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Introduction

Throughout this paper an open Riemann surface of genus one is called
an open torus', it will be called a geodesically slit torus if it arises from a
symmetric torus by removing a single segment lying on the axis of
symmetry. For the precise definitions, see Section 1.

Our aim is to find a conformal mapping of a geodesically slit torus onto
another and to study the spans of such an open torus. More specifically, we
consider two geodesically slit tori; one has a slit along a geodesic homotopic
to a longitude and the other has a slit along a geodesic homotopic to a
meridian. Our first problem is then to give criteria for such slit tori to be
conformally equivalent. A conformal mapping between them, if any, will be
constructed by means of Jacobi's elliptic functions. The method employed
here is thus classical and the idea is also simple, but we would like to remind
the reader of the fact that the corresponding classical problem of studying
conformal mapping between a horizontal slit rectangle and a vertical slit
rectangle is more difficult (cf. [5]). Slit tori can be sometimes dealt with
more easily than slit rectangles. The reason is that in the case of tori we
can normalize the slit so as to lie over the boundary of a fundamental region.

The second problem is to evaluate the hyperbolic span of a geodesically
slit torus. We also find some estimates of the euclidean span of general
open tori. These spans have been introduced in [8] and [9], as generalizations
of the Schiffer span of plane domains.

We see that the hyperbolic span of a geodesically slit torus is exactly
expressed by means of the complete elliptic integrals of the first kind. Some
numerical examples will be also given. We finally observe that the cutting
and pasting method yields all the tori from a single torus.

We remark that a theoretical treatment for plane rectangles was established
by Jenkins ([3]), and its counterpart for open tori has been given in [8] and
[9]. We also note that in [9] we define another span, the spherical span,
of an open torus, and investigate the relation of these —euclidean, hyperbolic,
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and spherical— spans to various extremal problems of the complementary
area for general open tori.

1. Preliminaries

Let R be an open Riemann surface of genus one with a fixed canonical

homology basis χ = {a, b} modulo dividing cycles. We may and do consider

χ a set of generators of the fundamental group of the Kerekjartό-Stoϊlow

compactification of R. For simplicity, we call R an open torus and the pair
(R, χ) a marked open torus. We keep on the other hand the routine terms a

torus and a marked torus to mean a closed Riemann surface of genus one

and such a surface with a marking — that is, with a fixed set of generators

of the fundamental group, respectively. To avoid ambiguity we sometimes

use the terms a closed torus and a marked closed torus for the same objects.

A realization of (R, χ) is, by definition, a triple (R, χ', /'), where R' is a

closed torus, χ' = {a1', b'} a set of generators of the fundamental group of R,
and /' a conformal mapping of R into R such that Γ(a) and Γ(b) are

homotopic to a' and b' respectively. Two realizations (R, χ', /') and

(R"9 χ", I") of the marked open torus (R, χ) are said to be equivalent, if there

is a conformal mapping / of R onto R" such that /°/' = /". Equivalence
classes are called compact continuations of (R, χ), and the compact continuation

of (R, χ) determined by a realization (R, χ', /') is denoted by [#', χ', /']. If

[R, χ', /'] = [R", χ", /"], two marked tori (R, χ') and (R\ χ") define the same

point in the Teichmίiller space of genus one and have the same modulus,

which we call the modulus of the compact continuation [#', χ ' , /']. We know

([8], Theorem 5) that the set M(R, χ) of moduli of the compact continuations
of (R, χ) is a closed disk in the upper half plane. The diameter of M(R, χ)

gives an analogue of Schiίfer's span of planar domains (cf. [8], Theorem 7

and the subsequent remark), which depends, however, not only on R but also

on χ.
The upper half plane carries the Poincare metric, and the set M(R, χ) is

again a closed disk with respect to this metric. Hence it makes sense to

speak of the hyperbolic diameter of M(R, χ). It is, contrary to the case of

euclidean metric, invariant under any change of canonical homology bases of

R modulo dividing cycles. Hence, we have the following definition (cf. [9]).

DEFINITION 1. The euclidean diameter of M(R, χ) is called the euclidean

span of the marked open torus (R, χ) and the hyperbolic diameter of the disk

M(R, χ) is called the hyperbolic span of the open torus R. They are denoted

by σE(R, χ) and by σH(R) respectively.
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It is apparent that the hyperbolic span is more intrinsic and convenient
than the euclidean. In the problem to evaluate the hyperbolic span, for
example, we may change the marking so that the new marking enables us to
solve the problem. In the present paper we show that the hyperbolic span
is given in closed form for some special open tori. The class of open tori
with which we are concerned in this paper will be described in the definitions
below.

DEFINITION 2. A realization (#', χ', /') of (R, χ) is called a strongly
symmetric torus, if R' admits an anticonformal automorphism j of order 2
with j(dR'R) = dR>R. Here, dR R stands for the relative boundary of Γ(R) in R'.

Note that j does not always fix dR,R pointwise. It is obvious that a
strongly symmetric torus is symmetric in the ordinary sense; it admits an

anticonformal automorphism of order two. The converse is not true,
however. We recall (see, e.g. [2], Chapter 6) that a closed marked torus with

modulus τ is symmetric if and only if J(τ) is real, where J is the modular
function. This condition is also equivalent to the existence of a unimodular

matrix ( ) such that Re ( ——- ) is either 0 or - (cf. [2] or [4], for
\γ δj \yτ + δj 2

instance).

We furthermore need the following definition.

DEFINITION 3. A realization (R, χ', /') of (R, χ) is called a geodesically

slit torus if each component of the set Γ:= R'\Γ(R) is a geodesic Jordan arc
on R'. The geodesically slit torus (Rf, χ', /') is called a longitudinally (resp.
meridionally) slit torus, if the geodesies on which Γ lie are homotopic to a'
(resp. b') on R', where {α', b'} = χ'. An open torus .R is said to admit a
longitudinally (resp. meridionally) slit realization, if there exists a canonical
homology basis χ of R modulo dividing cycles such that one of the realizations
of (R, χ) is a longitudinally (resp. meridionally) slit torus.

As in the classical case of the Riemann mapping theorem for plane
domains, we assume that R has only one boundary component. For simplicity

we introduce the following definition.

DEFINITION 4. An open torus is called a once holed torus if it has only
one (Kerekjartό-StoΊlow) boundary component.

Our purpose is to study the hyperbolic span of an open torus R. Since
there is no a priori definite measurement of a general open torus, we are
forced to start with one of its realizations. To be more precise, suppose that
a once holed torus R admits a strongly symmetric longitudinally slit realization
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(R', χ', /'). Let χ be the corresponding marking of R. Then there are a
complex number τ and a group G of rank 2 generated by the translations

z i—> 2 + 1 and z ι-> z + τ

such that R' is obtained as the quotient space C/G. Because of the strong

symmetry of (Rf, χ ' , Γ) we see that Re ( ] is either 0 or - for some
V yτ + δ J 2

unimodular matrix

In this paper we are concerned with only the first case. (The other case,
the case of rhombi, would be dealt with similarly. Indeed, we can make use
of the en-function instead of the sn-function.) The relative boundary dR,R lies
on the axis of symmetry, which is, by our assumption, homotopic to the loop
a!'. On the other hand, a' can be taken as a geodesic. Consequently, via a
parallel translation, we may assume that the slit lies on the loop a''. Changing
the marking χ if necessary —which has no influence on the hyperbolic span
of R—, we may also suppose that τ is purely imaginary. In other words,
(R'9 χ', Γ) arises from a rectangle with a horizontal slit. In the next section
we will find a conformal mapping of such a longitudinally slit torus onto a
meridionally slit torus in closed form.

NOTATION. A marked closed torus with modulus τ is denoted by
(Γ(τ), {α, b}). It is also denoted simply by Γ(τ), since a marking is tacitly
considered whenever we speak of the modulus. A (once holed) strongly
symmetric longitudinally (resp. meridionally) slit torus is denoted by TL (τ, /)
(resp. TM(τ, /)), if the modulus is τ and the length of the longitudinal (resp.
meridional) slit Γ is t. In particular, TL(τ, 0) = ΓM(τ, 0), and they are obtained
from T(τ) by removing a point. We often use the same notation ΓL(τ, /) or
TM(τ, f) to denote a realization of an open torus R, if there is no fear of
confusion.

2. Conformal mapping of a longitudinally slit torus onto a meridionally slit torus

Let TL(τθ9 /0) = T(TQ)\FO be a (strongly symmetric, once holed) longitudi-
nally slit torus with 0 < /0 < 1. In this section we try to find a meridionally
slit torus ΓM(τ l 5 t^ = T(τ1)\Γ1 which is another realization of TL(τ0, /0) and
to determine the modulus τ1 and the slit length t± explicitly. The geodesically
slit tori 7i(τ0,/0) and TM(τί,^ί) are, as (abstract) Riemann surfaces,
completely the same, which we denote by R. The set χ of generators of the
fundamental group of T(τ0) induces a canonical homology basis of R [modulo
dividing cycles], so that the pair (R, χ) is a marked open torus. The tori
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Γ(τ0) and Γ^) determine compact continuations of (R, χ), and Im τ0 and
Im T! are respectively the minimum and the maximum in the set {ί eR 1 1 = Im τ
for some τeM(R, χ)}. Hence, by the corollary to Proposition 1 in [8], τ1 is
also purely imaginary, so that the spans can be easily found. In fact the
euclidean span σE(R, χ) is given by |τ x — τ0 | = — 1(1^ — τ0) and the hyperbolic

span σH(R) is given by log^/to).
Let G be the group described in Section 1. The open torus TL(τ0, /0) is

represented as the quotient space (C \ Um,nez Lm + HTO, m + nτo + Λ)])/G,
where [ίl5 ί2] stands for the closed segment joining tί and f 2 . Let P0 be the
fundamental region for the group G defined by

{zeC|0< Rez < 1, 0< Imz < Imτ0}.

2.1. We start with

(1) 40 = exp (2τπτ0),

and consider the Jacobi theta functions Θ2(v, q0) and Θ3(v, q0) with the
parameter q0 (cf. [1], pp. 223-280, for example):

The other two, θ^(v, q0) and Θ4(v, g0), will not be explicitly used in the
sequel. It should be noted that q0 is not defined to be exp (τπτ0). We finally

set

(2) fc0 =

and

(3) K0

Then, as is well known, 0 < fe0, k'0 < 1 and obviously iKfQ/K0 = 2τ0.

The function ζ = 4K0z maps the rectangle P0

 onto

Π0: 0 < Re C < 4K0, 0 < Im ζ < 2K^.

We may now assume that Γ is realized on 770 as the horizontal segment

S0: K0 - 2K(/o < Re ζ < K0 -f 2X0/0, Im C = 0.

If this is the case, ST(τo)R consists of two edges of the segment Γ. We apply
the Jacobi sn-function x = sn(ζ, k0) to map 770 onto the two-sheeted covering

surface
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1

/C0

over the x-plane. Then ST(τo)R is realized as the doubly traced slit on F0

over the horizontal segment

ΣQ: λ0 < Re x < 1, Im x = 0

with — 1 < λ0 < 1, where λ0 is determined by

2.2. There are a unique Mόbius transformation y = 5(x) and a real number

kl9 0 < kl < 1, such that 5 maps the four points x = , — 1, A0, — to the
1 1 ^0 ^0

four points X = , — 1, 1, — in this order. If we set λ± = 5(1), then it is

obvious that λl is a real number with 1 < λ± < —. After simple computations
k1

we have

/ P~ + ̂ °
(5) KI = KQ —===:_

C 0 Λ Q

and

\/ 1 - ]^ 7
(6) λ, -

2.3. Now we can use an argument similar to the above (but in the opposite
direction) to obtain a new two-sheeted covering surface

with the doubly traced slit over the horizontal segment

Σ1:l^Rey^λl9 Imy = 0.

This covering surface produces a meridionally slit torus. It is conformally
equivalent to the longitudinally slit torus with which we have started. To
know the modulus τl and the slit lingth t± of the meridionally slit torus, we
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first set

(7) fcj = yi - k\

as usual and let K1 = K(k\) and K{ = K'(k(2) be the complete elliptic integrals
of the first kind with the parameter k\ and /cj2, respectively (cf. [1]):

(8)
jo x/u - πμ - /ctn Jo

(Note that the notation K(k2) is different from the one employed in [6], where
K(k2) is denoted by K(k).) Then we can cut the surface F^ and choose a
single-valued branch of the elliptic integral of the first kind

dt-ΓJo

on the cut surface so that it yields a conformal mapping of the resulting slit
surface onto the rectangle

Πί: 0 < Re ξ < 4Kl9 0 < Im ξ < 2K(

with the vertical slit

S,: Re ξ = K19 - 2Klfl <lmξ< 2K^l9

where (^ is determined by

άt
f \ =•

(9)
dt

K' 1
It is easily seen that 0 < Λ < —— . The mapping ξ i—> w = ξ maps

2K, * 4K,
the rectangle Π1 onto the rectangle

P1: 0 < Re w < 1, 0 < Im w < Im τ^

with

(10) τΓ =ίίr

The slit Si corresponds to a vertical slit on P± of length

Summing up, we have
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THEOREM 1. The longitudinally slit torus TL(τ0, *f0) is mapped conformally

onto a meridionally slit torus TM(τί9 ^Ί), where τ x and £± are uniquely determined

by τ0 and /0 through (1)-(10).

3. New parameters

Now we introduce another parameter

(11)

We then have

(12)

and

It is apparent that 0 < k1 < k0. The transformation 5 is given by

y = S(x) = β*° + 1 ~
l)x +. (μ0 + AO)

Setting

(11')
1 - J k ? '

we see from (12) and (13)

(14)

We easily see

(15)

and
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(16)
ΛI 1 /t0

1 - μ! 1 - μ0

3.1 The procedure (7)-(10) is, roughly speaking, the reverse of (l)-(4). If we
rewrite (7)-(10) in a way similar to (l)-(4), we shall easily be aware of the
fact that the only distinguishable difference occurs between equation (4) and its
counterpart. Namely, we had only to replace (4) with

The other equations (l)-(3) remain valid if we replace the suffix 0 with
1. Hence, we obtain the parameters (/10, μ0) and (λl9 μx) for (strongly
symmetric, once holed) longitudinally and meridionally slit tori respectively.

To deal with ΓL(τ0, <f0) and TM(τl9^ί) simultaneously, we denote by Tx

one of them if X = L, it is a longitudinally slit torus, and if X = M, it is a
meridionally slit torus. We set

(17) A(Γj): ί-(Ko±2K 0 / 0 ;/c o ) if X = L
[ sn(K 1 ±2iK ί / 1 ; fc 1 ) if X = M

and

08) μ(Tx):= —X V l-k(Tx)
2

where k(Tx) is equal to fc0 if X = L and /q if X = M. We know that

- 1 < λ(Tx) < oo, 0 < μ(Tx) < oo

and the slit reduces to a point if and only if λ(Tx) = 1, or equivalently,

It is apparent that (τ, /) determines (λ, μ) uniquely and vice versa. Indeed,

equations (7)-(10) show how to determine (τ, /) from (A, μ). It should be
noted here that /0

 and ^i are determined by different formulae:

(19)

Γ
J Λ

V(l- ί 2 )( l-k?f 2 ) '

Hence, we can use (A, μ) instead of (τ, {\ It is more convenient to
introduce the parameter
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Then the parameter domain is precisely 3?\)Jt\)Jf, where j£? :={0<v< 1,
μ > 1}, M := {v > 1, 0 < μ < 1} and ^Γ:= {v = μ = 1}, respectively. The longi-
tudinally slit tori are parametrized by (v, μ) e J£? and the meridionally slit tori
are parametrized by (v, μ)eJt. The set Jf corresponds to the degenerate
cases. (Note that Jf represents the family of once punctured tori — not a
single open torus ! Cf. the remark below.) Now the definition of Γ[v, μ] will
be self-explanatory for example, if (v, μ) e J£?, it is the longitudinally slit torus
with parameter value (v, μ). This is one of the advantages of using the new
parameters (v, μ).

We now consider the two functions

Φ(v, μ) := - and Ψ(v, μ) := — ~
v 1 — μ

of two real variables v and μ with v, μ > 0. Then by (15) and (16) we have

THEOREM Γ. Let T[v', μ'] and T[y" ', μ"] be two geodesίcally slit tori with
nondegenerate slits. Then they are conformally equivalent if and only if

Φ(v',μ') Φ(v",μ")=l

and

Ψ(v', μ') = ψ(v", μ"}

hold.

REMARK. As we have noticed earlier (see the end of Section 1), the
excluded case with degenerate slits can easily be dealt with. Indeed, if this
is the case, T[v', μ'] and T[y"9 μ"] are the same torus. Note that
v' = v" = μ' = μ" = \ and fc0 = /c x .

4. The hyperbolic span of a geodesically slit torus

We are now ready to give the hyperbolic span of the longitudinally slit
torus Γ[v, μ] in closed form.

Recall that K(m) denotes the complete elliptic integral of the first kind
with parameter

m:=k2

(see [1]). From equations (11), (12) and (7) we have

k2 - 1-μg _ 1 ~ μ0 1 + μ0κo — T^ - 2 ~ 1 -- 1 — 7 —
^0 ~~ ^0 ^0 ~~ ^0 Λ-0 ~r /^O
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Hence we have

(21) f c- = l - k > = l L . l ± ,

fr* fr2/q = /c0
f r 2 o o - 1-μo= -

μ0 + 1 / 1 + μ0 0 - μ0

and

(23) k- = l-kl =
i + μ0 ^o -

Introducing auxiliary functions

x - y

and

-, , ζ(y, -y)
* (x, y) : =

we have the following theorem.

THEOREM 2. If a once holed torus R admits a strongly symmetric

longitudinally (resp. meridionally) slit realization TL(λθ9 μ0) (resp. TM(λi9 μx)),
then the hyperbolic span σH(R) is equal to

log ̂  = log Ξ(λθ9 μ0) = - \ogΞ(λl9 μj.

5. Examples

We could study asymptotic behavior of the hyperbolic and euclidean
spans. Here, we will give some numerical examples, which show the
approximate size of the moduli disk.

We can choose, for example, /CQ = 0.5. Then the modulus of the torus
is exactly 0.5i; the period parallelogram is a double unit square. We take a
longitudinal slit of length /0 = 0.5 (half a length of the geodesic loop a). Then,
we have by simple calculations

σa(R) * 0.3, σE(R, χ) « 0.08.



74 M. SHIBA and K. SHIBATA

Similarly, if k0 = 0.9 (τ0 = 0.363 /) and /0 = 0.5, we have

σa(R) « 0.6, σE(R, χ) « 0.3.

Since the inclusion relation R^ a R2 between two Riemann surfaces implies

the inequality σ^RJ > σH(R^, we can give an estimate of the hyperbolic span
of an open tori which arises from a rectangle. The same holds for the
euclidean span.

In [10] Strebel showed that any open torus of finite connectivity is realized
on a closed torus so that the complement consists of disks (and/or points). It
is also interesting to give the hyperbolic span of such an open torus.

6. Deformation of tori by cutting and pasting along a geodesic arc

If an open torus varies continuously, so do the hyperbolic and euclidean
spans. This is a consequence of a more general theorem, which will be shown
in a forthcoming paper. For the present case, however, the continuity
immediately follows from Theorem 1. Namely, we have

THEOREM 3. The hyperbolic span oH(Tx(τ, /)) of a geodesically slit torus
is a continuous function of the modulus τ and the slit length £ of Tx(τ, /), X = L
or M.

From this theorem we also have

THEOREM 4. Let there be given two closed tori T' and T" and assume
that either

Im τ(T') Φ Im τ(T")

or

Im τ(T') - Im τ(T") = Re τ(T') + Re τ(T") - 0

holds. Then we can cut T' and T" along geodesic arcs Γ' and Γ" respectively,
so that T'\Γ' and T"\Γ" are conformally equivalent.

PROOF. By an elementary geometric observation, we can find a point Q
on the imaginary axis such that a circle C centered at Q passes through the
points τ(T') and τ(Γ"). The circle intersects with the imaginary axis at two
points τ0 and τ±. We assume I m τ 0 < I m τ 1 . Let T0 be the closed torus
which is obtained from the lattice {m -f nτ 0 |m, neZ}. Now, we remove a
horizontal segment of length /0 to obtain an open torus 7^(τ0, /0). By
Theorem 3 there exists a number /0 such that C = dM(TL(τ0, / 0 )). This
completes the proof.
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THEOREM 4'. Let there be given two closed tori T and T" and assume that

Im τ(Γ') = Im τ(T") and |Re τ(T')| Φ |Re τ(Γ")|.

Then we can find geodesic arcs Γ' and Γ" on T' and T", respectively, and an
analytic arc y' emanating from a point on Γ' so that T'\(T'U/) and T"\Γ" are
conformally equivalent.

For the proof we have only to take an auxiliary point τ such that Im τ
is equal to neither Im τ(T') nor Im τ(Γ'), and repeat the argument in Proof
of Theorem 4 for the pair τ and τ(T') as well as for the pair τ and τ(T"). Note
that the geodesic arc in Theorem 4' need not lie on a closed geodesic.

These theorems show that all the tori can be obtained from a single torus
through a discontinuous deformation of a set of measure zero. More precisely,
we have the following theorem immediately from Theorems 4 and 4'.

THEOREM 5. Let Γ* be a fixed marked torus. Then, for any marked
torus T, there exist a geodesic arc Γ* on T* and an analytic arc y* emanating
from a point of Γ* such that the slit torus T*\(Γ*Vγ*) can be conformally
sewn to produce the torus T.

Note that y* does not meet Γ* except for the initial point of y*. Note
also that y* may reduce to a point.

Roughly speaking, slit deformations of a single torus —cutting it along a
possibly branched arc and pasting the resulting boundary curve in another
way— yield the whole Teichmϋller space of genus one.
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