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1. Introduction

This paper is concerned with the Emden-Fowler differential equation

(1-1) / + p(ί)|3;|αsgn); = 0, t > ί0.

For equation (1.1), we always assume that α > 0, α Φ 1 and that

(1.2) peC1^, oo) and p(t) > 0 for t > ί0

We are interested in the problem of the existence of infinitely many bounded

solutions y(t) of (1.1) which satisfy y(t0) = 0 and have prescribed numbers of

zeros in (ί0, oo). Our main result is stated as follows: Suppose that

(1.3) li

Γ°° Γ°° Γn'fίϊΊ
tp(t)dt < oo and L ^ v ; j + at < oo

J*o Jro p(0

p(ί) 2

for the superlinear case α > 1, and suppose that

(1.4)

for the sublinear case 0 < α < 1, where [u]+ = max {0, u}. Then there exists

an infinite sequence of bounded solutions yfc(ί), k = 1, 2, , of (1.1) such that

yk(t) has precisely k — 1 zeros in (ί0, oo) and satisfies yk(t0) = 0. Moreover

the sequence {yk(t)} can be constructed so that

0 < lim yk(t) < lim yk + 1 ( t ) < oo for α > 1
f-* oo ί— > oo

and

0 < lim yk + ι(t) < lim yk(t) < oo for 0 < α < 1.
- -

We note that, under condition (1.3) for the case α > 1, and under condition

(1.4) for the case 0 < α < 1, all nontrivial solutions of (1.1) are nonoscillatory.



178 Yΰki NAITO

To prove the above results, we first show that, for each λ > 0, equation
(1.1) has a unique solution y ( t ; λ) existing on [ί0, oo) and satisfying

(1.5) l ί m y ( t ' 9 λ ) = λ.

Then, we make a detailed analysis of how the qualitative behavior of y(ί; λ)
changes as λ -> 0 or as λ -> oo, and make effective use of the information thus
obtained to count the number of zeros of y(t\ λ) through the standard Prϋfer
transformation

y ( t ; λ ) = p(t;λ)smφ(t;λ),

y'(t\ λ) = p ( t ; λ)cosφ(t; λ).

In this procedure we need the fundamental results about the continuability
and the uniqueness of solutions of the initial value problem for (1.1) as well
as the results about the asymptotic properties of nonoscillatory solutions.

For boundary value problems in the compact interval [ί0, ίj, the existence
of solutions with prescribed numbers of zeros is studied by many authors (see,
e.g., [7, 9, 18, 19, 21]). As an example, consider the boundary condition

(1.6) y(tQ) = y(t,) = 0.

It is known that, for any positive integer /c, the boundary value problem
(1. !)-(!. 6) has a nontrivial solution y(t) which has exactly k — 1 zeros in
(ί0, ίj. The superlinear case of this result is due to Nehari [19] and Tal

[21], while the sublinear case has recently been proved by Naito-Naito
[18]. For a more general equation under the boundary value condition (1.6),
we refer to [7, 9, 18]. It seems to the author, however, that very little is

known about the existence of solutions of (1.1) with prescribed numbers of
zeros in an infinite interval. The study of the present paper was motivated
by this observation.

Our results for the ordinary differential equation (1.1) can easily be applied
to radial solutions of the elliptic differential equation

(1.7) Λ w + 4(|;c|) M α s g n w = 0, xeΩ,

where A is the n-dimensional Laplace operator, n > 3, |x| is the Euclidean

length of xe#", and Ω is either the unit ball

(1.8) Ω = {xεR": \x\ < 1}

or the exterior domain

(1.9) Ω = {xεRn: \x\> 1}.
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For the case where Ω is given by (1.8) we consider the boundary condition

(1.10) u = 0 on |x| = 1.

Then it is easily seen that the problem of finding radial solutions u = u(r),

r = |x|, of (1.7)-(1.10) is converted to the following problem:

(V'1!/)' + τ^~ίq(r)\u\Λ sgn u = 0, 0 < r < 1,

(y(0) = 0 and ιι(l) = 0.

For the case where Ω is given by (1.9) we consider the boundary and the
asymptotic conditions

(1.12) H = 0 on |x| = 1 and lim \x\n~2u(x) = λ > 0 for some λ.
\χ\-xx>

Then, radial solutions u = u(r) of the problem (1.7)-(1.12) can be obtained by
solving

f (r"-1!!')' + i*~lq(r)\u\* sgn u = 0, r > 1,

( u ( l ) = 0 and lim rn~2u(r) = λ > 0 for some λ.
r-* oo

By the change of variables, equations in (1.11) and (1.13) are reduced to
equations of the form (1.1). Then, using the results for (1.1), we can conclude
that each of the problems (1.11) and (1.13) has an infinite sequence of solutions
Mk(r), k= 1, 2, , such that uk(r) has exactly k— 1 zeros in the interval in
question.

We also consider equation (1.7) for the case Ω = Rn, that is, on the entire
space Rn. In this case we study entire solutions u satisfying

(1.14) lim |xΓ~ 2 w(x) = μ / 0 for some μ.
|x|-»αo

As in the above, the problem of finding radial entire solutions u = w(r), r = |x|,
of (1.7)-(1.14) is equivalent to the problem

(1 f (r"-1*')' + r"-^(r)|ur sgn u = 0, r > 0,

U'(0) = 0 and lim rn~2u(r) = μ / 0 for some μ.

To investigate the problem (1.15), we use the technique of Yanagida-Yotsutani
[23]. Their idea is to divide (1.15) into the two problems

n _ "-V)' + r«-^(r)|W |αsgn u = 0, 0 < r < 1,
(l.lo) <

'(0) = 0 and u(0) = λ > 0,



180 Yΰki NAITO

and

/(r"-V)' + rπ~1^f(r)|ί;|αsgnί; = 0, r > 1,

and to glue u(r) and ι (r) at r = 1 by choosing λ and μ appropriately. For

this method, we also refer to Bianchi-Egnell [1] and Cheng-Chern [3]. The

results about bounded solutions y(t\ λ) of (1.1) satisfying (1.5) play an importnat

role and are effectively used in studying the problems (1.16) and (1.17).

The problems (1.11) and (1.15) are discussed by several authors. For the
superlinear case of the problem (1.11) with q(r) = 1, Castro-Kurepa [2] and

Struwe [20] showed the existence of an infinite sequence of solutions with

prescribed numbers of zeros. In [10], Kajikiya obtained a similar result for

the sublinear case as well as the superlinear case. For the superlinear case
of (1.11) with q(r) = rl, I > 0, Nagasaki [15] showed the existence and the

uniqueness of an infinite sequence of solutions having the same properties as
above.

Recently the problem (1.15) was discussed by Naito-Naito [17] for the

sublinear case, and by Yanagida-Yotsutani [23] for the superlinear case. In

both papers, it is shown that, under certain conditions on α and q(i), the

problem (1.15) has an infinite sequence of solutions uk(r), fc = 1, 2, , such

that uk(r) has exactly k — 1 zeros in (0, oo).

The outline of this paper is as follows. The main results concerning the

ordinary differential equation (1.1) are stated in Section 2. The results for

the problems (1.11), (1.13) and (1.15) are also stated in Section 2. Sections

3, 4 and 5 are devoted to the study of equation (1.1). Section 3 contains the

basic result which ensures the existence and uniqueness of solution y(t; λ) of

(1.1) satisfying (1.5). The superlinear case and the sublinear case of (1.1) are

studied in Sections 4 and 5, respectively. Section 6 is concerned with the

problems (1.11), (1.13) and (1.15). The results for (1.11) and (1.13) are proved

in the subsection 6.1, and the results for the superlinear case and the sublinear

case of (1.15) are proved in the subsections 6.2 and 6.3, respectively.

2. Main results

First we state the results concerning the ordinary differential equation (1.1).

THEOREM 1. Consider equation (1.1). Let α > 1 and suppose that condition

(1.3) holds. Then, for each k = 1, 2, , there exists a bounded solution yk(t)

of (1.1) such that yk(t) has exactly fc — 1 zeros in (ί0, oo) and satisfies yk(t0) = 0

and
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(2.1) 0 < lim yk(t) < lim yk + 1(t) < oo, k = 1, 2, .
ί~* 00 f-* 00

REMARK 2.1. Condition (1.3) is equivalent to the following condition:

There is ε > 0 such that

_l ( ί(«+3)/2+ε p (f))<o for all large ί.
dt

Therefore if (1.3) is satisfied, then all nontrivial solutions of (1.1) are

nonoscillatory (see Kiguradze [11]). It is also known that if

tp'(t) α + 3

~' °'
then a solution y(t) of (1.1) satisfying y(t0) = 0 has an infinite number of zeros

in (t0, oo ) (see Coffman-Wong [4] and Heidel-Hinton [8]).

THEOREM 2. Consider equation (1.1). Let 0 < α < 1 and suppose that
condition (1.4) holds. Then, for each k = 1, 2, , there exists a bounded solution
yk(i) of (1.1) such that yk(i) has exactly k — 1 zeros in (ί0, oo) and satisfies
yk(t0) = 0 and

(2.2) 0 < lim y fc+1(ί) < lim yk(t) < oo, k = 1, 2, .
- ~

REMARK 2.2. It is known that if (1.4) is satisfied, then all nontrivial

solutions of (1.1) are nonoscillatory (see Gollwitzer [6] and Kwong-Wong

[14]).

Next we consider the problem (1.11) which arises in the search of radial

solutions of the elliptic problem (1.7)-(1.10).

THEOREM 3. Consider the problem (1.11). Suppose that α > 1 and that

(2.3) 46C[0, ΓlnC^O, 1], q(r)>0 for re(0, 1].

Suppose further that

(2.4) l i -- .
-o q(r} 2

Then, for each k = 1, 2, , there exists a solution uk(r) of (1.11) such that uk(r)
has exactly k — 1 zeros in (0, 1) and

(2.5) 0 < 1 (̂0) < M2(0) < ••• < uk(ϋ) < w fc+1(0) < -...

REMARK 2.3. For the case q(r) = rl (0 < r < 1) where / > 0, condition
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(2.4) becomes α < (n + 2 + 2/)/(w - 2). In this case, the existence and
uniqueness of the sequence of solutions uk(r) are proved by Nagasaki [15]. By
a result of Kusano-Naito [12, 13] we see that, under the condition

any solution u of

(rn~V)' + r ' l ~ 1 4(r) |w | α sgnw = 0, 0 < r < 1,

satisfying t/(0) = 0 and w(0) ̂  0 has no zeros in [0, 1].

THEOREM 4. Consider the problem (1.11). Suppose that 0 < α < l and
that (2.3) holds. Suppose further that

Γ l(τ*-2q(r)n

Jo r2»-2q(r)
(2.6) L V 2,-Γ"J-*<*

Jo r2" q(r)

where [u]- = max {0, — u}. Then, for each k = 1, 2, , /fere exists a solution

uk(r) of (1.11) such that uk(r) has exactly k — 1 zmw in (0, 1) 0«t/

(2.7) 0 < -. . < t*k + 1(0) < ιιk(0) < - < ι*2 (0) < MO).

Next we state the results concerning the problem (1.13).

THEOREM 5. Consider the problem (1.13). Assume that α > 1 and that

(2.8) βeC^l, oo), g(r>> 0 for re[l, oo).

Suppose that

rq'(r) n + 2 - .<χ(n - 2)
(2.9) lim sup - < -- .
V ' - F

, for each fc = 1, 2, , there exists a solution uk(r) of (1.13) ^wc/z /Aαf wfc(r)

exactly k — 1 zmw /w (1, oo)

(2.10) 0 < lim rn~2uk(r) < lim r"~2wk + 1(r) < oo, fc = 1, 2, .

THEOREM 6. Consider the problem (1.13). Assume that 0 < α < 1 α«rf that

(2.8) A0/tffr. Suppose that

\: rn-l-*(n-2)q^dr<
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where [u] + = max {u, 0}. Then, for each k = 1, 2, , there exists a solution

uk(r) of (1.13) such that uk(r) has exactly k — 1 zeros in (1, oo) and

(2.12) 0 < lim rn~2uk+1(r) < lim rn~2uk(r) < oo, k = 1, 2, .
r->oo r-» oo

Next we consider the existence of solutions of the problem (1.15) which

arises in the search of radial entire solutions of the elliptic problem (1.7)-(1.14).

THEOREM 7. Consider the problem (1.15). Assume that α > 1 and that

(2.13) <?eC[0, ooJnC^O, oo), g ( r ) > 0 for re(0, oo).

Suppose that (2.4) αm/ (2.9) /z0/d. TTzerc, /or eαc/z fc= 1, 2, , ί/zere e cwto α

solution uk(r) of (1.15) swc/z ί/zαί wk(r) λαs exactly k — 1 zeros /w (0, oo) #«£/

satisfies (2.5).

REMARK 2.4. It is known (Kusano-Naito [12, 13]) that, under the

condition

nftr) n + 2 - α(n - 2)

any solution u of

(2.14) (r^^γ + r"-1^) \u\* sgn M = 0, r > 0,

satisfying u'(0) = 0 and w(0) Φ 0 has no zeros in [0, oo). It is also known

[12, 13] that, under the condition

rq'(r) n + 2 - α(n - 2)
- <. - r ̂ > u,

any solution w of (2.14) satisfying w'(0) = 0 and w(0) / 0 has an infinite number

of zeros in [0, oo). Recently the following theorem has been proved by

Yanagida-Yotsutani [23] : If there is a number a > — -

satisfying either

q(r) = Ara + o(ra) as r - — > 0 for some A > 0

or

(2.15) limr^ = α

..... , , n + 2 — α(n — 2) . . .
and if there is a number b < -- satisfying either
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q(r) = Brb + o(rb) as r - > oo for some B > 0

or

(2.16) lim ̂ ^ = 6,
r-αo q(r)

then the problem (1.15) has solutions uk(r), k= 1, 2, , such that wfc(r) has

exactly /c — 1 zeros in (0, oo). Theorem 7 means that the limit as r->0 in

(2.15) and the limit as r->oo in (2.16) can be replaced by the lower limit as

r -> 0 and the upper limit as r -» oo, respectively.

THEOREM 8. Consider the problem (1.15). Assume that 0 < α < 1

(2.13) Λ0/ώ. Suppose that (2.6) α«rf (2.11) hold. Then, for each k= 1, 2,

/λere ejdste α solution uk(r) of (1.15) 5-wcΛ f/ztftf wk(r) /z<zs exactly k — 1 zeras

(0, oo) 0«d satisfies (2.7).

REMARK 2.5. Recently, Naito-Naito [17] have showed that if

rn~lq(r)dr < oo,I"Jo

then there exist solutions wfc(r), fc = 1, 2, , of (1.15) such that uk(r) has exactly

k — 1 zeros in (0, oo).

3. Preliminaries

In this section we consider the ordinary differential equation (1.1). First

of all, we remark the following fundamental fact: For any initial condition

(3.1) y(tι) = a, y(ίi) = 6,

where t1e[tθ9 oo) and a,bεR, the solution y(t) of (1.1) satisfying (3.1) exists

and is unique on the whole interval [ί0, oo). In particular, any solution of

(1.1) is uniquely continuable to [ί0, oo). This fact can be concluded under

the hypothesis (1.2) by using a theory on the uniqueness and continuability

of solutions of (1.1)-(3.1). The results concerning the uniqueness problem and

the continuability problem are found in the survey papers of Naito [16] and

Wong [22]. For a more general equation, we refer to Coffman-Wong [4]

and Naito-Naito [18].

Hereafter we assume the integral condition

f0 0

(3.2) sp(s)ds < oo.fJfo
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It is well known (see, e.g., Coffman-Wong [5]) that, under (3.2), equation (1.1)
has a bounded and eventually positive solution y(t) such that lim^^ y(t) exists
and is a positive finite value. The purpose of this section is to show that,
for each λ > 0, equation (1.1) has a unique solution y(t) satisfying

(3.3) lim y(i) = λ
ί-*oo

and existing on the whole interval [ί0, oo).
It is to be noted that if y(t) is a solution of (1.1) satisfying (3.3), then

we have

(3.4) y(t) = λ - (s - t)p(s) \y(s)\* sgn y(s)ds, t > ί0,
Jί

and

(3.5) /(ί)= I p(s)\y(s)\*sgny(s)ds, ί > ί0.

Let y(t) be a solution of (1.1) satisfying (3.3) with λ > 0, and let (T, oo)
(c [ί0, oo)) be the largest interval such that y(t) > 0 on (T, oo). Then, by
(3.5) we see that y(t) is strictly increasing on (T, oo), and 0 < y(t) < λ for t > T.

We state the following proposition.

PROPOSITION 3.1. Let α > 0, α φ 1. Suppose that (3.2) holds. Then, for
each λ > 0, there exists a unique solution y(t) of (1.1) which exists on [ί0, oo)
and satisfies (3.3).

PROOF. First we show the existence of a solution of (1.1) satisfying
(3.3). Choose T0 > ί0 so large that

ί sp(s)ds<-λ1~a.
τ0 2

Let C[T0, oo) denote the Frechet space of all continuous functions on [T0, oo)
with the topology of uniform convergence on every compact subinterval of
[T0, oo). Consider the set

Iλ for f > TO (

which is a closed subset of C[T0, oo). We define an operator F on Y by

Fy(t) = λ - Γ (s - t)p(s)\y(s)\*ds, t > T0.
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If ye 7, then Fy(t) < λ, t > Γ0, and

Γ00

Fy(t)>λ- sp(s)\y(s)\*ds
Jt

Γ00 i
>λ-λ*\ sp(s)ds>-λ, t>T0.

J TO 2

Thus, the operator F maps 7 into itself. It is easy to see that the operator
F is continuous on Y and FY is relatively compact in the topology of
C[T0, oo). By the Schauder-Tychonoff fixed point theorem, F has an element
ye Y such that y = Fy, i.e., y(t) = Fy(t) for t > Γ0. Then, y(t) is a solution
on [T0, oo ) of (1.1) and satisfies the asymptotic condition (3.3). As mentioned
in the first part of this section, any solution of (1.1) is continuable to
[ί0, oo). Thus, y(t) exists on the interval [ί0, oo).

Next we verify that the solution of (1.1) satisfying (3.3) is unique. Let
y^t) and y2(t) be solutions of (1.1) satisfying (3.3). Then, we have (3.4) with
y = y1 and y = y2. Take 7\ > ί0 so that

yι(ϊ)> — λxΆάy2(i)>—λ f o r i > 7 ; .

As stated above, we obtain

< λ and y2(t) < λ for t > T^

Then it is easy to see that

\yι(t) - y2(t)\ < Γ(s-
J t

<L\ sp(s)\y1(s)-y2(s)\ds, ί > T l 5
Jt

where L= aλ*'1 if α > 1 and L= α[A/2]α~1 if 0 < α < 1: Define the function
Y(t) by

7(ί) = L sp(s)\yι(s) - y2(s)\ds, t > Γx.

Observe that

Γ(ί) = - Ltp(t)\yι(t) - y2(t)\ > - Lίp(ί)Γ(t), ί

so that
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^ Γ 7(ί) exp ί - L f °° s p ( s ) d s \ ] > 0, t>T,.

Integrating the above on [ί, τ], τ > t > Tί9 we obtain

/ Γτ \ / Γ00 \
(3.6) 7(ί) < 7(τ) exp L sp(s) ds < Y(τ) exp L sp(s) ds .

\ Jt / \ JTι /

Note here that Y(τ)->0 as τ->oo. Letting τ -> oo in (3.6), we get Y(i) = 0
for t>Tl9 which implies that ^(ί) = y 2 ( t ) for ί > T l 8 Since any solution of
(1.1) is uniquely continuable to [f0, oo), we can conclude that the solution of
(1.1) satisfying (3.3) is unique on [ί0, oo). This completes the proof of
Proposition 3.1.

We denote by y ( t ; λ) the solution of (1.1) satisfying (3.3). By Proposition
3.1, y(t; λ) is a function of (ί, /ί)e[ί0, oo) x (0, oo). Equations (3.4) and (3.5)
imply

(3.7) y(t; λ) = λ - (s - t)p(s)\y(s; λ)\* sgny(s; λ)ds, t > ί0,
Jr

and

-ί(3.8) /(ί; λ) = p(s)\y(s; ^)|αsgn^(5; λ)ds, t > ί
0,

respectively. Since the initial value problem (1.1)-(3.1) has a unique solution
for each ^6^,00) and each α, beR, y(t; λ) and y ' ( t \ λ ] cannot vanish

simultaneously. Hence the. zeros of y(ί; λ) are all simple and cannot have a
cluster point in a finite interval J a [f0, oo). In view of (3.3), it is clear that

y(t; λ) > 0 for all sufficiently large ί. Therefore, we see that, for each λ > 0,

the number of zeros of y(ί; λ) in (t0, oo) is finite.

It is proved that y ( t ; λ) is a continuous function of (ί, A)e[ί0, oo) x (0, oo).

It is also proved that limλ^ + 0 N(λ) = 0 and lim^^ N(λ) = oo for the
superlinear case α > 1, and that limΛ^+ 0 N (λ) = oo and limA^00 N(λ) = 0 for

the sublinear case 0 < α < 1, where N(λ) denotes the number of zeros of y(t\ λ)
in [ί0, oo ). The proofs of these facts are given in Section 4 for the superlinear
case and in Section 5 for the sublinear case. These facts play an essential

part for the proofs of Theorems 1 and 2.

4. The superlinear equation

In this section we consider equation (1.1) in the superlinear case

α > 1. Associated with every solution y(i) of (1.1), we define the function

V[y](t) by
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(4.1) V[y](t) = I [/(ί)]2 + — l—p(t)\y(t)\*+l

92 α -f 1

It is clear that

(4.2)

and

(4.3) |/(ί)| < (2K[j;](ί))1/2, t > ί0.

Moreover we see that, for τ > t > ί0,

(4.4)

F[y](ί) exp ( — ds } < K[y](τ) < F[y](ί) exp ( ds )
\ Jt P(s) ) \Jt P(s) /

(see, e.g., [18]). Inequalities (4.2)-(4.4) will be effectively used in this section.
Hereafter we assume in (1.1) that α > 1 and that (3.2) holds. These

assumptions are used without further mention. Later, it is shown that
condition (3.2) is satisfied under condition (1.3) in Theorem 1.

For λ > 0, let y(t; λ) be the solution of (1.1) satisfying (3.3). The existence
and uniqueness of y(t\ λ) are ensured by Proposition 3.1. Note that y ( t ; λ)
satisfies (3.7) and (3.8).

PROPOSITION 4.1. If λ > 0, λ(ϊ) > 0 (i = 1, 2, ) and lim^^ λ(i) = λ, then
lim^^ y ( t : λ ( i ) ) = y ( t ; λ) and lim^^ j/(ί; λ(i)) = j/(ί; λ) uniformly on [ί0, oo).
In particular, y(t; λ) and y'(t; λ) are continuous in (ί, Λ,)e[f0, oo) x (0, oo).

To prove Proposition 4.1, we prepare the next lemma.

LEMMA 4.1. Let λ0 > 0. Then there exists a positive constant M(λ0) such
that, for any

(4.5) \y(t;λ)\<M(λ0), ί>t 0 .

PROOF. Choose T0 = Γ0(A0) large enough so that

ΓJτ0

i l - α(4.6) sp(s)ds<λb
Jτ0

We claim that, for any Λ,e(0, A0], y( ί ;/ l)>0 for t > T0. Assume to the
contrary that y(t\ λ) has a zero in [Γ0, oo). Let Tie[T0, oo) be the largest
zero of y(ί; λ). Then we have

0<y(t;λ)<λ, t>T,.
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From (3.7) we see that

λ =

<A α

J]
sp(s)ds.

To

Then we have

sp(s)ds,\
Jr0

which contradicts (4.6). Thus we conclude that, for any λe(0, A0], y(ί; λ) > 0
for t > T0. This implies that

(4.7> I X t ; λ ) | < λ 0 , t > τ 0 ,

for any Λe(0, A0] From (3.8) and (4.7) we have

;4H<U«o Γ i
JT0

(4.8) |/(t; A)| < AS p(s)ds = mlt t > T0,
JT0

for any Λ,e(0, A0]. By virtue of (4.7) and (4.8) we see that

V[y( ;λ)](Γ0)<-mί + -p(Toμo

+1 Ξ = m 2 ,
2 α + 1

where V[y~\ is defined by (4.1). From (4.4) with y = y( - λ) we easily see that

v[y( 9λK(t)£V[y( 9λ) ](τ0)exp\

.L F V J ds ,
o

Then, on account of (4.2) with y = y( - λ), we obtain

(4.9) \y(t; A)| < m3, t0 < t < T0,

where

-Γ "^^ T"""exp(-L- ΓEίMl
Lmin{p( ί ) : ί 0 <ί<^o}J \ α + l j ί o p(s)P(s)

Let M(A0) = max {A0, m3}. Then, from (4.7) and (4.9), we have (4.5). This
completes the proof of Lemma 4.1.

PROOF OF PROPOSITION 4.1. There exists a λ0 such that λ(ϊ) < λ0 for
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1 = 1, 2, . From Lemma 4.1, there exists a positive constant M = M(λ0)

such that, for i = 1, 2, ,

(4.10) |y(ί; λ(ί))\ < M and |y(t; λ)\ < M, ί > t0.

Then, from (3.7), we see that

(4.11) \ y ( t ; λ ( ί ) ) - y ( t ; λ ) \

< \λ(ί) -λ\ + αM*-1 i sp(s)\y(s; λ(ί)) - y ( s ; λ)\ds9 t > t0.

Define the function Y(t) by

Y(t) = \λ(ί) -λ\ + αM"-1 i sp(s)\y(s 9 λ(ί)) - y(s; λ)\ds, t > t0.

We easily see that

d Γ / Γ00 M
— Y(t) exp - αMα 1 sp(s)ds > 0, t > t0.
dt[_ V J, /J

Integrating the above on [ί, τ], we have

\
τ > ί > ί 0 .

Thus,

/ , Γτ \
Y(t) < Y(τ) exp ί αMα~' 5/7(5) ds j,

\ V t /

ί Γ00 \
(4.12) r(ί)< r(τ)exp ocM"-1 sp(s)ds), τ > t > ί0.

\ J ίθ /

Note here that y(τ) ->\λ(i) — λ\ as τ -> oo. Letting τ -> oo in (4.12) and using
(4.11), we get

/ α-i Γ°° \
e X P\ Jίo

 SPS / ' ί~ ί°'

which implies that y(ί; A(0) converges to y(t; λ) as /^oo uniformly on
[ί0, oo). From (3.8) and (4.10) we have

, ,,,, i Γ00

\y(t;λ(ι))-y(t;λ)\<<xM* P ( s ) \ y ( s ; λ ( i ) ) - y ( s ; λ ) \ d s 9 t>tQ.
J t

Then it follows from (4.13) that

Λcx) \ Λ o
1 s p ( s ) d s \ \

Jίo / J to

s p ( s ) d s \ \ p(s)ds, t>t0,
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which means that /(t Λ(i)) converges to y'(t\ λ) as i -> oo uniformly on
[ί0, oo). This completes the proof of Proposition 4.1.

PROPOSITION 4.2. For sufficiently small λ > 0, y ( ί ; A ) > 0 on [ί0, oo).
Moreover, the solution y(t\ λ) has the following properties:

(i) lim y(t\ λ) = 0 uniformly on [f0, oo); and

(ii) lim — = 0 uniformly on [ί0, oo).
A~*° y(t' > λ)

PROOF. Let λ > 0 be small enough so that

l l /d-α)

(4.14) λ -

We claim that y(t\ A) > 0 on [ί0, oo). Assume to the contrary that y ( t ; λ)
has a zero in [ί0, oo). Let ^ be the largest zero of y(t\ λ) in [ί0, oo). Then
we have

O£y(t',λ)<λ, t>t,.

From (3.7) we see that

"(s-tJpWMs λWds

sp(s)ds.
Γ

< λ*
Jί

Then we have

Γ°°
A 1 ~ α < sp(s)ds,

Jίo

which is a contradiction to (4.14). Thus we conclude that, for sufficiently
small λ > 0, y(t\ λ) has no zeros in [ί0, oo).

Let λ > 0 be small enough so that y(t\ λ)> 0, ί > t0. Then we have

(4.15) 0 < y ( t ; λ) < λ, t > ί0,

which implies (i). From (3.7) and (4.15) we see that

y(t',X) - 1

f«

Jίo

ί>£ 0 .
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Thus we obtain

(4.16) lim —-— = 1 uniformly on [ί0, ao).

From (3.8) and (4.15), we have

/(ί λ)
, p(s)]y(s;λ)]l'ds

y ( t ; λ ) " " '

1 f"
~J>(ί ;A)J ,

rJtQy(t; λ)
p(s)ds, t>t0.

Then, by virtue of (4.16), we obtain (ii). This completes the proof of
Proposition 4.2.

PROPOSITION 4.3. Suppose that (1.3) holds. Then the number of zeros of
y(t; λ) in [ί0, oo) tends to oo as λ-+ oo.

First we show that condition (1.3) implies the integral condition

(3.2). Condition (1.3) guarantees the existence of t1 > ί0 and / > - such

that

(4.17)

which is equivalent to

(4.18)

Then we have

(4.19)

for some positive constant Cl. Hence, by virtue of / > 2, condition (1.3)
implies (3.2). In Proposition 4.3, it is to be noted that condition (1.3) ensures
the well-definedness of y ( t ; λ), and that, as is shown in Section 3, the number
of zeros of y(t\ λ) is finite for each λ > 0.

To prove Proposition 4.3, we need a series of lemmas.

LEMMA 4.2. Suppose that (1.3) holds. Then, there exists a positive constant

C2 such that

ί
oo poo

sp(s)ds <C2t \ p(s)ds, t>tί9

Jt

where tί is a constant appearing in (4.17).
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PROOF. Integrating (4.18) on [τ, s], t1 < τ < s, we obtain

(4.21) τ l p ( τ ) s l ~ l > sp(s), s>τ>t1.

Let t > t1. From (4.21) we see that

(4.22) Γ sp(s)ds < (2t)lp(2t)
J 2t Jit

4 t 2 p ( 2 t ) .
1-2

Since sp(s) is nonincreasing on [ίl5 oo), we have

Γ2ί

(4.23) sp(s)ds > 2 t p ( 2 t ) ( 2 t - t) = 2 t 2 p ( 2 t ) .

By virtue of (4.22) and (4.23) we obtain

2 Γ2ί

sp(s)ds < sp(s)ds.
2t 1 — 2 jt

Then we have

sp(s)ds= sp(s)ds+ sp(s)ds
t J 2t

2r

sp(s)ds

21 Γ2ί

p(s)ds

21

This completes the proof of Lemma 4.2.

LEMMA 4.3. Suppose that (1.3) holds. Then, there exist positive constants
C3 and C4 such that, for any λ > 0,

(4.24) V[_y( Xf\(tJ + C3 > C4 | p(s)\y(s;

where ίx is a constant appearing in (4.17).

PROOF. We note that y(ί; λ) satisfies
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(4.25) f |y(t; A)]2 + —tp(t)\y(t 9 λ)\«+1 - lχί; A)/(
α + 1 2

, -
α + 1

Using (3.8), we get

t;λ)\<λ"t ίI ty'(t λ) I < λ*t p(s) ds < λ* sp(s) ds

for all sufficiently large ί; and hence

lim ty'(t; λ) -0.
ί-* oo

Further, by (4.19) we have

lim tpίt) = 0.
ί->00

Then, integrating (4.25) on [ί, τ] and letting τ -> oo, we find that

; A)|«+ 1 - ~y(t λ)y'(t λ}
α + 1 2

α + Ut

From the definition of V[y] and (4.17) we see that

(4.26) t, V[y(

By (4.2) and(4.3) with y = y( λ) we have

(4.27) —\y(tι', ^)y'(tι'9 λ)\

1 / α + l V / ( α + 1 )

Now remember Young's inequality

Λa Rb

(4.28) AB<^ + ^-,
a b



The Emden-Fowler differential equation 195

where A, B, a and b are positive numbers and (1/α) + (1/b) = 1. We apply
(4.28) to the case A = [_V[y( A)]^)]""*3"12^1'1, B = 1, α = 2(α + l)/(α + 3)
and b = 2(α + l)/(α — 1). Then we have

(4.29)

Combining (4.27) with (4.29), we obtain

(4.30) |y(t, A)/^ λ)\ < C5 V[y( A)] (ίt) + C6,

where

and

α- 1 / α + 1

2 3 / 2 ( α + l ) V p ( ί ι )

From (4.26) and (4.30) it follows that

l̂ ί2 JJ( l

which implies (4.24) with

C, = Cβ and C4 =

LEMMA 4.4. Suppose that (1.3)

(4.31) lim K[y( ;λ)](t 1 )=oo,
λ-> oo

where t1 is a constant appearing in (4.17).

PROOF. First we show the following: Let λ be large enough so that

i / ( l - α )

(4.32) λ

Then there exists t2 = t2(λ)>t1 such that

Γ foe η

- 2 \ \ ί5-^)^5)*
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(4.33) y(t2',λ)=-λ and y(t;λ)>-λ9 t > t2.

To prove this, assume to the contrary that

y(t;λ)>—λ, ί>ί i .

From (3.7) we see that

Γ i T Γ00

- -A (s-tl
\ I % / 1 1

|λ<*-| ^-A| I (s-ίjpίsjds.

Then we have

Γ00 Γ 1
(s- t1)p(s)ds <\ —<

Jfi L 2

which contradicts (4.32). Thus there exists £2 > ίx satisfying (4.33). From
(3.7) we have

λ=\ (s - t2)p(s)\y(s; λ)\«ds < λ« sp(s)ds,
t2

which implies

(4.34) —λ*-*< sp(s)ds.

By virtue of (4.19), we see that

Γ°° c
sp(s)ds<Cl sl~lds= — l

From (4.34) it follows that

2 ~ / - 2

that is,

(4.35) t2<CΊλ
(*-1

where

2C,
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From (4.20), (4.34) and (4.35) we obtain

£ 1 Γ00

p(s)ds>—\
^2^2 Jί2

sp(s)ds > λ1 a

2C2t2

2C2C7

Then we see that

Γ°°
(4.36) p(s)\y(s', λ)\" + 1ds > \ — λ I I p(s)ds

2Ϊ+2C2C7

We note here that

2 / - α -

1-2 1-21 2

Then, letting λ -> oo in (4.36), we obtain

Γ00

lim p(s)\v(s: λ)\Λ+l ds = CQ.
foo

lim
^^Jn

By virtue of Lemma 4.3, we obtain (4.31). This completes the proof of Lemma
4.4.

LEMMA 4.5. Consider equation (1.1) on a compact interval [ί0, ίj. For
any integer k = 1, 2, •••, there exists a positive constant V$ = VQ(k) such that if
y(t) is a solution of (1.1) satisfying

(4.37)

then y(t) has at least k zeros in [ί0, ίj.

PROOF. We define p^ and p* by

and

p* =max{.p(ί): ί0 < ί < ίj,

respectively. Choose τ > 0 so small that

(4.38) τ<^^.
V ;
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Take μ > 0 so large that

(4.39) —?— < τ,
(μp*) '

and put

(4.40) μ0=μ1 ' ( α-1>.

We define V0 = V0(k) as follows :

(4 4" "-
We verify that a solution y(t) of (1.1) satisfying (4.37) with this V0 has at
least k zeros in [ί0, f j .

Let y(ί) be a solution of (1.1) satisfying (4.37) in which V0 is given by

(4.41). Notice here that if \y(t)\ < μ0 at a point ίe[ί0> *ι], then |/(ί)| > μ0/
τ

Indeed, if |y(ί)| < μ0> then from (4.1), (4.37) and (4.41) we have

2 \ τ / α + 1

which implies |/(f)l > μ0/
τ

First we show that y(t) has at least one zero in an arbitrary subinterval
[Γ0, TJ of [ί0, ίj] such that Tx - Γ0 = 3τ. We may assume that y(T0) > 0
without loss of generality. It is convenient to distinguish the following three
cases :

( i ) y(T0)<μ0 and /(Γ0)<0;

(ii)

(in) 3^0) < μo and /(Γ0) > 0.

(i) The case where y(T0) < μ0 and yf(T0) < 0. We show that y(t) has at

least one zero in [T0, Γ0 + τ]. Assume to the contrary that y(t) > 0 on
[T0, T0 + τ]. By equation (1.1) we have y"(t) < 0 on [T0, T0 + τ]. Then it
is easy to see that j (ί) < j;(T0) + /(T0)(ί - T0) on [T0, T0 4- τ]. Thus we have

μ0, T0<t< T0 + τ.

By the above notice we obtain

y'(t) < - μ0/τ, T0 < ί < T0 + τ.

This implies that
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I l y'
JTO

y(T0 + τ) = y(T0) + I y'(s)ds < y(T0) - μ0 < 0,
JTO

which is a contradiction to y(T0 + τ) > 0. Thus y(t) has at least one zero in

[T0, T 0 +τ].
(ii) The case where y(T0) > μ0. Let us show that y(t) has at least one

zero in [T0, T0 + 2τ]. By the argument as in Case (i), it is enough to show

that

(4.42) y(g<μ0 and /(g < 0

for some t^e\_T0, T0 + τ]. Assume that

(4.43) y(t) > μ0, TO < ί < TO + τ.

We consider the linear differential equation

(4.44) z" + μp*z = 0.

Equation (4.44) has a solution z(t) = sin ((μp*)ll2(t - T0)) which vanishes at

ί = T0 and t = TO + π/(μp*)ll2 We see that y(ί) is a solution of the linear

equation

w" + p W l y W Γ " 1 * = 0, TO < t < T0 + τ.

From (4.40) and (4.43) we have

l>W+, T 0 < ί < T 0

By using Sturm's comparison theorem, we find that y(t) has at least one zero

in [T0, T0 + π/(μps!c)
1/2]. Then, by virtue of (4.39), we see that y(t)\as at

least one zero in [T0, T0 + τ]. However this contradicts (4.43). Thus (4.43)

does not hold. Then it is clear that there is ί^ e [T0, T0 + τ] satisfying (4.42).

(iii) The case where y(T0) < μ0 and /(T0) > 0. Let us show that y(t)

has at least one zero in [T0, T0 + 3τ]. First we claim that y(t*) > μ0 for

some ί*e[T0, T0 -h τ]. Assume to the contrary that 0 < y(t) < μ0 for

T0 < t < TO + τ. Then, by the above notice, we see that y'(t) > μ0/τ for

TO < t < TO -h τ, and hence

τ) = y(T0) + y'(s)ds>μ0.
JTo

This contradicts our assumption. Thus, y(t*) > μ0 for some ί*e[T0, T0 + τ].

By the argument similar to Case (ii), it is seen that y(t) has at least one zero

in [ί*,ί* + 2τ]c=[To, T0 + 3τ].

We have showed that y(t) has at least one zero in every subinterval
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[T0, TJ of [ί0, ίj such that |T0 - TJ = 3τ. Then, by virtue of (4.38), we
conclude that y(t) has at least k zeros in [ί0, ίj. The proof of Lemma 4.5

is complete.

We are now ready to prove Proposition 4.3.

PROOF OF PROPOSITION 4.3. We consider equation (1.1) on the compact

interval [ί0, ίj, where t1 is a constant appearing in (4.17). Let k be any
positive integer. By Lemma 4.5, there exists a positive constant V0 = V0(k)
such that a solution y(t) of (1.1) satisfying (4.37) has at least k zeros in
[ί0, ίj]. From (4.4) we see that

(4.45)

P(S)

By virtue of Lemma 4.4 and (4.45) we have

lim V[y(- λ)~\(i) = oo uniformly on [ί0, ίj.λ-» oo

Then, for all sufficiently large Λ,, >>(ί; λ) satisfies

which implies that y(t; λ) has at least k zeros in [ί0, ίj c [ί0, oo). Since k
is arbitrary, this means that the number of zeros of y(t\ λ) tends to oo as
λ->oo. The proof of Proposition 4.3 is complete.

To prove Theorem 1, we employ the Prufer transformation. For the
solution y(t\ λ) of (1.1) satisfying (3.3), we define the functions p(ί; λ) and

φ ( ί ; A ) b y

(4.46) y(t 9 λ ) = p(t'9λ)smφ(Γ9λ)9

(4.47) y>(t9λ) = p(Γ9λ)cosφ(t'9λ).

Note that y(t λ) and /(ί >1) cannot vanish at the same point t e [ί0, oo). Then

we see that p(t; λ) and φ(t\ λ) are given by

and

y(t A)
; A) = arctan

y'(t;λ)'
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respectively, and that p(t; λ) and φ(t\ λ) are determined as continuously

differentiable functions with respect to ί. Moreover, by Proposition 4.1, p(t\ λ)

and φ(ί; λ) are continuous in (ί, λ)e[f0, oo) x (0, oo). By a simple calculation

we see that

φ'(f λ) = [cos Φ(ί; A)]2 + p(ί)[p(ί; A)?'1 1 sin φ(ί; l)|α+1, t > ί0,

which implies that φ(t; λ) is increasing in ί > ί0. Since lim,^ y(ί; λ) = λ and

lim,..̂  y'(t Λ) = 0, we have lim^^ p(ί A) = λ and lim,^ φ(ί λ) = — (mod 2π).

For simplicity, we take

(4.48) l imφ(t ;λ) = -.
t~* oo 2

Then it is easy to see that y(t Λ,) has exactly k — 1 zeros in (f0, oo) if and only if

(4.49) - (k - l)π <φ(to λ)<-(k- 2)π.

PROOF OF THEOREM 1. From Propositions 4.2 and 4.3, we see that

l imφ(ί 0 ;Λ) = yπ

and
lim φ(ί0; λ) = — oo.
λ-»oo

By the continuity of φ(ί0;/l) with respect to A, for each k= 1, 2, , there

exists a. λ> Q such that

(4.50) φ(ί0 ; A) = - (k - l)π.

Let /lk denote the smallest λ > 0 satisfying (4.50). Then we easily see that

{λk} must be a strictly increasing sequence and that y(t λk) has exactly k— ί

zeros in (ί0, oo) and satisfies y(ί0; λk) = 0. Let yk(t) = y(t; λk). Then, yk(i) is

a solution of (1.1) such that yk(t) has exactly k — 1 zeros in (ί0, oo) and satisfies

= ° and

(4.51) lim yk(t) = λk.r-^oo

Thus, yk(t) is a desired solution of (1.1). The proof of Theorem 1 is complete.

5. The sublinear equation

Let us now consider the case where equation (1.1) is sublinear. Through-



202 Yΰki NAITO

out this section we assume that 0 < α < 1 and that (3.2) holds. As is shown
in Section 3, for each λ > 0, there exists a unique solution y(t\ λ) of (1.1)
which exists on [ί0, oo) and satisfies (3.3). Moreover, y(t\ λ} satisfies (3.7) and

(3.8).

PROPOSITION 5.1. If λ > 0, λ(i) > 0 (i = 1, 2 ) and lim^ λ(ϊ) = λ, then
lim^ y ( t ; λ(ί)) = y(t\ λ) and lim^ /(ί; λ(i)) = y ' ( t ; λ) uniformly on [ί0, oo).
In particular, y(t, λ) and y'(t\ λ) are continuous in (f, Λ,)e[ί0, oo) x (0, oo).

The truth is that the statements of Propositions 4.1 and 5.1 are
identical. However the proof of Proposition 4.1 is of no use for the proof
of Proposition 5.1. Indeed, the superlinearity is essentially used in the proof
of Proposition 4.1. To prove Proposition 5.1, we prepare the next lemma.

LEMMA 5.1. For each λ > 0, y(t\ λ) is estimated as follows:

Γ foo Ίl/d-α)

(5.1) |y( i ;^)|£ hi-« + ( i_ α ) I Sp(s)ds\ , ί>ί0.

PROOF. From (3.7) we see that

(5.2) \y(t;λ)\<λ+ \ sP(S)\y(s λ)\*ds, t>t0.
Jt

Define the function Y(t) by

ί
oo

sp(s)\y(s;λ}\ ds, t>t0.
•

We easily see that

Y'(t)
tp(t)9 t>t0.

Integrating the above on [ί, τ], ί0 < t < τ, and letting τ -> oo, we obtain

Γ00

[y(ί)]1 Λ-λ1 α < ( l - α ) sp(s)ds, t>t09

so that

ί>ί0.(5.4) Y(t) < ϊλ1 ~α + (1 - α) f°° sp(s)ds]1

L Jί J

Then, from (5.2)-(5.4), we conclude that (5.1) holds. This completes the proof
of Lemma 5.1.
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PROOF OF PROPOSITION 5.1. We shall prove that

(5.5) Jim [sup \y(t; λ(ί)) - y ( t ; λ)\ + sup |/(ί; λ(i)) - /(ί; λ)|] = 0.
I~>°° ί>ίo ί>ίo

Assume that (5.5) is false. Then there exist an ε > 0 and a subsequence (again

denoted by {λ(i)}) of (λ(1)} such that

(5.6) sup \y(t; λ(i)) - y(t 9λ)\ + sup |/(ί; A(i)) - /(*; λ)| > ε
ί > ίo ί > ίo

for i — 1, 2, . By Lemma 5.1, there exists a certain constant M > 0 such that

(5.7)- \y(t; λ(ί))\ < M, ί > ί0, i = l , 2 , .

From (3.8) and (5.7) we see that

<M«
Jίo

p(s)ds9 f £ ί ό , i = l , 2 , . .

Therefore {^(ί A(i))} is uniformly bounded and is equicontinuous on
[ί0, oo ). According to Ascoli-Arzela's theorem there exists a subsequence

{λ(ij)} of (λ(i)} and a continuous function z(t) on [ί0, oo) such that {y(t\ λ(i))}
converges to z(ί) uniformly on any compact subinterval of [ί0, oo). Note here
that {y(ί; λ(ij))} satisfies the equality

t 9 λ(ίj)) = λ(ij) - Γ (s -(5.8) y(t; λ(ίj)) = λ(ij) - (s - t)p(s)f(y(s 9 λ(ij)))ds9 t > t0,

where f ( u ) = |w|αsgn u. Let; -̂  oo in (5.8). Then, by the Lebesgue dominated
convergence theorem, we see that

= A - Γ(s-
Jt

z(t) = λ- (s-t)p(s)f(z(s))ds, t>t0.
Jt

Thus z(ί) is a solution of (1.1) satisfying the asymptotic property (3.3). By
the uniqueness of y(t'9 λ) we find that y(ί; λ) = z(t) for t > t0. Therefore
{y(ί; λ(ίj))} converges to y ( t \ λ ] uniformly on any compact subinterval of
[ί0, oo). Observe that

(5.9) \ y ( t \ λ ( i ϊ ) - y ( t ' , X ) \

< \λ(ij) - λ\ + Γ (s - t)p(s)\f(y(s9 λ ( i j ) ) - f ( y ( s 9 λ))\ds

< \λ(ij) - λ\ 4- ί°° sp(&) \f(y(s 9 λ ( i j ) ) - f ( y ( s 9 λ))\ds9 t > ί0,
Jίo
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and

(5.10) \ y ' ( t ; λ ( i j ) ) - y ' ( t ; λ ) \

; λ))\ds

^ p(s)\f(y(sm,λ(ίj))—f(y(s',λ))\ds9 t>t0.

Letting 7~>oo in (5.9) and (5.10), and using the Lebesgue dominated
convergence theorem, we conclude that {y(t\ λ(ij))} and {/(£; λ(ij))} converge
to y ( t ; λ ) and y ' ( t \ λ ) as 7-^00 uniformly on [ί0, oo). This contradicts
(5.6). Hence, (5.5) holds. The proof of Proposition 5.1 is complete.

PROPOSITION 5.2. For sufficiently large λ > 0, y(t;λ)>0 on [ί0, oo).
Moreover, the solution y(t\ λ) has the following properties'.

(i) lim y(t\ λ) = oo uniformly on [ί0, oo); and
A-» oo

(ii) lim - - — = 0 uniformly on [ί0, oo).
-

PROOF. Let λ be large enough so that

•jl/d-α)

(5.11) λ>
Γ Γ00 T
UΉ

We claim that y(t',λ)>0 on [ί0, oo). Assume to the contrary that y(t\ λ)
has a zero in [ί0, oo). Then, exactly as in the proof of Proposition 4.2, we have

Γ
Λ

λ1 Λ < sp(s)ds.
Jto

This contradicts (5.11). Thus we conclude that, for sufficiently large λ > 0,
y ( t ; λ) has no zeros in [ί0, oo).

Let A > 0 be large enough so that y(t;λ)>0, t>t0. We have
0 < y(t',λ) < λ for t > ί0. Then, by (3.7), we easily see that

sp(s)ds9 t > ί0.
•/ίo

Thus

(5.12) lim —'— = 1 uniformly on [ί0, oo),
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which implies (i). From (3.8) we have

y'(t;λ)

y(t λ)

λ

y(t;λ) -£λ*~l p(s)ds, t>t0.

By virtue of (5.12), we obtain (ii). This completes the proof of Proposition 5.2.

PROPOSITION 5.3. Suppose that (1.4) holds. Then the number of zeros of
y(t\ λ) in [f0, oo) tends to oo as A->0.

The next lemmas are necessary for the proof of Proposition 5.3.

LEMMA 5.2. Suppose that (1.4) holds. Then

(5.13) lim y(t\ λ) = 0 uniformly in [£0, oo).

PROOF. Let (λ(i)} be an arbitrary sequence such that λ(i) > 0 (i = 1, 2, )
and lim,-..aQλ(i) = 0. It is enough to show that {λ(i)} has a subsequence {λ(ij)}
such that

(5.14) lim y ( t ; λ ( i ) ) = 0 uniformly in [ί0> oo).
j->oo

Exactly as in the proof of Proposition 5.1, we can conclude that there exist
a subsequence {λ(ij)} of {λ(i)} and a continuous function z(ί) on [ί0, oo) such
that {y(t',λ(ij)} converges to z(ί) as j->oo uniformly on [ί0, oo) and such

that z(ί) satisfies

-rz(ί) = - (s - f)p(s)|z(s)iαsgnz(s)ds, t > ί0.

Note that z(ί) is a bounded solution of (1.1) satisfying lim,^ z(ί) = 0.
By the first condition in (1.4), we have

(5.15) lim t p(s)ds =
ί-» oo

According to the results of Gollwitzer [6] and Kwong-Wong [14], the second
condition in (1.4) and (5.15) together imply that all nontrivial solutions of (1.1)
are nonoscillatory. Further it is well known that a bounded nonoscillatory
solution of (1.1) has a nonzero finite limit as f->oo. This means that z(ί)
cannot be a nontrivial solution of (1.1). Thus, z(ί) = 0 for t > ί0. Con-
sequently we get (5.14). This completes the proof of Lemma 5.2.

LEMMA 5.3. Consider equation (1.1) on a compact subinterυal [ί0> ίj For

any integer k = 1, 2, , there exists a positive constant Y0 = ^0(^) sucn tnat If
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y(t) is a nontrίvial solution of (1.1) satisfying

(5.16) \y(t)\ < YQ, t0<t < tί9

then y(i) has at least k zeros in [ί0, ίj.

PROOF. Take μ > 0 so large that a nontrivial solution z(ί) of

has at least k 4- 1 zeros in [ί0, ίj. Take a number Y0 such that

(5.18) 0< 70< Ju
1 / ( α-1 ).

Let y(ί) be a solution of (1.1) satisfying (5.16) in which 70 is given by
(5.18). We verify that y(t) has at least k zeros in [ί0, ίj. Let s0 and

Si, ί0 ̂
 so < sι ^ f i J be any successive zeros of the solution z(ί) of (5.17). We

claim that y(t) has at least one zero in (s0, sj. Assume to the contrary that
y(t) has no zeros in (s0, sj. There is no loss of generality in supposing that
z(t) > 0 and y(t) > 0 on (s0, sj. Multiplying (1.1) by z(t) and (5.17) by y(t)9

subtracting, and integrating over [s0, sj, we obtain

(5.19) y(sί)z'(s1)-y(s0)z'(s0)

= Γp(s)y(s)z(s){[y(s)γ-i-μ}ds.

Because of z(t) > 0 on (s0, Sj), z(s0) = z ( s 1 ) = 0 and y(t) > 0 on [50, sj, the

left-hand side of (5.19) is nonpositive. On the other hand, it follows from
(5.16) and (5.18) that IXs)]*"1 > μ on (s0, s^; and hence the right-hand side
of (5.19) is positive. This is a contradiction. Thus y(t) has at least one zero

in (s0, sj. Since y(t) has at least one zero between each successive zeros of
z(ί), we conclude that y(t) has at least k zeros in [ί0, ίj. This completes
the proof of Lemma 5.3.

PROOF OF PROPOSITION 5.3. Let t± > ί0 be an arbitrary number. We fix
t1 and consider equation (1.1) on [ί0, ίj. Let k be any positive integer. By

Lemma 5.3, there exists a positive constant Y0 = Y0(k) such that a solution
y(t) of (1.1) satisfying (5.16) has at least k zeros in [ί0, ίj. By virtue of
Lemma 5.2 we have limΛ^0 y ( t ; λ) = 0 uniformly on [ί0, ίj. Then, for
sufficiently small λ, y(t; λ) satisfies

\y(t;λ)\ < Y0, tQ<t<t^

which implies that y(t; λ) has at least k zeros in [ί0, ίj c [ί0, oo). Since /c

is arbitrary, we conclude that the number of zeros of y(t\ λ) in [ί0, oo) tends
to oo as λ -»0. The proof of Proposition 5.3 is complete.
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To prove Theorem 2, we employ the Prufer transformation. For the
solution y(t; λ) of (1.1) satisfying (3.3), we define the functions p(t\ λ) and
φ(t\ λ) by (4.46)-(4.48). In the same way as in Section 4, p(ί; λ) and φ ( t ; λ)
are well defined and uniquely determined, and they are continuously
diίferentiable functions with respect to t. Moreover, by Lemma 5.1, p ( t ; λ )
and φ(t\ λ) are continuous in (f, Λ)e[ί0, oo) x (0, oo). We see that φ(ί; λ) is
increasing in ίe(ί0, oo), and that y(ί; λ) has exactly k — 1 zeros in (ί0, oo) if
and only if (4.49) holds.

PROOF OF THEOREM 2. From Propositions 5.2 and 5.3, we see that

lim φ(tQ',λ) = — π
Λ-+OO 2

and

lim φ(t0;λ) = - oo.
A-*oo

By the continuity of φ(t0; λ) with respect to λ, for each k= 1, 2, , there
exists a A > 0 such that (4.50) holds. Let λk denote the largest λ > 0 satisfying
(4.50). Then we easily see that {λk} must be a strictly decreasing sequence
and that y(t; λk) has exactly k — 1 zeros in (ί0, oo) and satisfies y(t0; λk) = 0.
Let yk(t) = y ( t ; λk). Then, yk(t) is a solution of (1.1) such that yk(t) has exactly
k — 1 zeros in (ί0, oo) and satisfies yk(tQ) = 0 and (4.51). Thus, yk(t) is a
desired solution of (1.1). The proof of Theorem 2 is complete.

6. The elliptic problems

6.1. In this subsection we consider the problems (1.11) and (1.13), and

prove Theorems 3-6.
First we consider the equation

(6.1) (rn-1ttT + r n- 1g(r) |tt |αsgntt = 0, 0 < r < 1,

where n > 3, geC[0, 1] nC^O, 1] and α > 0, α Φ 1. We introduce the change

of variables

(6.2) y(t) = u(r) and t =

which reduces (6.1) to the equation

(6.3) j)

where = d/dt and
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(6.4) p(t) =

We see that if q satisfies (2.3), then p satisfies (1.2) with ί0 = 1. Suppose that,

for each k = 1, 2, , equation (6.3) has a bounded solution yk(t) such that yk

has exactly k — 1 zeros in (1, oo) and satisfies yk(l) = 0. We denote by uk(r)

the solution of (6.1) which corresponds to the solution yk(t). It is clear that

uk(r) has exactly k — 1 zeros in (0, 1) and satisfies uk(l) = 0. We see that

(6.5) lim uk(r) = lim yk(t) < oo.
r-*0 ί-»oo

Moreover, we have

lim - r"~ 1 uk(r) = lim yk(t) = 0.
r-*o 2 — n ί~>0°

Then, integrating (6.1) on [rl9 r], 0 < r1 < r, and letting r1 -»0, we obtain

uk(r) = r1-" 5"-^(s)|ιιk(s)rsgnιιfc(5)ώ, 0 < r
J o

Then we have

lim uk(r) = 0.

Therefore, the solution uk(r) satisfies the boundary condition

tt£(0) = 0 and w f t(l) = 0

and has exactly k - 1 zeros in (0, 1).

PROOF OF THEOREM 3. Observe that, by (6.2), condition (2.4) is

transformed into condition (1.3). Then, from Theorem 1, there exists an

infinite sequence of bounded solutions yk(t), k = 1, 2, , of (6.3) such that yk(t)

has exactly k — 1 zeros in (1, oo) and satisfies yk(l) = 0 and (2.1). For each

k — 1, 2,•••, let uk(r) be the solution of (6.1) which corresponds to the solution

yk(t). As mentioned above, uk(r) is a solution of the problem (1.11) such that

uk(r) has exactly k — 1 zeros in (0, 1). By virtue of (2.1) and (6.5), we have

(2.5). The proof of Theorem 3 is complete.

PROOF OF THEOREM 4. Observe that, by (6.2), the first condition in (1.4)

corresponds to the condition

(6.6) rq(r)dr < oo,fJo
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and the second condition in (1.4) corresponds to (2.6). Since geC[0, 1],
condition (6.6) is always satisfied. Thus, under condition (2.6), we have
(1.4). Then, from Theorem 2, there exists an infinite sequence of bounded
solutions yk(t), k = 1, 2, , of (6.3) such that yk(i) has exactly k — 1 zeros in
(1, oo) and satisfies yk(l) = 0 and (2.2). For each k = 1, 2, , let uk(r) be the
solution of (6.1) which corresponds to the solution yk(t). As mentioned above,
uk(r) is a solution of the problem (1.11) such that uk(r) has exactly k — 1 zeros
in (0, 1). By (2.2) and (6.5) we have (2.7). The proof of Theorem 4 is
complete.

Next we consider the equation

(6.7) (r"-1!!')' + rn-1q(r)\u\asgnu = 0, r > 1,

where n > 3, geC^l, oo) and α > 0, α φ 1. In this case, we introduce the

change of variables

(6.8) y(t) = rn~2u(r) and t = r""2,

which reduces (6.7) to equation (6.3) with

(6.9) p(t) = j

We see that, under condition (2.8), p satisfies (1.2) with ί0 = 1. Suppose that
yk(t), k= 1, 2, , are bounded solutions of (6.3) such that yk(t) has exactly

k - 1 zeros in (1, oo) and satisfies yk(l) = 0. We denote by uk(r) the solution
of (6.7) which corresponds to the solution yk(t). It is clear that uk(r) has
exactly k — 1 zeros in (1, oo) and satisfies uk(l) = 0 and

(6.10) lim rn~2uk(r) = lim yk(t) < oo.

PROOF OF THEOREM 5. Observe that, by (6.8), condition (2.9) is

transformed into condition (1.3). Then, from Theorem 1, there exists an
infinite sequence of bounded solutions yk(t), k = 1, 2, , of (6.3) such that yk(t)
has exactly k - 1 zeros in (1, oo) and satisfies yk(l) = 0 and (2.1). For each
k = 1, 2, , let uk(r) be the solution of (6.7) which corresponds to the solution
yk(t). As mentioned above, uk(r) is a solution of the problem (1.13) such that
uk(r) has exactly k — 1 zeros in (1, oo). By virtue of (2.1) and (6.10), we have

(2.10). This completes the proof of Theorem 5.

PROOF OF THEOREM 6. Observe that, by (6.2), condition (1.4) corresponds
to condition (2.11). Then, from Theorem 2, there exists an infinite sequence
of bounded solutions yk(t), k= 1, 2, , of (6.3) such that yk(t) has exactly

k — 1 zeros in (1, oo) and satisfies yk(l) = 0 and (2.2). For each k = 1, 2, ,
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let uk(r) be the solution of (6.7) which corresponds to the solution yk(i). As
mentioned above, uk(r) is a solution of the problem (1.13) such that uk(r) has
exactly k — 1 zeros in (1, oo). By virtue of (2.2) and (6.10), we have
(2.12). The proof of Theorem 6 is complete.

6.2. In this subsection we consider the problem (1.15) in the superlinear
case α > 1 and prove Theorem 7 by employing the method used in [23]. We
devide (1.15) into the two problems (1.16) and (1.17), and glue solutions of
(1.16) and (1.17) at r = 1.

First we deal with the problem (1.16) and consider equation (6.1). In
the subsection 6.1 we have shown that, by the change of variables (6.2),
equation (6.1) is reduced to equation (6.3) in which p(i) is given by (6.4). We
note that condition (3.2) is always satisfied, and that condition (1.3) corresponds
to condition (2.4). From Proposition 3.1, for each λ > 0, there exists a unique
solution y ( t ; λ) of (6.3) satisfying

(6.11) limy(t;λ) = λ.
t~* 00

We denote by u(r\ λ) the solution of (6.1) which corresponds to the solution
y(t\ λ). In the same way as in the subsection 6.1, we have

u ( 0 ; λ ) = λ and u'(0;A) = 0.

Thus u(r\ λ) is a solution of the problem (1.16). From Propositions 4.1-4.3,
we obtain the following lemmas.

LEMMA 6.1. u(r; λ) and u'(r; λ) are continuous in (r, /l)e[0, 1] x (0, oo).

LEMMA 6.2. For sufficiently small λ > 0, u(r\ λ) > 0 on [0, 1]. Moreover,
the solution u(r\ λ) has the properties'.

(6.12) lim u(r; λ) = 0 uniformly in [0, 1]; and

(6.13) lim Γ" M ( Γ ; / 1 ) - 0 uniformly in [0, 1].
λ~>° u(r;λ)

LEMMA 6.3. Suppose that (2.4) holds. Then the number of zeros of u(r\ λ)
in [0, 1] tends to oo as λ -» oo.

We employ the Prufer transformation. For the solution w(r; λ)9 we define
the functions p(r; λ) and φ(r; λ) by

(6.14) u(r\ λ) = ρ ( r ; /l)sinφ(r; λ),

(6.15) rn-1u'(r 9 λ ) = p(r',λ)cosφ(r;λ).
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Note that u(r\ λ) and u'(r; λ) cannot vanish at the same point re[0, 1]. Then
we see that p(r; λ) and φ(r\ λ) are given by

(6.16) p ( r ; λ) = ([rn^u'(r λ)-]2 + [u(r; A)]2)1/2

and

(6.17) φ(r λ) = arctan "̂  A) ,-

respectively, and that p(r A) and φ ( r ; λ ) are determined as continuously
differentiable functions with respect to r. Moreover, by Lemma 6.1, p(r; /I)
and φ(r; A) are continuous in (r, Λ)e[0, 1] x (0, oo). By a simple calculation

we see that

A)]-"1 |sin φ(r; λ)\*+l, 0 < r < 1,

which implies that φ(r; λ) is increasing in re(0, 1). Since u(Q',λ) = λ and

u'(0; >!) = 0, we get φ(0; λ) = — π (mod 2π). For simplicity, we take

(6.18) φ(0;A) = -π.

Then it is easy to see that u(r\ λ) has exactly k — 1 zeros in (0, 1) if and only if

(6.19) (k- \}n<φ(\\λ)<kn.

We have the next lemma.

LEMMA 6.4. Suppose that (2.4) holds. Then, p ( r ; λ) and φ(r\ λ) have the

following properties'.

(6.20) l i m φ ( l ; A ) = | π ;

(6.21) lim φ(ί λ) = oo and
λ~> 00

(6.22) lim p(l λ) = 0.

PROOF. From Lemma 6.2, for sufficiently small λ > 0, M(Γ; A) is positive

on [0, 1], which implies that

(6.23) — π < φ ( l ; λ ) < π .
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From (6.13) we obtain

Then, by virtue of (6.17) and (6.23), we have (6.20). Note that u(r\ λ) has
exactly k — 1 zeros in (0, 1) if and only if (6.19) is satisfied. Then, using
Lemma 6.3, we see that (6.21) holds. By (6.12) and (6.13), we have

l i m M ( l ; λ ) = lim tι'(l λ) = 0.λ-»o v ' λ^o v '

Then, by virtue of (6.16), we obtain (6.22). The proof of Lemma 6.4 is
complete.

Next we deal with the problem (1.17) and consider equation (6.7). By
the change of variables (6.8), equation (6.7) is reduced to equation (6.3) in
which p(t) is given by (6.9). We note that conditions (3.2) and (1.3) correspond
to conditions

Γ00

(6.24) rn-1-*("-2)q(r)dr< oo

and (2.9), respectively. Assume that condition (6.24) holds, that is, condition
(3.2) holds. Then Proposition 3.1 ensures that, for each μ > 0, there exists a
unique solution y(t; μ) of (6.3) satisfying

(6.25) lim y(t μ) = μ.
ί->oo

We denote by v(r; μ) the solution of (6.7) which corresponds to the solution
y(t\ μ). We have

(6.26) lim rn~2 υ(r μ) = μ,
r-+oo

which implies that v(r\ μ) is a solution of the problem (1.17). We note that
v(r\ μ) has the properties

(6.27) lim r" ~1 v'(r μ) = - (n - 2)μ, and
r-*oo

(£ OQΛ ' (γι fy\t'^' ' (v\ fy\ t
υ ( r ; μ ) y(t; μ)

From Propositions 4.1-4.3, we obtain the following lemmas.

LEMMA 6.5. Suppose that (6.24) holds. Then, v(r; μ) and v'(r; μ) are
continuous in (r, μ)e[l, oo) x (0, oo).
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LEMMA 6.6. Suppose that (6.24) holds. Then, for sufficiently small μ > 0,
ι;(r;μ)>0 on [1, oo). Moreover, the solution v(r\ μ) has the following

properties :

(6.29) lim v(r\ μ) = 0 uniformly in [1, oo); and

(6.30) lim - - V-^λΔ = - (n _ 2)r"-2 /or eβc* Jfcterf r > 1.
-

LEMMA 6.7. Suppose that (2.9) /zα/βb. Γλew //ze number of zeros of v(r; μ)
in [1, oo) temfa to oo as μ -> oo.

We employ the Prϋfer transformation. For the solution v(r\ μ), we define
the functions cr(r; μ) and ψ(r\ μ) by

(6.31) v(r; μ) = σ(r; μ) sin ^(r; μ),

(6.32) r"- 1f?'(r;μ) = σ(r;μ)cos^(r;μ).

We see that σ(r; μ) and ^(r; μ) are given by

(6.33) σ(r; μ) = ([r-'^'ίr; μ)]2 + [t?(r; μ)]2)1/2

and

(6.34) ψ(r μ) = arctan ^ ^ ,
r" l v ' ( r ; μ )

respectively, and that σ(r μ) and ψ(r; μ) are determined as continuously
differentiable functions with respect to r. Moreover, by Lemma 6.5, σ(r μ)

and ψ(r; μ) are continuous in (r, μ)e[l, oo) x (0, oo). By a simple calculation
we see that

^(r;μ) = r1-"[cos^(r;μ)]2

+ r"-^(r)[ff(r; μ)]--1 (sin tfr(r; μ)|α+1, r > 1,

which implies that ^(r; μ) is increasing in re[l, oo). By virtue of (6.26) and

(6.27), we have lim^^ σ(r; μ) = (n — 2)μ and lim^^ ^(r; μ) = π (mod 2π).
For simplicity, we take

(6.35) l imιA(r ;μ) = π.
r-* oo

Then it is easy to see that v(r μ) has exactly k — 1 zeros in(l, oo) if and only if

(6.36) - (k - l)π < ιA(l μ) < - (k - 2)π.

We have the following lemma.
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LEMMA 6.8. Suppose that (2,9) holds. Then, σ(r; μ) and ψ ( r ; μ) have the

properties

(6.37) lim ψ(l μ) = Arctan ( ) + π,
^° \ n — 2/

(6.38) lim ι^(l μ) - - oo, and
μ~* oo

(6.39) l imσ(l μ) -0.
μ-» 0

Here, Arctan x denotes the principal value of arctan x: < Arctan x < —

for all x e R.

PROOF. From Lemma 6.6, for sufficiently small μ > 0, v(r; μ) is positive

on [1, oo), which implies that

(6.40) 0<ψ(l 9μ)<π.

From (6.30) we obtain

r v'(l> V) , ~lim = — (n — 2).
^°υ(l;μ)

Then, by virtue of (6.34) and (6.40), we have (6.37). Noticing that v(r; μ) has
exactly k — 1 zeros in (1, oo) if and only if (6.36) holds, and using Lemma

6.7, we get (6.38). By (6.29) and (6.30), we have

lim v(l μ) = lim υ' (1 μ) = 0.
μ-» 0 μ->0

Then, by virtue of (6.33), we have (6.39). The proof of Lemma 6.8 is complete.

We are now in a position to prove Theorem 7.

PROOF OF THEOREM 7. Let Γ be a continuous curve defined by

(6.41) Γ = { ( p ( l ; Λ ) , φ ( l ; Λ ) ) : λ e ( 0 , oo)}.

Then, because of the uniqueness of solutions of initial value problems for (6.1),
Γ does not intersect itself. Further, let Γk, k — 1, 2, , be continuous curves

defined by

(6.42) Γk = {(σ(l; μ), tfr(l; μ) + (* - 1)*): μe(0, oo)}.

Then, by the uniqueness of solutions of initial value problems for (6.7), Γk

and Γj do not intersect for any k and j. By Lemma 6.4, we have
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(p(l A), φ(l A)) — > θ > y * as λ — >°

and

φ(l A) - > oo as A - » GO.

By Lemma 6.8, we have

(σ(l μ), ιA(l ί μ) + (fc - l)π) - > ( 0, Arctan ( -- } + kπ] as μ — -> 0
V V n - 2 / /

and

ι A ( l ; μ ) - > — oo as μ - > oo.

It follows from these facts that Γ intersects Γk for each k = 1, 2, .
For fc = 1, 2, , let λk denote the smallest A such that (p(l; A), φ(l; A))

is on the curve Γk. We easily see that {λk} must be a strictly increasing
sequence. Further, since (p(l Ak), <p(l λk)) is on the curve Γk, there exists a
positive constant μk such that

(6.43) p ( l ; A k ) = σ(l;μ f c),

(6.44) φ(l ;λ k ) = φ(l ;μ k ) + (fc-l)π,

that is,

(6.45) ι ι ( l ;A k ) = (»l)k-1t;(l;μk),

(6.46) u ' ( l ; A k ) = (-l)k-1ι;'(l;μk).

Let

" M ( Γ ; λk) for 0 < r < 1,
(6.47) uk(r) =

((— 1) L v ( r ; μ k ) for r > 1.

Then uk(r) is a solution of the equation in (1.15). The solution uk(r) satisfies
the following properties:

Mfc(0) = λk, ι4(0) = 0 and lim rn~2uk(r) = (- l)k~lμk.

Therefore, uk(r) is a solution of the problem (1.15) and satisfies (2.5). Moreover,
the solution uk(r) can be written as

uk(r) = pk(r) sin φk(r) for 0 < r < oo,

where
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ίp(r; λk) for 0 < r < 1,

{σ(r; μk) for r > 1,

and

r /L) for 0 < r,Γ) =
9k ψ(r; μk) + (k - l)π for r > 1.

We see that (pfc(r) is increasing in re(0, oo). By virtue of (6.18) and (6.35),

we have

Φfc(O) = — π and lim <Pk(r) = kπ

2 r~* °°

Then, wfc(r) has exactly k — 1 zeros in (0, oo). The proof of Theorem 7 is

complete.

6.3. In this subsection we consider the problem (1.15) in the sublinear

case 0 < α < 1, and prove Theorem 8 by using the same arguments as in the
subsection 6.2.

First we deal with the problem (1.16) and consider equation (6.1). We
make the change of variables (6.2). Then, equation (6.1) is reduced to equation
(6.3), where p(t) is given by (6.4). We note that condition (3.2) is always

satisfied, and that if (2.6) holds, then (1.4) holds. From Proposition 3.1, for
each λ > 0, there exists a unique solution y ( t ; λ) of (6.3) satisfying (6.11). We
denote by u ( r \ λ ) the solution of (6.1) which corresponds to the solution
y(t\ λ). We see that u(r; λ) is a solution of the problem (1.16). From
Propositions 5.1-5.3, we obtain the following lemmas.

LEMMA 6.9. u(r\ λ) and u'(r\ λ) are continuous in (r, Λ)e[0, 1] x (0, oo).

LEMMA 6.10. For sufficiently large λ > 0, w(r; λ) > 0 on [0, 1]. Moreover,
the solution u(r; λ) has the properties:

lim w(r; λ) = oo uniformly in [0, 1]; and
λ~*• 00

lim ϋ u(r> ' = o uniformly in [0, 1].
λ^°° w(r; λ)

LEMMA 6.11. Suppose that (2.6) holds. Then the number of zeros of u(r; λ)
in [0, 1] tends to oo as λ-+Q.

We employ the Prίifer transformation. For the solution w(r; λ), we define
the functions p ( r ; λ) and φ(r; λ) by (6.14), (6.15) and (6.18). As in the
subsection 6.2, we see that p ( r ; λ) and φ(r\ λ) are well defined and uniquely
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determined, and that they are continuous in (r, A)e[0, 1] x (0, oo). Moreover,
φ(r\ λ) is increasing in re(0, 1), and w(r; λ) has exactly k — 1 zeros in (0, 1)
if and only if (6.19) holds. Using Lemmas 6.10 and 6.11, we have the following
lemma.

LEMMA 6.12. Suppose that (2.6) holds. Then, p ( r ; λ) and φ(r; λ) have the
following properties:

lim φ(l; λ) = — π;
Λ-» oo 2.

lim φ(\ λ) =00; and

lim p(l; λ) = oo.
λ-»oo

Next we deal with the problem (1.17) and consider equation (6.7). By
the change of variables (6.8), equation (6.7) is transformed to equation (6.3)
in which p(i) is given by (6.9). We note that condition (1.4) corresponds to
condition (2.11), and that condition (3.2) corresponds to (6.24). Assume that
condition (6.24) holds, that is, condition (3.2) holds. Then, it follows from
Proposition 3.1 that, for each μ > 0, equation (6.3) has a unique solution
y ( t ; μ ) satisfying (6.25). We denote by v ( r \ μ ) the solution of (6.7) which
corresponds to the solution y ( t ; μ). Then we find that v ( r ; μ ) is a solution
of the problem (1.17) and satisfies (6.27) and (6.28). From Propositions 5.1-5.3,
we obtain the following lemmas.

LEMMA 6.13. Suppose that (6.24) holds. Then, v(r\ μ) and t/(r; μ) are
continuous in (r, μ)e[l, oo) x (0, oo).

LEMMA 6.14. Suppose that (6.24) holds. Then, for sufficiently large μ > 0,
v(r\ μ) > 0 on [1, oo). Moreover, the solution v(r\ μ) has the properties:

lim v(r; μ) = oo uniformly in [1, oo); and
μ-* oo

lim

 r° ϋ ( r ;μ) = _ (n - 2)r"-2 for each fixed r > 1.
*->«> v ( r ; μ )

LEMMA 6.15. Suppose that (2.11) holds. Then the nomber of zeros of
v(r\ μ) in [1, oo) tends to oo as μ-»0.

We employ the Prufer transformation. For the solution v(r', μ), we define
the functions σ(r μ) and ^(r; μ) by (6.31), (6.32) and (6.35). We find that
σ(r μ) and ψ(r', μ) are well defined and uniquely determined, and they are
continuous in (r, μ)e[l, oo) x (0, oo). Moreover, \l/(r\ μ) is increasing in
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re[l, oo), and υ(r; μ) has exactly k - 1 zeros in (1, oo) if and only if (6.36)
holds. The following lemma is obtained from Lemmas 6.14 and 6.15.

LEMMA 6.16. Suppose that (2.11) holds. Then, σ(r; μ) and ψ(r'9 μ) satisfy
the properties'.

lim \l/(\ μ) = Arctan I — - ] + π;
"-*00 V n — 2J

lim ψ(\ μ) = — oo and
μ->0

lim σ(l μ) = oo.
-μ-»oo

Here, Arctan x denotes the principal value of arctan x.

We are now in a position to prove Theorem 8.

PROOF OF THEOREM 8. Let Γ be a continuous curve defined by

(6.41). Then Γ does not intersect itself. Similarly, let Γk, k = 1, 2, , be
continuous curves defined by (6.42). Then, Γk and Γj do not intersect for

any k and j. By Lemma 6.12, we have

as μ > oo

( p ( l ' , λ ) , φ ( l , λ ) ) M o o . y K ) ' a s A-^αo

and

φ ( ί ' 9 λ ) > oo as λ >0.

By Lemma 6.16, we have

/ f 1 \ \(σ(l μ), ^(1 μ) + (k - l)π) > oo, Arctan + kπ }
\ \ n-2j )

and

ψ(l μ) > — oo as μ > 0.

Then these facts imply that 7" intersects Γk for each fc = 1, 2, .
Let Afc denote the largest λ such that (p(l /I), φ(l λ)) is on the curve

/"fc. We easily see that {λk} must be a strictly decreasing sequence. Moreove,

since (p(l; λk), φ(l; Afc)) is on the curve Γfc, there exists a positive constant μk

such that (6.43) and (6.44) hold, that is, (6.45) and (6.46) hold. Define u k ( r )
by (6.47). As in the subsection 6.2, we can conclude that uk(r) is a solution
of the problem (1.15) such that uk(r) has exactly fc— 1 zeros in (0, oo) and
satisfies (2.7). The proof of Theorem 8 is complete.
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