HIROSHIMA MATH. J. **24** (1994), 15–24

Maximal conditions for locally finite Lie algebras and double chain conditions

Masanobu HONDA (Received April 8, 1992)

Introduction

A distinction between the minimal conditions for locally finite Lie algebras over a field of characteristic 0 has been exactly drawn by the author [5] and Stewart [7, 9]. However, very little is known concerning maximal conditions for Lie algebras. The first purpose of this paper is to distinguish between the maximal conditions for locally finite Lie algebras over a field of characteristic 0. The second one is to distinguish between various double chain conditions (i.e. maximal and minimal conditions) for Lie algebras.

In Section 2 we shall first prove that $L(wser)\mathfrak{F} \cap Max \prec = \mathfrak{F}$ over any field (Theorem 2.1), which is a generalization of [8, Theorem 6.5] and which suggests that under stronger conditions than local finiteness all the maximal conditions may be equivalent to each other. Secondly we shall prove that $L\mathfrak{F} \cap Max \prec a^2 = L\mathfrak{F} \cap Max$ -ser over a field of characteristic 0 (Theorem 2.2) and shall exactly distinguish between the maximal conditions for locally finite Lie algebras over a field of characteristic 0 (Corollary 2.3).

In Section 3 we shall prove that $Max \neg \cap Min-si \le Max-si$ over any field (Theorem 3.2) and shall consequently draw a distinction between various double chain conditions for Lie algebras (Corollary 3.3). In addition, we shall prove that $Max \neg \neg^2 \le Max-s\mathfrak{F}$ over a field of characteristic 0 (Proposition 3.5), where $Max-s\mathfrak{F}$ is the class of Lie algebras satisfying the maximal condition for finite-dimensional subideals.

In Section 4 we shall present a method of constructing Lie algebras satisfying neither the maximal condition nor the minimal condition for 2-step subideals and shall consequently prove that there exists a Lie algebra L over any field such that $L \in L\mathfrak{F} \cap Max \multimap \bigcap Min \multimap and L \notin Max \multimap 2 \cup Min \multimap 2$ (Theorem 4.6(1)).

1

Throughout this paper we are always concerned with Lie algebras which are not necessarily finite-dimensional over an arbitrary field f unless otherwise specified. Notation and terminology is mainly based on [2]. In this section we explain some symbols and terms which we use here.

Let L be a Lie algebra over a field f, n a non-negative integer and α an ordinal. The symbol $H \leq L$ (resp. $H \triangleleft L$, $H \triangleleft^n L$, $H \sin L$, $H \triangleleft^{\alpha} L$, $H \csc L$) denotes that H is a subalgebra (resp. an ideal, an *n*-step subideal, a subideal, an α -step ascendant subalgebra, an ascendant subalgebra) of L. Angular brackets $\langle \rangle$ denote the subalgebra generated by their contents. A subalgebra H of L is said to be a serial subalgebra (resp. a weakly serial subalgebra) of L, which is denoted by $H \sec L$ (resp. $H \operatorname{wser} L$), if there exist a totally ordered set Σ and a family $\{\Lambda_{\sigma}, V_{\sigma} : \sigma \in \Sigma\}$ of subalgebras (resp. subspaces) of L such that

- (a) $H \subseteq V_{\sigma} \subseteq \Lambda_{\sigma}$ for all $\sigma \in \Sigma$,
- (b) $\Lambda_{\sigma} \subseteq V_{\tau}$ if $\sigma < \tau$,
- (c) $L \setminus H = \bigcup_{\sigma \in \Sigma} (\Lambda_{\sigma} \setminus V_{\sigma}),$
- (d) $V_{\sigma} \triangleleft \Lambda_{\sigma}$ (resp. $[\Lambda_{\sigma}, H] \subseteq V_{\sigma}$) for all $\sigma \in \Sigma$.

The transfinite derived series (resp. the transfinite lower central series, the transfinite upper central series) of L is denoted by $\{L^{(\alpha)} : \alpha \ge 0\}$ (resp. $\{L^{\alpha} : \alpha \ge 1\}$, $\{\zeta_{\alpha}(L) : \alpha \ge 0\}$). The intersection of all the terms of the transfinite derived series (resp. the transfinite lower central series) of L is denoted by $L^{(*)}$ (resp. L^*).

A class \mathfrak{X} is a collection of Lie algebras together with their isomorphic copies and 0-dimensional Lie algebras. Let \mathfrak{X} be a class of Lie algebras. A subalgebra H of L is called an \mathfrak{X} -subalgebra if $H \in \mathfrak{X}$. The symbol \mathfrak{A} (resp. $\mathfrak{F}, \mathfrak{G}, \mathfrak{A}^n$, $\mathfrak{E}\mathfrak{A}, \mathfrak{N}_n, \mathfrak{N}$, $\mathfrak{RE}\mathfrak{A}, \mathfrak{R}\mathfrak{N}$) denotes the class of Lie algebras which are abelian (resp. finite-dimensional, finitely generated, soluble of derived length $\leq n$, soluble, nilpotent of class $\leq n$, nilpotent, residually soluble, residually nilpotent).

The symbol Max- \triangleleft (resp. Max- \triangleleft^n , Max-si, Max- \triangleleft^{α} , Max-asc, Max-ser, Max) denotes the class of Lie algebras satisfying the maximal condition for ideals (resp. *n*-step subideals, subideals, α -step ascendant subalgebras, ascendant subalgebras, serial subalgebras, subalgebras). The classes Min- \triangleleft , Min- \triangleleft^n , Min-si, Min- \triangleleft^{α} , Min-asc, Min-ser and Min of Lie algebras satisfying the minimal conditions are defined in the same way.

Moreover, we here use the following classes of Lie algebras.

 $L \in \mathfrak{AF}$ if L has an abelian ideal of finite codimension.

 $L \in \mathfrak{D}(\text{asc, si})$ (resp. $\mathfrak{D}(\text{ser, si})$) if every ascendant (resp. serial) subalgebra of L is a subideal of L.

 $L \in \mathfrak{L}^{\infty}$ (resp. \mathfrak{L}_{∞}) if the join (resp. the intersection) of any family of subideals of L is always a subideal of L. In particular, if $L \in \mathfrak{L}^{\infty} \cap \mathfrak{L}_{\infty}$ then L has the complete lattice of subideals.

 $L \in \mathfrak{S}$ (resp. \mathfrak{S}^*) if $H \triangleleft L$ (resp. $H \operatorname{ser} L$) always implies that either H = 0

or H = L. In this case L is said to be simple (resp. absolutely simple). $L \in \mathfrak{Z}_{\alpha}$ if $L = \zeta_{\alpha}(L)$.

 $L \in \dot{\mathbf{e}}(\triangleleft)\mathfrak{A}$ (resp. $\dot{\mathbf{e}}(\triangleleft)\mathfrak{A}$) if $L^{(*)} = 0$ (resp. $L^* = 0$).

 $L \in L\mathfrak{X}$ if every finite subset of L is contained in some \mathfrak{X} -subalgebra of L. In particular, Lie algebras belonging to the class $L\mathfrak{F}$ (resp. LEA, LM) are said to be locally finite (resp. locally soluble, locally nilpotent) Lie algebras.

 $L \in L(wser)\mathfrak{F}$ if every finite subset of L is contained in some finite-dimensional weakly serial subalgebra of L.

 $L \in \mathfrak{M}\mathfrak{F}$ if L is generated by finite-dimensional ascendant subalgebras.

2

In this section we confine our attention to locally finite Lie algebras in order to investigate the relation between various maximal conditions.

The classes Max- \triangleleft^{α} (α is an ordinal), Max-si, Max-asc, Max-ser, Max and \mathfrak{F} are related by the series of inclusions

$$Max-\lhd \ge Max-\lhd^2 \ge \cdots \ge Max-si \ge Max-\lhd^{\omega} \ge Max-\lhd^{\omega+1}$$

 $\geq \cdots \geq Max\text{-}asc \geq Max\text{-}ser \geq Max \geq \mathfrak{F}.$

Stewart [8, Theorem 6.5] has proved that over a field t of characteristic 0

$$\dot{N}$$
 𝔅 ∩ Max- \lhd = 𝔅 ,

which implies that for any \hat{N} -algebra over a field f of characteristic 0 all the maximal conditions are equivalent to each other. It is well known ([2, p. 258]) that the class \hat{N} is a proper subclass of the class of neoclassical Lie algebras over a field f of characteristic 0. It follows from [11, Theorem 2a)] that over a field f of characteristic 0,

$$\hat{N}\mathfrak{F} < L(wser)\mathfrak{F}$$
.

Therefore the following theorem is a generalization of [8, Theorem 6.5].

THEOREM 2.1. Over any field \mathfrak{k} , $\mathfrak{L}(wser)\mathfrak{F} \cap Max \prec \mathfrak{F}$.

PROOF. Let $L \in L(\text{wser})\mathfrak{F} \cap \text{Max-} \triangleleft$ and let H be a finite-dimensional weakly serial subalgebra of L. We denote by $\lambda_{\mathfrak{R}}(H)$ the intersection of the ideals I of H for which H/I is nilpotent. Using [3, Proposition 2.11] we get $\lambda_{\mathfrak{R}}(H) \triangleleft L$. Put $K = \sum \lambda_{\mathfrak{R}}(H)$, the summation being over all finite-dimensional weakly serial subalgebras H of L. If $K \notin \mathfrak{F}$, then we can inductively construct a strictly ascending chain $\lambda_{\mathfrak{R}}(H_1) < \lambda_{\mathfrak{R}}(H_1) + \lambda_{\mathfrak{R}}(H_2) < \cdots$ such that $H_k \in \mathfrak{F}$ and H_k wser L for all $k \geq 1$. This is a contradiction. Therefore we

Masanobu Honda

have $K \in \mathfrak{F}$. Since $L \in L(\text{wser})\mathfrak{F}$, we get $L/K \in L\mathfrak{N}$. It follows from [2, Theorem 8.6.5] that $L/K \in L\mathfrak{N} \cap \text{Max} \le \mathfrak{F}$. Thus we obtain $L \in \mathfrak{F}$.

By virtue of the above theorem combined with the use of Theorem 4.6 (1), which will be proved in Section 4, we can see that $L(wser)\mathfrak{F} < L\mathfrak{F}$ over any field \mathfrak{k} .

We now restrict our attention to locally finite Lie algebras. Then we have the following result, which is the main theorem of this section.

THEOREM 2.2. Over a field t of characteristic 0,

$$L\mathfrak{F} \cap Max \cdot \triangleleft^2 = L\mathfrak{F} \cap Max \cdot ser .$$

PROOF. Let $L \in L\mathfrak{F} \cap Max \cdot \triangleleft^2$ and let $H \sec L$. We denote by $\lambda(H)$ the intersection of ideals I of H for which H/I is locally nilpotent. Then we know by [10, Theorem 5 and Corollary 6] that $\lambda(H) \lhd L$ and $H/\lambda(H) \le \rho(L/\lambda(H))$, where $\rho(L/\lambda(H))$ is the Hirsch-Plotkin radical of $L/\lambda(H)$. Owing to [2, Theorem 8.6.5], we have $\rho(L/\lambda(H)) \in L\mathfrak{N} \cap Max \cdot \trianglelefteq \le \mathfrak{F}$. Now we want to claim that $L \in Max$ -ser. Assume, to the contrary, that there exists a strictly ascending chain of serial subalgebras of L, say, $H_1 < H_2 < \cdots$. Since $L \in L\mathfrak{F}$, we can easily see that $H_k/\lambda(H_k) \in L\mathfrak{N}$ for all $k \ge 1$. It follows that $H_{k-1}/H_{k-1} \cap \lambda(H_k) \in L\mathfrak{N}$ for all $k \ge 2$. Hence $\lambda(H_1) \le \lambda(H_2) \le \cdots$ and therefore $\lambda(H_n) = \lambda(H_{n+1}) = \cdots$ for some $n \ge 1$. Put $K = \lambda(H_n)$. Then $H_n/K < H_{n+1}/K < \cdots$ and $H_k/K \le \rho(L/K) \in \mathfrak{F}$ for all $k \ge n$. This is a contradiction.

It will be proved in Theorem 4.6(1) below that over any field f,

$$L_{\mathcal{K}} \cap Max < \triangleleft > L_{\mathcal{K}} \cap Max < \triangleleft^2$$

Moreover, considering the Lie algebra constructed in the proof of [5, Theorem 1.7(2)], we can see that over any field f,

 $L\mathfrak{F} \cap Max$ -ser > $L\mathfrak{F} \cap Max = \mathfrak{F}$ (in particular, Max-ser > Max).

Combining Theorem 2.2 and the above results, we consequently obtain the following corollary, which exactly draws a distinction between the maximal conditions for locally finite Lie algebras over a field f of characteristic 0.

COROLLARY 2.3. Over a field
$$\mathfrak{k}$$
 of characteristic 0,
 $L\mathfrak{F} \cap Max \cdot \triangleleft > L\mathfrak{F} \cap Max \cdot \triangleleft^2 = L\mathfrak{F} \cap Max \cdot \triangleleft^3 = \cdots = L\mathfrak{F} \cap Max \cdot si$
 $= L\mathfrak{F} \cap Max \cdot \triangleleft^{\omega} = L\mathfrak{F} \cap Max \cdot \triangleleft^{\omega+1} = \cdots = L\mathfrak{F} \cap Max \cdot asc$
 $= L\mathfrak{F} \cap Max \cdot ser > L\mathfrak{F} \cap Max = \mathfrak{F}.$

REMARK. In the case where the ground field t is of characteristic p > 0, it is well known that

Maximal conditions for locally finite Lie algebras

 $L\mathfrak{F} \cap Max \cdot \triangleleft^2 > L\mathfrak{F} \cap Max \cdot \triangleleft^3$ (in particular, $Max \cdot \triangleleft^2 > Max \cdot \triangleleft^3$).

For example, in [1, §5] Amayo and Stewart have constructed a locally finite Lie algebra over f whose 2-step subideals are only finite in number and which has an infinite-dimensional, abelian 2-step subideal.

A Lie algebra belonging to the class $\mathfrak{L}^{\infty} \cap \mathfrak{L}_{\infty}$ has the complete lattice of subideals. Some subclasses of $\mathfrak{L}^{\infty} \cap \mathfrak{L}_{\infty}$ have been given in [4, §3]. As another corollary to Theorem 2.2, we can furthermore present a subclass of $\mathfrak{L}^{\infty} \cap \mathfrak{L}_{\infty}$ in the following

COROLLARY 2.4. Over a field t of characteristic 0,

 $L\mathfrak{F} \cap Max - \triangleleft^2 \leq \mathfrak{L}^{\infty} \cap \mathfrak{L}_{\infty}$.

PROOF. It is not hard to verify that Max-ser $\leq \mathfrak{D}(\text{ser, si})$. Hence, owing to [6, Theorem 2.3], we get Max-ser $\leq \mathfrak{L}_{\infty}$. Furthermore, we know by [4, Theorem 8] that Max-si $\leq \mathfrak{L}^{\infty}$. Therefore the assertion immediately follows from Theorem 2.2.

Finally we present the structure of Lie algebras belonging to the class $L\mathfrak{F} \cap Max \cdot \triangleleft^2$ in the following

PROPOSITION 2.5. Let L be a Lie algebra over a field \mathfrak{t} of characteristic 0. If $L \in \mathfrak{LS} \cap \operatorname{Max} - \triangleleft^2$, then L has a descending series of subideals whose factors are absolutely simple.

PROOF. Let $L \in L\mathfrak{F} \cap Max \prec^2$. Using Theorem 2.2 we get $L \in \mathfrak{D}(\text{ser, si})$. We recursively define the terms of a descending series $\{L_{\alpha} : \alpha \geq 0\}$ of subideals of L whose factors are absolutely simple. Define L_0 by L and suppose that the terms L_{β} ($\beta < \alpha$) have been defined for some ordinal $\alpha > 0$. If α is a limit ordinal, then we may define L_{α} by $\bigcap_{\beta < \alpha} L_{\beta}$. Assume that α is not a limit ordinal and that $L_{\alpha-1} \neq 0$. Clearly $L_{\alpha-1}$ has a proper maximal ideal, say, M. Then by [10, Theorem 8] we get $L_{\alpha-1}/M \in L\mathfrak{F} \cap \mathfrak{S} \leq \mathfrak{S}^*$. Hence we may define L_{α} by M. Now by set-theoretical considerations we can find an ordinal σ such that $L_{\sigma} = 0$. This completes the proof.

REMARK. Let $\dot{E}(si)\mathfrak{S}^*$ denote the class of Lie algebras which have descending series of subideals with absolutely simple factors. Since infinitedimensional, abelian Lie algebras lie in $\dot{E}(si)\mathfrak{S}^*$, we conclude from Proposition 2.5 that $L\mathfrak{F} \cap Max - \triangleleft^2 < L\mathfrak{F} \cap \dot{E}(si)\mathfrak{S}^*$ over a field \mathfrak{k} of characteristic 0.

3

Let Δ_1 and Δ_2 be any two of the relations \leq , \triangleleft^{α} (α is an ordinal), si, asc, ser. Then we say that a Lie algebra L satisfies the double chain condition

Max- Δ_1 and Min- Δ_2 if L belongs to the class Max- $\Delta_1 \cap$ Min- Δ_2 . In this section we shall investigate the relation between various double chain conditions.

Let us recall the class Max-s \mathfrak{F} of Lie algebras satisfying the maximal condition for finite-dimensional subideals. We here need the following lemma, which is directly deduced from [2, Corollary 9.3.3(b)].

LEMMA 3.1. Over any field \mathfrak{k} , Min-si \leq Max-s \mathfrak{F} .

The main theorem of this section is the following

THEOREM 3.2. Over any field \mathfrak{k} , Max- $\triangleleft \cap$ Min-si \leq Max-si.

PROOF. Let $L \in Max \prec \cap Min$ -si and let H si L. Since $H^{(*)}$ is a perfect subideal of L, it is well known (see [2, Proposition 1.3.5]) that $H^{(*)} \lhd L$. Since $L \in Min$ -si, we can easily verify that $H/H^{(*)} \in \mathbb{E}\mathfrak{A} \cap Min$ -si $\leq \mathfrak{F}$. Assume that L has a strictly ascending chain of subideals, say, $H_1 < H_2 < \cdots$. Then there exists an integer $n \ge 1$ such that $H_n^{(*)} = H_{n+1}^{(*)} = \cdots$. Put $K = H_n^{(*)}$. We get a strictly ascending chain $H_n/K < H_{n+1}/K < \cdots$ of finite-dimensional subideals of L/K. However, Lemma 3.1 implies that $L/K \in Min$ -si $\leq Max$ -s \mathfrak{F} . This is a contradiction. Thus we obtain $L \in Max$ -si.

In the case where the ground field f is of characteristic 0, it is well known ([2, Theorem 8.1.4] and [9, Theorem]) that

$$Min - \triangleleft^2 = Min - si = Min - asc \leq \mathfrak{D}(asc, si).$$

In the case where the ground field f is of characteristic p > 0, it is well known ([2, Proposition 8.1.5] and [9, Theorem]) that

 $Min - \triangleleft^3 = Min - si = Min - asc \leq \mathfrak{D}(asc, si)$.

Furthermore, the Lie algebra constructed in [1, §5] satisfies neither the maximal condition nor the minimal condition for 3-step subideals but satisfies the double chain condition Max- \triangleleft^2 and Min- \triangleleft^2 .

In the case where the ground field f is of arbitrary characteristic, the Lie algebra constructed in the proof of Theorem 4.6(1) below satisfies neither the maximal condition nor the minimal condition for 2-step subideals but satisfies the double chain condition Max- \triangleleft and Min- \triangleleft . Furthermore, the Lie algebra constructed in the proof of [5, Theorem 1.7(2)] satisfies neither the maximal condition nor the minimal condition for subalgebras but satisfies the double chain condition Max-ser and Min-ser.

As a direct consequence of Theorem 3.2 and the above results we obtain the following corollary, which draws a distinction between various double chain conditions for Lie algebras.

COROLLARY 3.3. (1) Over a field t of characteristic 0,

20

Maximal conditions for locally finite Lie algebras

 $Max - \triangleleft \cap Min - \triangleleft > Max - \triangleleft \cap Min - \triangleleft^2 = Max - \triangleleft^2 \cap Min - \triangleleft^2 = \cdots$

 $= Max-si \cap Min-\triangleleft^2 = Max-\triangleleft^{\omega} \cap Min-\triangleleft^2 = Max-\triangleleft^{\omega+1} \cap Min-\triangleleft^2$

 $= \cdots = \operatorname{Max-asc} \cap \operatorname{Min-} \triangleleft^2 > \operatorname{Max} \cap \operatorname{Min-} \triangleleft^2.$

(2) Over a field \mathfrak{k} of characteristic p > 0,

 $Max- \lhd \cap Min- \lhd > Max- \lhd \cap Min- \lhd^2 > Max- \lhd \cap Min- \lhd^3$

 $= Max - \triangleleft^2 \cap Min - \triangleleft^3 = \cdots = Max - si \cap Min - \triangleleft^3 = Max - \triangleleft^{\omega} \cap Min - \triangleleft^3$

 $= \operatorname{Max} \operatorname{\triangleleft}^{\omega+1} \cap \operatorname{Min} \operatorname{\triangleleft}^3 = \cdots = \operatorname{Max} \operatorname{-asc} \cap \operatorname{Min} \operatorname{\triangleleft}^3 > \operatorname{Max} \cap \operatorname{Min} \operatorname{\triangleleft}^3.$

It seems to be a hard problem whether we can precisely add the class Max-ser \cap Min- \triangleleft^2 (resp. Max-ser \cap Min- \triangleleft^3) to the series of inclusions given in Corollary 3.3(1) (resp. (2)).

Finally we prove the following result, which claims that if the ground field \mathfrak{k} is of characteristic 0, then in Lemma 3.1 we can replace the class Min-si (=Min- \triangleleft^2) with the class Max- \triangleleft^2 .

PROPOSITION 3.4. Over a field t of characteristic 0, $Max - \triangleleft^2 \leq Max - s\mathfrak{F}$.

PROOF. Let $L \in \text{Max} - \triangleleft^2$ and let H be a finite-dimensional subideal of L. Then $H^{\omega} \triangleleft L$ and $H/H^{\omega} \leq \beta(L/H^{\omega})$, where $\beta(L/H^{\omega})$ is the Baer radical of L/H^{ω} . By using [2, Theorems 6.2.1, 6.3.3 and 8.6.5], we get $\beta(L/H^{\omega}) \in L\mathfrak{N} \cap Max - \triangleleft \leq \mathfrak{F}$. Then, as in the proof of Theorem 2.2, we can prove that L has no strictly ascending chains of finite-dimensional subideals.

REMARK. In the case where the ground field f is of characteristic 0, it is not known whether the class Max- \triangleleft^2 coincides with the class Max-si. We should note that the class Max-si is a proper subclass of Max-s \mathfrak{F} . In fact, let *L* be a direct sum of infinitely many infinite-dimensional, simple Lie algebras. Since *L* has no non-trivial finite-dimensional subideals, we have $L \in$ Max-s \mathfrak{F} . However, it is clear that $L \notin$ Max-si.

4

In this section we shall introduce a method of constructing locally finite Lie algebras which do not satisfy the maximal condition for 2-step subideals but satisfy the maximal condition for ideals. No such Lie algebras may be found in well-known examples, because of the following

Masanobu Honda

PROPOSITION 4.1 ([2, Lemma 8.6.1, Theorem 8.6.5 and Corollary 11.1.8]). Let $L \in L\mathfrak{F} \cap Max \prec$. If $L \in \mathfrak{E}\mathfrak{A} \cup \mathfrak{L}\mathfrak{R} \cup \mathfrak{A}\mathfrak{F}$, then $L \in \mathfrak{F}$.

Let L be a Lie algebra over a field f and let ε be the identity map of L. For each $x \in L$ we denote by x^{ε} the image under the identity map ε . Think of ε as a f-linear transformation of L. Then we can define an L-action on the image L^{ε} as follows:

$$x^{\varepsilon}y = [x, y]^{\varepsilon} \qquad (x, y \in L) \,.$$

Regard the L-module L^{ε} as an abelian Lie algebra and denote by L^{\sim} the split extension of L^{ε} by L. Then we obtain the following lemma, the proof of which is a nice exercise in the use of the definition of L^{\sim} .

LEMMA 4.2. (1) If $H \triangleleft L^{\sim}$, then $H \cap L^{\varepsilon} = I^{\varepsilon}$ for some $I \triangleleft L$. (2) $(L^{\sim})^{\alpha} = (L^{\alpha})^{\varepsilon} + L^{\alpha}$ for all ordinals $\alpha \ge 1$. (3) $(L^{\sim})^{(\alpha)} = (L^{(\alpha)})^{\varepsilon} + L^{(\alpha)}$ for all ordinals α . (4) $\zeta_{\alpha}(L^{\sim}) = \zeta_{\alpha}(L)^{\varepsilon} + \zeta_{\alpha}(L)$ for all ordinals α .

We can show that several structures of Lie algebras are hereditary under the \sim -formation.

PROPOSITION 4.3. Let \mathfrak{X} be one of the following classes of Lie algebras:

 \mathfrak{F} , \mathfrak{G} , Max- \triangleleft , Min- \triangleleft , \mathfrak{N}_c , \mathfrak{A}^d , \mathfrak{Z}_a , $\mathfrak{R}\mathfrak{N}$, $\mathfrak{R}\mathfrak{A}\mathfrak{A}$, $\dot{\mathfrak{E}}(\triangleleft)\mathfrak{A}$, $\dot{\mathfrak{E}}(\triangleleft)\mathfrak{A}$,

where c and d are non-negative integers and α is an ordinal. If $L \in \mathfrak{X}$, then $L^{\sim} \in \mathfrak{X}$.

PROOF. In the case $\mathfrak{X} = \mathfrak{F}$ the assertion clearly holds. If $L = \langle x_1, \ldots, x_n \rangle$, then $L^{\sim} = \langle x_1^{e}, \ldots, x_n^{e}, x_1, \ldots, x_n \rangle$. Hence in the case $\mathfrak{X} = \mathfrak{G}$ the assertion holds. We now consider the case $\mathfrak{X} = \text{Max-} \triangleleft$ (resp. Min- \triangleleft). Let $L \in \text{Max-} \triangleleft$ (resp. Min- \triangleleft). Since $L^{\sim}/L^{e} \cong L$, $\{(H + L^{e})/L^{e} : H \lhd L^{\sim}\}$ satisfies the maximal (resp. minimal) condition. We know by Lemma 4.2(1) that $\{H \cap L^{e} : H \lhd L^{\sim}\}$ satisfies the maximal (resp. minimal) condition. Therefore by [2, Theorem 1.7.3] we get $L^{\sim} \in \text{Max-} \triangleleft$ (resp. Min- \triangleleft). In the other cases the assertion is directly deduced from Lemma 4.2.

LEMMA 4.4. Let \mathfrak{X} be a class of Lie algebras such that $L \in \mathfrak{X}$ always implies $L^{\sim} \in \mathfrak{X}$. If $L \in \mathfrak{L}\mathfrak{X}$, then $L^{\sim} \in \mathfrak{L}\mathfrak{X}$.

PROOF. Let $L \in L\mathfrak{X}$ and let X be a finite subset of L^{\sim} . Take elements x_i , y_i $(1 \le i \le n)$ such that $X = \{x_i^e + y_i : 1 \le i \le n\}$. Then there exists an

22

 \mathfrak{X} -subalgebra H of L such that $\{x_i, y_i : 1 \leq i \leq n\} \subseteq H$. Since $X \subseteq H^{\varepsilon} + H \cong H^{\sim} \in \mathfrak{X}$, we get $L^{\sim} \in \mathfrak{L}\mathfrak{X}$.

By combining Proposition 4.3 and Lemma 4.4, we can immediately obtain the following result.

PROPOSITION 4.5. Let \mathfrak{X} be one of the following classes of Lie algebras:

LF, LN, LEA, LRN, LREA, $L\dot{e}(\lhd)\hat{A}$, $L\dot{e}(\lhd)A$.

If $L \in \mathfrak{X}$, then $L^{\sim} \in \mathfrak{X}$.

Let L be an infinite-dimensional Lie algebra. Then L^{ϵ} is an infinitedimensional, abelian ideal of L^{\sim} . It follows that L^{\sim} satisfies neither the maximal condition nor the minimal condition for 2-step subideals. Consequently we arrive at the main theorem of this section.

THEOREM 4.6. (1) Over any field \mathfrak{k} , there exists a Lie algebra L such that

 $L \in L\mathfrak{F} \cap Max \to \cap Min \to and \quad L \notin Max \to \mathcal{I} \cup Min \to \mathcal{I}$.

(2) Over a field \mathfrak{t} of characteristic 0, there exists a Lie algebra L such that

 $L \in \mathfrak{G} \cap \text{Max} \to \Omega \text{ Min} \to and \quad L \notin \text{Max} \to 2 \cup \text{Min} \to 2$.

(3) Over a field \mathfrak{k} of characteristic 0, there exists a Lie algebra L such that

 $L \in \mathfrak{G} \cap \mathfrak{R} \mathfrak{N} \cap \operatorname{Max} \operatorname{d} \operatorname{and} L \notin \operatorname{Max} \operatorname{d}^2 \cup \operatorname{Min} \operatorname{d}$.

PROOF. (1) Let L be an infinite-dimensional, locally finite, simple Lie algebra over a field \mathfrak{k} . For example, the Lie algebra of all trace-zero transformations of finite rank of an infinite-dimensional vector space over \mathfrak{k} (see [7, §4]) or the Lie algebra over \mathfrak{k} constructed in the proof of [5, Theorem 1.7 (2)] is such a Lie algebra. Then we know by Proposition 4.3 and 4.5 that $L^{\sim} \in \mathfrak{L} \cap \mathfrak{Max} \to \mathfrak{O} \operatorname{Min} \to \mathfrak{O}$. Since $L \notin \mathfrak{F}$, we get $L^{\sim} \notin \operatorname{Max} \to \mathfrak{O} \operatorname{Min} \to \mathfrak{O}^2$.

(2) Let W be a generalized Witt algebra $\mathscr{W}_{\mathbb{Z}}$ (see [2, §10.3]), that is, let W be a Lie algebra over f with basis $\{w_i : i \in \mathbb{Z}\}$ and multiplication

$$[w_i, w_i] = (i - j)w_{i+i}$$
 $(i, j \in \mathbb{Z})$.

Then we know by [2, Theorem 10.3.1] that $W \in \mathfrak{S} \leq \text{Max} \leq 0$ Min- \triangleleft . Clearly we have $W = \langle w_{-2}, w_1, w_2 \rangle \in \mathfrak{G}$. It follows from Proposition 4.3 that $W^{\sim} \in \mathfrak{G} \cap \text{Max} < 0$ Min- \triangleleft .

(3) Let W be a generalized Witt algebra $\mathscr{W}_{\mathbb{Z}}$ as in (2) and L the subalgebra of W generated by $\{w_1, w_2\}$. Then we know by [2, Theorem 8.7.1] that $L > L^2 > \cdots$ and $L \in \mathbb{R} \mathbb{R} \cap Max$ -si. It follows from Lemma 4.2(2) and Proposition 4.3 that $L^{\sim} > (L^{\sim})^2 > \cdots$ and $L^{\sim} \in \mathfrak{G} \cap \mathbb{R} \mathfrak{R} \cap Max - \triangleleft$.

Masanobu Honda

References

- R. K. Amayo and I. Stewart, Descending chain conditions for Lie algebras of prime characteristic, J. Algebra 35 (1975), 86-98.
- [2] R. K. Amayo and I. Stewart, Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [3] M. Honda, Weakly serial subalgebras of Lie algebras, Hiroshima Math. J. 12 (1982), 183-201.
- [4] M. Honda, Lie algebras in which the join of any set of subideals is a subideal, Hiroshima Math. J. 13 (1983), 349-355.
- [5] M. Honda, Minimal conditions for Lie algebras and finiteness of their dimensions, Hiroshima Math. J. 17 (1987), 325-336.
- [6] M. Honda, Intersections of subideals of Lie algebras, Hiroshima Math. J. 19 (1989), 575-585.
- [7] I. Stewart, The minimal condition for subideals of Lie algebras, Math. Z. 111 (1969), 301-310.
- [8] I. Stewart, Structure theorems for a class of locally finite Lie algebras, Proc. London Math. Soc. (3) 24 (1972), 79-100.
- [9] I. Stewart, The minimal condition for subideals of Lie algebras implies that every ascendant subalgebra is a subideal, Hiroshima Math. J. 9 (1979), 35-36.
- [10] I. Stewart, Subideals and serial subalgebras of Lie algebras, Hiroshima Math. J. 11 (1981), 493-498.
- [11] S. Tôgô, Serially finite Lie algebras, Hiroshima Math. J. 16 (1986), 443-448.

Niigata College of Pharmacy Niigata 950–21, Japan