'. Then
YN Z) = {xeX,; dg(x, z) < m}

by our assumption. Therefore Card ¢ ~'(z') < M™*!. Here, Card stands for
the cardinality. By choosing o' = y/(0), we get

D,(f; Gy) < M*™* VD, (f"; GY)
and hence

I f lpwya,y < MPTEDP| £ pigy)-
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Suppose now that G} is parabolic of order p. Then, by [13, Theorem 3.2],
there is a sequence { f,} of real finitely supported functions on X such that

” 1 —f;u ”D‘P)(G,’) — 0 as n — 0.

Let f, and f, be related as above. Then f, is finitely supported on X,. By
the above norm estimation, we see that |1 — f,[pmg, — 0. It follows that
1eDY(G), so that G, is parabolic of order p by [13, Theorem 3.2] again. W

LemMA 23. Let G'={X',Y',K'} be a subgraph of G. Then indG' <
ind G.

PrOOF. Assume that G is parabolic of order p. Then, there exists a
sequence {f,} of real finitely supported functions on X such that
11— f.llpwe — 0 as n = co. Denote by g, the restriction of f,, to X’. Then,
g, is finitely supported and

11— gullpwre) < 11 = fullpwe — 0
as n— oo. Hence G’ is parabolic of order p by [13, Theorem 3.2]. W
Now we shall prove our main result.

THEOREM 2.4. Suppose that G, and G, are two roughly isometric infinite
connected graphs of bounded degree. Then ind G, = ind G,.

Proor. Since G, is roughly isometric to G,, there exists a rough isometry
¢ from X, to X,. For an integer k such that k > a + b, it is easily seen by
(RI-1) that ¢ is a morphism from G, to the k-fuzz G% of G,. Let G; be
the image of G, with respect to ¢. For every x, te X, such that ¢(x) = ¢(1),
we have by (RI-1)

a~'dg,(x, t) — b < dg,($(x), p(1) =0,

so that dg, (x, t) < ab. Thus we may apply Lemma 2.2 with m = ab. Hence
ind G, <indG). Since G is a subgraph of G%, it follows from Lemma 2.3
that ind G, <ind G%. Finally, by Theorem 2.1, ind G, <ind G,. The reverse
inequality follows by exchanging the roles of G; and G,, since G, is roughly
isometric to G,. W

3. Parabolic index of the Euclidean lattice domains

Let G = {X, Y, K} be a connected graph with no self-loops and no multiple
edges. For a real valued function u on X x X which satisfies condition

(F) u(x, z) = — u(z, x) for all x, zeX,
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the boundary du of u is defined as the function on X given by

Ou(x) = Y u(x,z) for all xeX.

Notice that for the function W on Y defined by
W) =u(x,z) if y=I[x z],

we have

du(x) = Y K(x, W)

yeY

Choose any reference vertex oe X. A function u on X x X satisfying condition
(F) and such that u(x, z) =0 if x and z are not neighbours is called a flow
of value m from o to the ideal boundary of G if

du(x)=0 if x#o,
ou(o) = m.

Now we recall the notion of the product of flows due to Lyons [8]. Let
G={X,Y K} and G’ ={X', Y, K'} be graphs. Define G x G’ as the graph
whose vertex set is the Cartesian product X x X’ and let two vertices (x, x')
and (z, z') be connected by an edge if and only if x =z and x' ~z or if
x' =z and x ~ z.

Denote by Z = GV be the Euclidean 1-dimensional lattice graph, whose
vertices are the integers and whose edges are line segments joining consecutive
integers. Let u and u’ be functions on (X x Z) x (X x Z) and on (X' X Z) x
(X’ x Z) respectively, satisying the condition (F). In particular they might
be flows from from (o, 0) to the ideal boundary of G x Z and from (o, 0) to
the ideal boundary of G’ x Z respectively. Lyons [8] defined the product
w=uxu of u and ' as a function on (X x X' X Z) x (X x X' x Z) in the
following way

w((x, x', n), (x, X', n 1) = &£ 2u((x, n), (x, n £ D)u'(x', n), (x', n + 1)),
w((x, x', n), (z, X', n)) = u((x, n), (z, N)u'((x', n), (x', n + 1)) —
u((x, n), (z, ' (X', n), (x', n — 1)),
w((x, X', n), (x, 2/, n)) = u' (X', n), (2, n)u((x, n), (x, n + 1)) —
w((x', m), (2, mu((x, n), (x, n — 1))

whenever x ~z or x' ~z. Set w =0 otherwise. Note that w satisfies (F).
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The following lemma is an immediate consequence of the definition.

LEMMA 3.1. Let u and u' be two functions as above and let w=uxu' be
their Lyons product. Then, for every (x, x',n)eX x X' x Z

ow(x, x', n) = ou(x, n)(w' (x', n), (x', n + 1)) — ' ((x, n), (x', n — 1))) +
ou'(x', n)(u((x, n), (x, n + 1)) — u((x, n), (x, n — 1)).

If u and «' are flows from (o, 0) to the ideal boundary of G x Z and from
(0, 0) to the ideal boundary of G’ x Z respectively, then dw(x, x’, n) =0 for
all n#0 and all (x, x)eX x X'. In the cases of interest it turns out that w
is actually a flow from (o, 0/, 0) to the ideal boundary of G x G’ x Z.

We will apply Lyon’s method to prove that the parabolic index of the
d-dimensional Euclidean lattice is exactly d.

We will denote by G = {X@, Y@ K@} the graph of the d-dimensional
Euclidean lattice Z°. More precisely, let eV),...,e® be the standard base of
the d-dimensional Euclidean space RY, ie., the k-th component of e is 1 for
k=jand O for k #j. For a, beRY let [a, b] denote the directed line segment
from a to b. If x is a vector in R? we will write x = (x,, X,,...,X,), i.e. we
will denote by x; the j-th coordinate of x. For each j=1,...,d, set

SO = {[x, x + e?]; xe X9, x; > 0},
SO = {[x, x — eV]; xe X9, x; < 0},
@ — ¢ || Q@
SO = @,y s@_
With these notation, we take
@ _ 7d @ _d Q@
XD =74 Y@= yd_ 50,
THEOREM 3.2. ind G = 4.

Proor. The inequality indG” <d was proved in [9] by using a
geometric criterion in [13]. Here we give an elementary proof of the reverse
inequality.

Let o be the origin of the axes. In order to construct a flow from o to
the ideal boundary of G“, let us put for d > 2

QD ={(vy,....va-, MeZ vl <n (i=1,...,d =1}

Let u, be the real valued function on Y@ which satisfies condition (F) and
takes the values for n > 0

uy (> ), (, n + 1)) = 1/(2n + 1) for |ul <n;
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uy (e, m), (p,m+ 1)) =0 for |ul>n;

2u+1

e for 0<pu<n-—1;
2n—1)2n+1)

“2((#’ n)’ (lu + l.* n)) =

—2u+1

—_— f —n+1<u<0;
-+ o " K

u2((,u9 n)’ (.u - 1’ n)) =

u((u, n), (p £ 1,n) =0 for |u|> n.
For n <0, let
u(, n), (u, n+ 1) =u (), (p£14,n)=0  for all p

It is easily seen that Ou,(a) =0 for all ae X'®, a # o0 and du,(0) = 1. Then
u, is a flow of value 1 from o to the ideal boundary of G‘.
Now we define recursively a flow on G“ for all d > 3 by setting

Ug = Ug—1*Uy, d=3,4,..
We have

ug(x, x +e?)=2"22n + 1)74*! if xeQ?® and x,=n

If x,=z,=n,x,2zeQ? and x ~ z,
lug(x, z)| < By(2n + 1)74*1

for some constant B, independent of n. Moreover, if x ~ z,

uy(x,z)=0 unless x, zeQ?.

By Lemma 3.1 and induction one checks easily that
Ouy(x)=0 if x#o,
Ouy(o) = 2472,

Therefore u, is a flow of value 272 from the origin to the ideal boundary
of G9. Set, for every n=0, 1,...

E,(n)={[x,z]eY?; x,ze Q¥ x; =z, — 1 =n},
E,(n) = {[x,z]eY?; x, ze QY, x, = z, = n}.

Then CardE (n)= (2n + 1)~ and CardE,(n) =2n(2n + 1)*"2. Let 1 <p <
d and 1/p + 1/q=1. Then, remembering that for every [x, z]e Y9, u,(x, z)
=0 unless {x, z} = Q¥, we have
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1
H,(uy):= =5 2 Z [ug(x, 1)

=LY ol Y a0l

n=0 [x,t]eEi(n) [x,t]eE2(n)

< {26020 4 (B} Y (20 + 1) 0079 < oo,
n=0
since p < d implies (d — 1)(1 — q) < —1. Therefore G is hyperboic of order
p, (1 <p<d) by [13, Theorem 4.3]. Thus indG® >d. W

4. An application

A tiling T of the Euclidean plane R? is a collection of closed topological
disks T, having pairwise disjoint interiors, such that U,.,T=R?* We assume
that the tiling is normal in the sense [3]. The edges and the vertices of the
tiling are the edges and vertices of a plane graph G = {X, Y, K} which is
locally finite connected and of bounded degree: this graph is called the edge
graph of the tiling. See the book [3] for hundreds of figures and examples.

It was proved in [11, Theorem 4] that for every normal tiling T there
is a combinatorially equivalent tiling T' whose edge graph G’ = {X’, Y, K'} is
uniformly imbedded in R?, i.e. there is a constant k such that for every p, ge X’

k™'dg(p, ) < |p — q| < kdg.(p, q)
where |p — q| denotes the Euclidean distance between p and gq.

Therefore the inclusion map is a rough isometry of G’ into R% Namely
G’ is roughly isometric to G'®. On the other hand G and G’ are isometric
graphs. Since rough isometry is an equivalence relation, G is roughly isometric
to G®. Then our Theorems 2.4 and 3.2 imply that ind G = 2.
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