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1. Introduction

Let J(X) be the J-group of CW-complex X of finite dimension. Then
by J. F. Adams [2] and D. Quillen [17], it is shown that

(1.1) J(X) = KO(X)/KerJ, Ker J = Σk(0eke{Ψk - l)KO(X))9

where KO(X) is the KO-group of X, J : KO(X) -> J(X) is the natural
epimorphism and Ψk is the Adams operation.

Let Qr (r = 2m~1 Tz.2) be the generalized quaternion group of order Ar
given by

Qr = {*, y: x r = y 2, χyx = y},

the group generated by two elements x and y with the relations xr = y2 and
xyx = y9 that is, Qr is the subgroup of the unit sphere S3 in the quaternion
field H generated by the two elements

x = exp (πi/r) and y =j.

In this paper, we study the J-group of the quaternionic spherical space
form:

Nn(m) = S*n + 3/Qr (r = 2 m - 1 ̂  2),

which is the orbit manifold of the unit sphere S4 n + 3 in the quaternion
(n + l)-space Hn+1 by the diagonal action of Qr. In the case m = 2 and 3,
the reduced J-group J(Nn(m)) is determined by H. Oshima [15], T. Kobayashi
[12], respectively.

Throughout this paper, we identify the orthogonal representation ring
RO(Qr) with the subring c(RO(Qr)) of the unitary represetation ring R(Qr)
through the complexification c: RO(Qr)^R(Qr\ since c is a ring monomorphism
(cf. (2.1)).

Consider the complex representation a0, ax and bx of Qr given by

- « - ' ί"'w--'»,«-(- °
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and the elements in R(Qr) defined by

α, = at - 1 (i = 0, 1), β = b1-2 (cf. (2.4)),

β(0) = ft £(s) = /?(s - I ) 2 + 4)8(5 - 1) (cf. (2.8)).
Then

α, (i = 0, 1), 2β(2β)j8(s)eΛO(βr) (cf. Prop. 2.7),

where e(z) = 0 if i is even, = 1 if i is odd.

Furthermore, consider the elements in K0(Nn(m)):

(1.2) α, = £(αt.) (i = 0, 1), 2β(2β)/?(s) = ξ{2^β{s)) (cf. (3.2)),

where ξ is the natural ring homomorphism of RO(Qr) to K0(Nn(m)). Then,

the main purpose of this paper is to prove the following

THEOREM 1.3. Let m ^ 2 α/irf put ή = 2n + ε(n). Then, the order of the

J-image

γv = J(2^β(v)) (v ^ 0)

of the element 2E(2v)β(v) is equal to 2fi"'m:v). Here, in the case m = 2,

/(«, 2; 0) = ή, /(n, 2; 1) = n + ε(n), f{n, 2; ») = 0 (D ^ 2);

0«ί/ /« /Λ̂  case m ^ 3,

/(n, m; 0) = max {2n + 1, s - 1 + 2 s [n/2 s ] : 0 ^ s < m, 2s ^ ή},

/(n, m; 1) = max {n + 1, s - 1 + 2 s " 1 [ ή / 2 s ] : 1 ^ s < m, 2s ^ ή}9

f(n9 m v) = max {s - v + 2 s " y [n/2 s ] : v ^ 5 < m, 2s ^ n} (t; ^ 2),

where we define max { } = 0, if {s: v ^ s < m, 2 s ^ π} = 0.

Some partial results for the order of γ0 are obtained by H. Oshima [15],

T. Kobayashi [12] and K. Komatsu [14], and are applied to get the

information about the stable homotopy types of the stunted spaces of Nn(m)

(cf. also [13]).

On the group structure of the reduced J-group J(Nn{m)) (m ^ 2), we have

the following theorem, where

(1.4) 0 S =

(1.5)
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THEOREM 1.7. (i) J{Nn{m)) is generated by the J-images

Jα f (ί = 0, 1) and yv = J(2ε{2v) β(υ)) (0 = t; < m)

of the elements in (1.2).

(ii) ([15, Th. 6.1]) J : K0(Nn(2)) s «7(Λr(2)).

(iii) The relations of J(Nn(m)) for m ^ 3 #re given as follows:

(a) ΓΛe case n = 0 mod 2: Let [2k] = n < 2k+1 for k = - 1.

(1.7.1) 2" + 2 J α , = 0 (i = 0, 1)

(1.7.2) 2

m - s - 1 + f l s - ε ( 2 s ) y s = 0 (0 ^ s < m).

(1.7.3) ^ = o2™-s-3 + 2 - ^ s + i ) - ε ( 2 ^ = o (2 ^ s g min {/c, m - 1}).

ί1-7-4) Σ U o ( " l ) 2 s " υ 2 m - s - 4 + 2 s + 1 ~ ^ + 1 + ^ ) + ε ( ί ί ) - ε ( 2 t ; ) X ( ^ ι;)yy = 0

(1 g 5 ^ min {/c, m - 2}, 0 < d < 2s, 2s + d < N),

wfere (5 = 0 if 2d> bs+1, = 1 otherwise and N — min {2m~1, n}.

(1.7.5) 2 2 / - 3 + ε ( ί ) 7o " Σ U i 2β ( 0y(ί, ϋ)7, = 0 (N < i£ 2m~%

where 2t^i<2t+1.

ai

(1

(1

(b)
id in

.7.6)

.7.7)

The case n
addition,

2 2 " - 1 7 o -

= 1

Luv

mod

2

= 1 ϊ v

2: j

w + 1 J c

1 + 1 ,

ΓΛ̂  relations in (a)

<* = O (i = 0,l),

i Jŷ  = 0, where

For the special case n = 2m~2a, we can reduce the relations of J(Nn(m))

in (iii) of the above theorem to more simple ones, and J(Nn(m)) is given by

the following explicit form, where ZΛ<x> denotes the cyclic group of order h

generated by the element x.

THEOREM 1.8. If n = 2 m " 2 α (m ^ 3, a = 2), then J(Nn(m)) is the direct sum

Z 2 n + 2 <Jα 0 > ® Z2n+2(J(x1> Θ Z 2 w - 2 + α o <j 0 > ® Z 2 α i <7i - 2f l°-αiy0> 0

αυ = 2m~1~va in (1.4).

By using the above theorem, we can determine the kernel of the

homomorphism

(1.9) j * : J(Nn(m))
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induced by the inclusion j : Nn~1(m) c Nn(m) as follows:

PROPOSITION 1.10. j * in (1.9) is epimorphic, and Kerj* is given by

'Z 8<J(2β")> if n is odd,
Ker;*= .

Z 4 < 2 / l J α o > 0 Z 4 < 2 M J α 1 ± 2m 3 70> θ Z2hw<J(i8n)> if n is even,

where hm = min {m + 1, v2(ή) + 3} flwd v2(n) is the exponent of 2 in the prime

power decomposition of n, and the term ± 2m~3 + 2ny0 does not appear if m = 2.

By this proposition, we see immediately the following

THEOREM 1.11. The order of the reduced J-group J(Nn(m)) is equal to

2^m\ φ(n, m) = Σ ^ 1 (5 + 2) [(as + l)/2] + 4ε(n + 1),

where ε(i) is the integer in (1.4).

By using Proposition 1.10 and Theorem 1.8, we can prove Theorem 1.3

by the induction on n and m.

We prepare in §2 some results on the orthogonal representation ring

RO(Qr) (r = 2m~1). In §3, we recall the additive structure of the KO-ήng of

Nn(m) given in [10]. We study the behavior of the Adams operations on

K0(Nn(m)) and determine the generators of K e r J in (1.1) for X = Nn(m)

explicitely in §4. In §5, we give the key relations of J(Nn(m)) in Lemma 5.6,

and the defining relations of J(Nn(m)) in Proposition 5.7, which are useful in

the proof of Theorem 1.7. Some lemmas for the coefficients X(d, v) and Y(d, v)

in (1.5-6) are prepared in §6.

By using these results, we prove Theorem 1.7 (i), (ii) and (iii) (a) in §7,

and Theorem 1.8 in §8. In §9, we prove Proposition 1.10 in Corollary 9.10,

and Theorem 1.11 in Proposition 9.8 (ii) by using the results on

Ker {j*:Kb(Nk+1)-+KO(Nk)} ([10, §4]), where Nk is the Jfc-skeleton of the

CW-complex Nn(m) ([6, Lemma 2.1]). In §10, Theorem 1.3 is proved first,

and then Theorem 1.7 (iii) (b) is shown by using Proposition 1.10, Theorems

1.3 and 1.7 (iii) (a).

In the final section, we study the relation between J(Nn(m + 1)) and

J(Nn(m)) for n < 2 m " 1 .

2. The representation rings of Qr (r = 2m x)

We denote the unitary (resp. orthogonal) representation ring of the group

G by R(G) (resp. RO(G)). By the natural inclusions

O(n) c U(n) and U(n) a O(2n)9
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the following group homomorphisms are defined:

The following facts are well known (cf., e.g. [3]).

(2.1) These representation rings are free over Z, and c is a ring

homomorphism. Also

r c = 2, cr = 1 + ί,

(t denotes the conjugation), and c is monomorphic.

Hence throughout this paper, we identify RO(G) with the subring c(RO(G))

of R(G).

We regard the generalized quaternion group Qr (r = 2m~ι ^ 2) of order

4r as the subgroup of the unit sphere S3 in the quaternion field H generated

by the two elements

x = exp (πi/r) and y =j.

Consider the complex representations ai (ί = 0, 1, 2) and bj (jeZ) of Qr

given by

(ao(x)= 1 U(x)=-1

\ao(y)=-h UooM-iΓ1 '
(2.2)

Then, we see easily the following

PROPOSITION 2.3 (cf. [4, §47.15, Example 2]). R(Qr) is a free Z-module

with basis 1, a{ (i = 0, 1, 2) and bj (1 Sj< r) and the multiplicative structure

is given as follows:

a\ = 1, a\ = 1, a2 = aoau b 0 =• 1 + α 0 , br = α x + α2>

^r + i = b r - ή b - i = K bibj = bi+j + bi-j, aobi = bi9 a^b{ = br_t.

Let

(2.4) α£ = α, — 1 (i = 0, 1, 2) and βj = bj-2(jeZ)

be the elements in the reduced representation ring R(Qr).

From now on, we denote β instead of βx for simplicity. Then, we have

PROPOSITION 2.5 (cf. [6, Prop. 3.3]). R(Qr) is a free Z-module with basis
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α (ί = 0, 1, 2) and βj (1 ^j < r), and the multiplicative structure is given as

follows:

ocl = - 2α 0, α2 = - 2α l 9 α2 = α oα x -f α0 + α 1 ?

jβ0 = <*o> βr = oίi + α2, β r + i = jSr_i? jδ_t. = βi9

βiβj = βi+j + ft-,- - 2 ( ^ + /?7), αoft = - 2α 0, α ^ , = βr.t - βt - 2α t .

These show that the ring R(Qr) is generated by α 0, oc1 and β.

Regarding RO(Qr) as the subring of R{Qr) under the complexification

c: RO(Qr)-+R(Qr) in (2.1), we have

PROPOSITION 2.6 (cf. [5, (3.5) and (12.3)]). RO(Qr) is a free Z-module with

basis 1, at (i = 0, 1, 2), 2?2j α«<i 2fe2j + 1 (1 g 2;, 2; + 1 < r).

By (2.4), Propositions 2.5 and 2.6, we have

PROPOSITION 2.7 (cf. [10, Prop. 2.7]). 77ze reduced representation ring

RO(Qr) is a free Z-module with basis αt (i = 0, 1, 2), /?2j #«rf 2β2j+1

(1 g 2jf, 2/ + 1 <: r). ^&6>, / ^ ring RO(Qr) is generated by α 0, α 1 ? 2/? am/ jβ2.

Let m ^ 2, and define /?(s) in K(βr) inductively as follows:

(2.8)

Then, we have the following

LEMMA 2.9 (cf. [10, Lemma 2.16], [9, Lemmas 5.3 and 5.4]). The

following relations hold in R(Qr):

(i) Pm,s = β(s)U7:si1(2 + β(t)) = O and β{s) = 0 (s^m).

(ϋ) zj" = (β" - ( - 2r)Σ:=-1

2)?(s)πr=;2

+1(2 + wo) + ( - 2y«1

for any positive integer n.

PROOF, (i) The first relation is proved in [10, Lemma 2.16]. By the

first relation, β(m) = Pmm = 0, and so β(s) = 0 (s^m) follows from the

definition of β(s) in (2.8).

(ii) Since oc1β = βr_ι - β — 2ot1 by Proposition 2.5,

On the other hand,

i2/»(*)ΠΓ-",2

+i (2 + β(t))
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by [9, Lemma 5.3]. Therefore, we have the desired relation. q.e.d.

By the definition of β(s), P m s , Lemma 2.9 and Proposition 2.7, we have

LEMMA 2.10 (cf. [10, Lemma 2.17]). 2P m p l = 0, βPmΛ=0, Pm, s = 0

(2 ^ s ^ m) and β(s) = 0 (s ^ m) hold in RO(Qr).

3. The structure of KO{TΨ{m))

The generalized quaternion group Qr (r = 2 m - 1 ^ 2 ) acts on the unit sphere

S 3 in the quaternion (n + l)-space Hn+1 by the diagonal action

?teo>..otf«) = too>...>OTj f o r

and we have the quaternionic spherical space form

jVM(m) = 5 4 π + 3 /2r of dimension 4rc + 3.

Then the natural projection 5 4 n + 3 -+ Nn(m) define the ring homomorphism (cf.

[11, Ch. 12, 5.4])

(3.1) ξ

and by using the same letter, we define the elements

α£ = £(«*) (f = 0, 1), W = ξ(2β<Λ^ ( ^ 1),

( 3 < 2 ) 2)8(0) = {(2j9(O)), )8(5) = ξ(β(s)) (s ^ 1) in K0(N%m))9

where ε(j) is the integer in (1.4). ^

For the ring homomorphism ξ: RO(Qr)-> K0(Nn(m)) in (3.1),

(3.3) (cf. [16, Th. 2.5], [7, Th. 1.1 and Cor. 1.2]) ξ is an epimorphism, and

\(2βn + \ βn + 2) if n is even,

where <5> means the ideal generated by the set S.

Consider the following integers u(ί) and the elements 6t and όί1 in

K0(Nn(m)) (m ^ 2), where α i 9 2β = 2)8(0) and β(s) are the ones in (3.2). For

ί = 2 s + d ^ N = min {2 m " 1 , n} with 0 g 5 < m and 0 ^ d < 2 s, put

n = In + ε(n) = 2 sα s + fos, 0 ^ bs < 2 s ;

w(l) = 2 m " 2 + α o , ^ = 2 ) 8 if i= 1;

(n:odd),

\ 2 m " 2 + β ι (π even),
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δ = ΓjB(l) - 21+a*β(0) - R0(l9 0; ax + 1) (n: odd),
2 \β(ί) (n: even) if ί = 2;

(3.4)

. ^ ί = o v ., - s+1)β(s- t ) - R0(s, 0 ; α s + l ) ( n : o d d ) ,

— t) (n: even) if i = 2 (2 ^ s < m)

ί + 1 + 1 for 2 d g & s + 1,

[as for 2d>bs+u

(d:odd),

+ ]8(ί)) + K(s, d a(ί)) (n: odd, d: even),

(n: even, d: even) if Ϊ = 2s + d ^ 3, d ^ 1

(n: even or m = 2),

^α 1 d=2 m - 2 + π j8 (n: odd and m ^ 3),

where ε(n) is the integer in (1.4), and R0(s, 0; k) and K(s, d; fc) are the elements

given in [10, Props. 7.1 and 7.2]. ^

Then, the additive structure of K0(Nn{m)) is given by the following

theorem:

THEOREM 3.5 (cf. [10, Th. 1.6]). K0(Nn(m)) (m ^ 2) is additively generated

by the elements α0, otί and 2ε(i)βi (1 ^ i ^ 2 m - 1 ) , ^«ί/ /Λβ additive structure is

given by the following relations:

(3.5.1) 2 ι j α 0 = 0, 2 ι ; α : = 0,

(3.5.2) 11(05, = 0 (1 ^ i g JV = min { 2 " " 1 , n},

(3.5.3) 2e(ί)j8ι" = 0 (N <i^ 2m~1)9

where ε(i) is the integer in (1.4).

REMARK 3.6. δ{ is the linear combination of 2εU)βj (1-^j^i) such that

the coefficient of 2ε{i)βi is odd. Also, by the definition of β(s) in (2.8), β* is

the linear combination of the monomials

β(I) = β(h)-β(it) (0 g ix < .-. < it < m, |/ | ^ 0

such that the coefficient of β(I) with \I\ = i is equal to 1, where \1\ = 2h H + 2lt

for I = OΊ,...,/,).
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4. The Adams operations on KO(IΨ(nή)

Now, consider the complex representation rings R(S3), RiS1), R(Qr)

(r = 2m~1 g; 2) and the ring homomorphisms

(4.1) i*:R{S3) >R(Sι) and ; * : Λ ( S 3 ) • R(Qr)

induced by the natural inclusions S1 c S3 and Qr c S 3 .

The following lemmas are well known:

LEMMA 4.2 (cf. [11, Ch. 13, Th. 3.1]). R{S3) is the polynomial ring Z [ ζ ] ,

where ζ is given by the representation

) for Zl+jz2εS3.
z2 z )

LEMMA 4.3 (cf. [11, Ch. 13, Th. 3.1]). R{Sι) is the polynomial ring

Z[x, x " 1 ] , where x(z) = z (zeS1) and x~ι is the conjugation of x.

Define the elements ζ(s) in R(S3) inductively as follows:

(4.4) «0) = C - 2 , C(5) = C(s - I) 2 + 4ζ(s - 1) ( s ^ l ) .

Then, we have the following lemmas.

LEMMA 4.5. i*: R{S3)-+ RiS1) in (4.1) is monomorphic, and

ί*(ζ(s)) = x2s + x~2s -2 ( s^O).

PROOF. The first half follows from [11, Ch. 9, Th. 9.3]. We see easily

that ί*(Q = x + x'1, and so i*(ζ(0)) = x + x " 1 - 2. Hence, the second half

is shown by the induction on s. q.e.d.

By the definitions of β(s) in (2.8) and ζ(s) in (4.4), we see easily the

following

LEMMA 4.6. For the homomorphίsm j * : R(S3) -» R(Qr) in (4.1), we have

the equality

j*(ζ(s)) = β(s) (s ^ 0).

Let Ψι be the Adams operation on R(S3), and

(4.7) W = l(ψ2k+i - l)2β ( i )ζ(0) i: fceZ, i ^ 1]

be the subgroup of R(S3) generated by the elements in the bracket.

Then, we have the following lemmas.

LEMMA 4.8. (i) i*(W) is the subgroup of R(SX) generated by
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χ~2v) (k^O,v^ 0),

where Ψι is the Adams operation on R{Sγ).

(ii) W is the subgroup of R{Sι) generated by

2ε(2υ)(2 + ζ(υ))ζ(V) (0 ^ v < v, < ••• < vt, t ^ 1),

where ζ(V) = C(i>i)-ifa) /or K = (^,...,1;,).

PROOF, (i) Since C(0) = C - 2, we see that

2fc ^ " , / ^ 1].

By the naturality of the Adams operations i*Ψι = Ψιί* and Lemma 4.5, we

have

) = (Ψ2k+1
- 1)^) = (Ψ

Here, we set i - 2/ = 2 ^ (<j: odd). Then

On the other hand, x2v + x~2v is the linear combination of (x H- x" 1 ) 1 (i ^ 1),

and ί^-^x21' + x~2v) = Ψι(x2v + x~2v). Therefore, we have (i).

(ii) Let k ^ 0 and υ ^ 0. By the equality

we see easily that

i*(W) = [2£<2"> {(x2" + x - 2 " ) 2 k + 1 - 2 2 t(x 2" + x" 2 ") } : /c ̂  0, » ^ 0].

Since i*{ζ(v)) = x2" + x~2" — 2 and i* is monomorphic by Lemma 4.5,

W = [ 2 ε < 2 " ) { ( 2 + ζ { v ) ) 2 k + 1 - 2 2 t ( 2 + ζ ( υ ) ) } : k ^ 0 , v ^ 0 ] .

P u t

ζ(v, k) = (2 + ζ ( υ ) ) 2 k + 1 - 2 2 f c ( 2 + ζ(v)) ( k ^ 0 , v ^ 0 ) ,

ζ{v, k) = (2 + f W ) " - ^ ^ + 1) (k > 1, P ̂  0).

Then, we have
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ζ(υ9 k) = ζ(υ9 k) + 4ζ(υ, k - 1) (Jk ^ 1, v ^ 0) and ζ(υ9 0) = 0,

and so

W= [2ε{2v)(2 + ζ(v))2k + iζ(v + 1): k ^ 0, v ^ 0 ] .

Let fe ^ 0, t> ̂  0 and set

k + 1 = 2iι + ••• + 2/ ! (0 ^ ti < ••• < i,).

By the definition of ζ(υ) in (4.4),

(2 + CW) 2 f c + 1ί(t> + 1) = (2 + ζ(v))ζ(v + l)(C(ι; + 1) + 4)\

and C(ϋ + 1)(C(^ + 1) + 4)fc is the polynomial of degree k + 1 in ζ(v + 1). Thus,

we have the equality

(2 + C(ι;))2 k + 1C(ι; + 1) = (2 + C(i;)K(ι; + 1 + ij .ζiv + 1 + ίt) + -

+ 4fc(2 4- ζ(v))ζ(v + 1).

This equality implies (ii). q.e.d.

LEMMA 4.9. ;*(W0 w /Λ̂  subgroup of RO(Qr) (r = 2m~1 ^2) generated by

2«2v>{β{υ)β{V) - ( - 2Yβ{vt)} (0^v<Vi<-.<vtSm-2,t}il),

where β(V) = βiυj. .βiv,) for V=(υl9...,vt).

P R O O F . Since RO(Qr) is identified with the subring c(RO(Qr)) of

j*(W) c ^ O ( β r ) and ;*(W0 is generated by

2 ε ( 2 v ) (2 + β{v))β(V) (0 g i? < Vl < ••• < ι;f, t ^ 1)

by Lemmas 2.7, 4.6 and 4.8 (ii). On the other hand, by Lemma 2.10, β(s) = 0

(s ^ m) and

2 ' ( 2 v > P » . β + i = T(2V) {(2 + /ί(»))/ί(m - 1) + Σ / « O ( 2 + /»(»))/>(/)} = 0

hold in ΛO(β r ) , where P m > D + 1 = /f(o + 1 ) Π Γ = ? ( 2 + ^ ( f ) ) and / = (iu...,ij) runs

over {(i j , . . . ,^): ϋ < î  < ••• < i3 ^ m — 2) in Σ Hence, j * ( H O is generated by

2ε(2"»(2 + β(v))β(V) {0^v<v1<---<vt^m-2,t^l),

and also by

2«2">{β(v)β(V) - (- 2)'β(v,)} (0 g » < « , < • • • < » f ^ m - 2, ί ^ 1).

q.e.d.

Here, we notice the following
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REMARK 4.10. For j * : R(S3) -> R(Qr) in (4.1) W ξ: RO(β r) -» κb{N"(m))

in (3.1), we

+1 - l )2 ε ( I ψ: keZ, i ^ 1],

where Ψι is the Adams operation on KO(Nn(m)).

In fact, the above assertion follows from the facts that ξj*(ζ{0)1) = βι by

Lemmaj4.6, (2.8) and (3.2), and the Adams operations on R(S3), R(Qr), RO(Qr)

and K0(Nn(m)) are natural with respect to ;*, the complexification

c:RO(Qr)^R(Qr) and ξ.
Now, consider the J-homomorphism

J: K0(Nn(m)) — • J(Nn(m)) (m ^ 2),

where J is an epimorphism and

(4.11) K e r J = X f cL f c, Lk= f]ek
e(Ψk - l)K0(Nn(m))

by (1.1). Then, we have

LEMMA 4.12. Ker J = ξj*{W) holds, and Ket J is generated by

2ε{2v){β(v)β(V) - ( - 2fβ(vt)} {0^υ<Ό1<"'<υt^ m- 2, t ^ 1),

where β(V) = βivJ- -β(vt) for V=(υl9...,vt).

PROOF. By Lemma 4.9 and (3.2), it is sufficient to show that

Ker J = ξj*(W). Since K0(Nn(m)) is a^2-group by Theorem 3.5, Lk in (4.11)

is 0 if k = 0 mod 2. Also, the group K0(Nn(m)) is generated by αf (ί = 0, 1)

and 2e(i)j8i (1 ^ * ̂  2"1"1) by Theorem 3.5. We see easily that (Ψk - l)α£ = 0

(ί = 0, 1) if k = 1 mod 2 by [1, Th. 5.1], (2.4), Proposition 2.3, (3.2) and the

naturality of the Adams operations with respect to ξ in (3.1). Therefore, Ker J

is generated by the elements

J^ 1),

and so Ker J = ξj*{W) holds by Remark 4.10. q.e.d.

5. Some relations in

For any non-negative integers α, b, and s with (α, b) Φ (0, 0), consider the

integers ct (i ^ 0) satisfying

(5.1) (x + x " 1 - 2)a(x2s + x~2s - 2)b = c0 + Σ f e i ^ x ' + *" ' )

in the ring Z[x, x " 1 ] . Then, we have the following



J-groups of the quaternionic spherical space forms 377

LEMMA 5.2. (i) c, = Σ , " o ( - l ) l + β + i + 2' (*~°( 2 "

V ' ZjZ"° ' \2s(b-l) + a

(ii) co + 2 χ . , 1 c ί = 0,

Coco + 2 Σ ; * i < > ; = 0 ( b ^ l a n d s ^ v ^ O ) .

PROOF, (i) follows from the fact that ct is the coefficient of x

a + 2sb+i i n

xa + 2sb(x + x " 1 - 2) α (x 2 s + χ-2s - 2)fc = (x - l)2a(x2s - \ ) 2 b .

(ii) Set x = 1 (resp. x = — 1) in (5.1). Then the first (resp. second)

equality follows. Also, consider (5.1) modulo x2s — 1, and compair the

constant terms of both sides. Then, the last equality is easily seen. q.e.d.

Let υ ̂  0, and define the integers

(5.3) 0(α, b',s,v) = Σ y ί o C2»(2j+ D>

where cf are the integers in (5.1). Then, we have

LEMMA 5.4. θ(a, b;s,v) = 0 if b ^ 1 and s > v, or a + 2sb < 2\ and

PROOF. In case b ̂  1 and s > v9 by Lemma 5.2 (ii)

Also, in case a + 2sb < 2V, c2vj = 0 (jΓ ^ 1) by the definition of cf in

(5.1). Therefore, θ(a, b\ s, v) = 0 in these cases. The second equality follows

from the first two equalities of Lemma 5.2 (ii) and (5.3). q.e.d.

Consider the elements

(5.5) y0 = J(2j8(O)), yv = J{β(υ)) (v Z 1) in J(Nn(m)).

Then, we have the following

LEMMA 5.6. For any non-negative integers α, b and s with a + 2sb > 0,

the relation

= Σ : = " o 2 ε ( α + 2 s b ) - ε ( 2 t ; ) 0 ( α , fc; 5, v)yv

holds in J(Nn(m))9 where ε(i) is the integer in (1.4).

PROOF. First, we notice that the coefficient of γv in the right hand side

is an integer, since θ(a9 b; s, v) = 0 mod 2 if ε(a + 2sb) = 0 by Lemma 5.4.

Put e = 2ε{a + 2sb\ and consider the i*-image of eζ(O)aζ(s)b in Lemma

4.5. Then, we have
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i*(eζ(O)aζ(sf) = e(x + x " 1 - 2)a(x2s + x~2s - 2)b (by Lemma 4.5)

= e(co + Σi*1Φ
i + χ-t)) (by (5.1))

= eΣi±i ci(χi + x~l ~ 2) (by Lemma 5.2 (ii))

x - 2 ^ ' + 1 ) - 2)

2" " 2) mod i (W)

(by Lemma 4.8 (i))

= i * ( Σ r ί 0 ^ ( ^ & ; s> ϋ)CW) (fey ( 5 3 ) a n d L e m m a 4 5 )

Since i* is monomorphic, we see that

(*) eζ(O)aζ(s)b = Σv±o eθ(a> b ^ s> "KM m o d w i n ROiQr)-

Therefore, the desired relation follows from (3.2), Lemmas 4.6, 4.12 and (5.5)

by considering the ξj*-image of (*). q.e.d.

By the above results, we have the following

PROPOSITION 5.7. J(Nn(m)) is generated by

Joίi (i = 0, 1) and yυ (0 g v < m),

where Jat is the J-image of αf in (3.2) and yv is the element of

(5.5). Furthermore, J: K0(Nn(2)) ^ J(Nn(2)), and the relations between these

generators for m ^ 3 are given by the J-images

(5.7.1) 2 n + 2 - ε ( π ) J α 0 = 0, 2w + 2 - ε ( π ) J α 1 = 0,

(5.7.2) u(ί)J(δd = 0 (1 Siύ N = min{2m-\n}),

(5.7.3) J(2 ε ( ί ) ^) = 0 (N < ί g 2 m " x )

o/ /Ae relations (3.5.1-3) IΛ K0(Nn{m)). Here, the left hand sides of (5.7.1-3)

c<2« be written by Ja0, Jcc1 and yv (0 ^ v < m) by using Lemma 4.6 and the

definition of δίί in (3.4).

PROOF. By Theorem 3.5, K0(Nn(m)) is an abelian group generated by

the elements

α 0, and 2ε{i)βi

with the relations (3.5.1-3). Furthermore, by Remark 3.6, the subgroup

generated by 2ε(i)βi (1 ^ i ^ 2m~1) coinsides with the one generated by

2εi2v)β(v)β(V) (0^v<v1<"'<vt<m-lt^l) and

2εi2v)β(v) (0Sv<m);
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and it contains KerJ, which is generated by

2ε{2v){β(v)β(V) - ( - 2Yβ(vt)} (0^v<v1<"'<vt<m-lt^l)

and is 0 if m = 2 by Lemma 4.12, where β(V) = jίfaJ jSfa) for V= (vί9...9υt).

Thus, we see the proposition for J(Nn(m)) = KO(Nn(m))/Ker J by (5.5),

Remark 3.6 and Lemma 5.6. q.e.d.

Remark 5.8. Especialy for J(N°(m)), the relations (5.7.1-3) are written as

follows:

2 2 J α 0 = 0, 2 2 J α 1 = 0 and γv = 0 (0 ^ υ < m).

In fact, the first two relations are the ones of (5.7.1), and γv = 0 (0 ^ υ < m)

are equivalent to (5.7.3) by the definitions of γv in (5.5) and β(v).

We notice that there hold the relations

(5.9) 2m~s-x +a*+ε<">ys = 0 (1 ^ s < m) in J(Nn(m)),

where as is the integer in (3.4). In fact, (5.9) is the J-images of the relations

i Q (I ^ s < m) in K0(Nn(m))

by [10, Lemmas 5.1 and 8.1]. In §7, we use these relations to represent the

left hand sides of (5.7.1-3) by J α 0 , Joc1 and γv (0 ^ υ < m).

6. Some preliminary lemmas for binomial coefficients

In this section, we prepare some properties about the integers θ(a9 b; s, v)

in (5.3).

Let d > 0 and v ^ 0, and define the integers

(6.1)

Then, we have

LEMMA 6.3. θ(d, ί;v,v) = {- \)dX{d, v), θ(d, 0 ; s, v) = ( - l ) d + 2 "Y(d, υ).

PROOF. By (5.3) and Lemma 5.2 (i), we see that

Id

+ 2v+1 + 2v+1j
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2d \ J 2d \ / 2d \ J 2d \
+ 1+2v+1j) \d-2v(2j+2))ΆΏ {d + 2v + 2°+1jJ \d-2v(2j+ί))'

the right hand side of the above equality is equal to

(-

Thus, we have the first equality by (6.1). For the integer θ(d, 0; s, ι;), we see

also that

Id

by (5.3) and Lemma 5.2 (i). Here, we notice that

2d

" J + 2"{2j+\)J ' \d-ί+2"(2j

2ά- 1

Therefore, the second equality follows. q.e.d.

From now on, for any integer n, we denote by

v(n) = v2(n) and μ(n) = μ2{ή)

the exponent of 2 in the prime power decomposition of n and the number of

terms in the dyadic expansion of n9 respectively. Also, we regard μ(0) = 0.

Now, we state some properties of the integers X(d, v).

LEMMA 6.4 (cf. [8, Lemmas 4.9 and 4.15]). Put

X(d, v) = 2v{d>v)ξ(d, v) (ξ(d9 υ): odd integer)

for the integer X(d, v) (d > 0, v ̂  0) in (6.1). Then,

( i )

(ϋ)

(iii)

v(ί/, 0)

v(d, v)

ξ(2s~1

mod 8

= 2d,
= [d/21

,v) = 2

if s^

ς(d, 0)

J ~l~ i
/ 9s

/

I 2S~
^ s, β « J ξ ( 2 s " 1 , s) = 1 I / S = 1 , Ξ 3
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(iv) ξ(2s-\s-l) = 2-2\(*_ i ) - 2 } ^ 1 mod* for s ^2.

LEMMA 6.5 (cf. [8, Lemma 4.16]). Let 0 < d < 2s. Then

In the rest of this section, we shall study the divisibility of the integer

Y{d, v) in (6.2) by the powers of 2.

Let d > 0 and υ ^ 0. For the integers defined by

we have the following

LEMMA 6.8. (i) X(d, v) + Ϋ(d, v) = 2 Ϋ(d, v + 1), X(d9 v) = X(d9 v) (v ^ 1),

X{d, 0) = 0, X(d9 1) = 2d.

(ii) ?{d, 0) = 2 2 d , Ϋ{d9 1) = 2ld~\ Ϋ{d9 2) = 2 d " 1 ( l + 2d~ί).

PROOF, (i) The first three equalities are trivial. The last equality is

easily seen by the following equality:

2d \ / 2d
1 + 2j J jeZ \d + 2j -

(ii) The first equality is obvious. The last two equalities are the

immediate consequences of (i). q.e.d.

LEMMA 6.9. Let v ^ 0 and d ^ 2v + ί . Then

2υ] + μ(d — 2v[dl2v~\) < [d/2v~1~\ + μ(d — 2v~ι

PROOF. The assertion is trivial in case v = 0. Suppose v^.1 and put

d = 2h + ••• + 2ft (ii > ••• > y . Then, μ(d - 2ϋ[rf/2y]) = μ(d - 2 y " 1 [d/2 i ; - 1 ] )

and [d/2v-12 = 2[d/2v'] hold if \.φv-\ for any 7. On the other hand,

μ(d - 2l7[ίi/2ι;]) = μ(d - 2 t 7" 1[i/2 1 7 '" 1]) + 1 and [d/2"- 1 ] = 2[d/2υ] + 1 hold if

iy = v — 1 for some j . Therefore, we obtain the desired inequality. q.e.d.

LEMMA 6.10. Let d > 0 and v ^ 0.

v(F(i, ϋ + 1)) = [d/21 7-1] + μ(d

(d, v) = 0 if d <2V, = 1 if d ^ 2V.
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fld\
PROOF. If d < 2V, then Y(d9 v + 1) = , and so the desired equality

(2d\ ^ d J

follows from the equality v2( ) = μ(d) given in [8, Lemma 4.8]. Hence,
\ d J

we shall prove the equality

(•)„ v(?(d, υ+l)) = [d/217-1] + μ(d - 2v-1ld/2v~1]) - 1 for d ^ 2V

by the induction on v.

If y = 0, (*)0 holds by Lemma 6.8 (ii). Thus, we assume that (*)„ holds,

and prove (*)υ+1. Suppose d^2v+1. Then, v(?(d, i? + 1)) = [ d / 2 ^ 1 ] +

μ(d — 2"""1[d/2w"1]) — 1 by the inductive assumption, and v(X(d,v+l)) =

v{X(d, υ + l)) = [d/2v] + μ(d - 2v[dj2v]) by Lemmas 6.8 (i) and 6.4 (ii). On

the other hand, by Lemma 6.8 (i), Ϋ(d9 v + 2) = {Ϋ(d9 v + 1) + j?(i, v + l)}/2

holds. Hence, we see that

v(?(d, i; + 2)) = min {v(Ϋ(d, v + 1)), v(X(d, v + 1))}— 1

by the above argument and Lemma 6.9. Thus, (*)w + 1 holds. q.e.d.

LEMMA 6.11. Let d>0 and v^O. Then, we have the following:

Y(d,v) = 0 (d<2v);

Y(d, 0) = 22d~2 ( d ^ l ) , Y(d9 l) = 2d-2(2d~1 - 1) ( d ^ 2 ) ;

v(y(d, i;)) = μ/2 t ; - 1 ] + μ(d - 2 t ; " 1 [d/2 t ; - 1 ]) - 2 (d ^ 2y).

PROOF. By (6.7),

holds, and

2rf \ / 2d-l

2"(2/ + 1)/ " \d + 2y(2; + 1)/ + \d - 1 + 2v(2j

2 d - l \ / 2 d - l

) [
Therefore, we see easily that

(*) ?(d, υ)

by the definition of Y(d9 v) in (6.2).
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The first equality follows from Lemmas 5.4 and 6.3. The second and the

third equalities are the immediate consequences of Lemma 6.8 (ii) and (*) above.

Since the last equality for v = 0 follows from the second one, we prove

the last equality under the assumption d ^ 2V (v ^ 1). By Lemma 6.10, we

have

v(F(d, v)) = [rf/2^2] + μ(d - 2v-2ld/T-2l) - 1,

v(F(d, v + 1)) = [d/2v~1'] + μ(d - 2 y - 1

On the other hand, we see that v(Y(d, v)) > v(Y(d, v + 1)) by Lemma

6.9. Therefore, by (*) above, we have

v(Y(d, v)) = v(F(d, v + 1)) - 1,

which is the desired equality. q.e.d.

7. Proof of Theorem 1.7 (i), (ii) and (iii) (a)

Throughout this section, we assume that m ^ 3. By using Lemma 5.6

and the results obtained in the previous sections, J(2ε{i)βι) in (5.7.3) and u(ϊ) J(δ^

in (5.7.2) can be represented by yv (0 ^ v S m — 1) as follows:

LEMMA 7.1. // 2* ^ ί < 2ί + 1 , then

(- l)i + 1J{2ε(i)βi) = 2 2 ι " 3 + ε ( I ) y 0 - Σ U i 2 ε ( ° y ( ^ v)yv

 in J{Nn(m)),

where Y(U v) is the integer given in (1.6) or (6.2).

PROOF. By Lemmas 5.6, 5.4 and 6.3, we see that

j(2ε{i)βi) = Σt

v=o2εii)~εi2v)θ(i> °; 5> vhv

= (- l) ί + 12β ( i >~13^(i, 0)y0 + ( - lYΣ'^^Yii, v)yv.

Here, Y(i9 0) = 22i~2 by Lemma 6.11. Thus, we have the desired relation.

q.e.d.

In the following lemma, we use the relations

(7.2) 2

m-s-1+asys = 0 (1 ^ s < m) (cf. (5.9))

in J(Nn(m)) for even n.

LEMMA 7.3. Let 2s + d ^ N = min {2W"1, n}9 0<d<2\ l^s^m-2

and 0 ^ v ^ 5. 7%e«,
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in J(Nn(m)) for even n, where a(ϊ) is the integer given in (3.4).

P R O O F . By the assumption 2s 4- d ^ n and the definitions of as+1,bs+ι

and a(ί) in (3.4), we see easily that as+1 ^ 1 if 2d^bs+1 and α s + 1 ^ 2

otherwise. Thus, we have

Lemma 5.6 implies that the left hand side of the desired relation is equal to

1;Ό9 u)yu

d, 1; Ό, u)yu (by Lemma 5.4).

Here, we notice that

(7.4) av = V-'a, + [bt/2*] ^ 2l~vat + I1'* - 1 (t ^ v)

holds by the definitions of at and bt. Then, if w > ι>, we have

m - 5 - 4 + 2 s + 1 " t ; α ( O > m - s - 3 + au + 2 S + 1 " " ^ m - u - 1 + au

by (*) and (7.4), and so 2m~s-* + 2s+1~Vaii)γu = 0 (u > v) by (7.2). On the other

hand, 0(d, l;v,v) = (— \)dX{d, υ) by Lemma 6.3. Thus, we have the lemma.

q.e.d.

Now, consider the integers dt and et satisfying

(X + x - i _ 2) d - i (x 2 + χ - 2

= do + Σi±idi(χi + x~l) (0<d<2s),

(x + x " 1 - 2) d" 2(x 4 + x " 4 - 2)Π*Zί (*2t + *~2t)
( 7 ' 5 ' 2 = e0 + Σ ^ i **(*' + ^"ι") ( 1 < d < 2s)

in the ring Z[x, x " 1 ] . Then, we see easily that d0 = 0 = e0 and d2vj = 0 = e2^-

if i; ^ s + 1 and 7 ^ 1, since left hand sides of (7.5.1-2) are equal to

(x - l ) 2 ' - 1 ^ + l )(χ 2 s + 1 - l)/χ2s+<* and (x - l ) 2 d ~ 4 (x 4 - l )(x 2 s + 1 - l )/x 2 s + d ,

respectively. Also, consider (7.5.1-2) modulo x 2 υ — 1 in case v < s + 1, and

compair the constant terms of both sides. Then, we see that

do + 2Σj±id2vj = 0 = e0 + 2ΣJ^1e2VJ.

Therefore, we have

(7.6) do = 0 = eo and Σ ^ o ^ = 0 = Σ ^ o ^ (v^O).

By using (7.6), we can prove the following lemma by the similar way to
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the proof of Lemma 5.6.

LEMMA 7.7. In J(AΓw(m)), the following relations hold'.

J(2εid)βd-1β(l)Y\s

tZ
1

0(2 + β(t)) = 0 for 0 < d < 2s,

J{2ε{d)βd-2β{2)YYtZ\ (2 + β(ή) = 0 for 1 < d < 2s.

PROOF. Since the second relation can be proved in the same manner as

the proof of the first one, we shall prove only the first relation.

Consider the ϊ*-mage of 2 ε ( d ) C(0) d " 1 ζ(l)Π'Zo( 2 + C(0) i n Lemma 4.5.
Then, this is equal to

= ?wΣuιdti.χ' + x~t) (by (7.6))

^ ^ 2 υ + x~2v) mod i*(W) (by Lemma 4.8(i)).

H e r e ' Σj±od2v(2j+i) = Σj*od2»j-Σj±od2» + ij = Q by (7.6). Hence, we see
that

(*) 2«Π(θγ-H(l)Π't = l(2 + W)) = o™°dw i n

since ί* is monomorphic by Lemma 4.5. Therefore, the desired relation follows

from (3.2), Lemmas 4.6 and 4.12 by considering the £j*-image of (*), where

ξ and j * are the homomorphisms in (3.1) and (4.1), respectively. q.e.d.

Now, we are ready to prove Theorem 1.7 (i), (ii) and (Hi)(a).

PROOF OF THEOREM 1.7(i), (ii) AND (iii)(a). Based on Proposition 5.7, we

complete the proof of Theorem 1.7 (i), (ii) and (in) (a) by combining (3.4), (7.2),

Lemmas 7.1, 7.3, 7.7 and Remark 5.8. q.e.d.

8. Proof of Theorem 1.8

In this section, we assume that m ̂  3 and n is a positive even integer

with n ^ 4 unless otherwise stated.

Let / be an integer such that

(8.1) n ^ 2ι and 2 g / g m - 1.

Then, the following relations hold in 7{Nn(m)) by Theorem 1.7 (iii)(a) and (7.4):

(8.2) 2n + 2Joc0 = 0, 2M + 2 J α 1 = 0 ,

(8.3) 2

m-s-1+a°-εi2s)ys = 0 ( 0 ^ 5 < m),
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\® \) / , —Γ| 2* V Si y __ Ĵ ^ ^ S 5^ / ) ,

/o c 1 \ V^s ί i \2S~ v^m — s — 4- + av ~[bs+ ι / 2V] + 2s + * ~ v + ε(d) — ε(2v) v(A .Λ,. A

( l g s ^ ί - l9θ<2dg>bs+ί)9

( l g s g / - 1, fos+1<2d<2s+1),

where Z(d, ι;) = 2v(d'y^(J, t;) is the integer in Lemma 6.4.

Here, we notice the following

REMARK 8.6. In case n = 2m~2a (a ^ 2), the relations (1.7.1-5) in Theorem

1.7(iii)(a) are equivalent to (8.2-4) and (8.5.2) for I = m — 1 above.

In fact, n ^ 2m~1 and bs+1 = 0 (1 ^ s ^ m - 2) hold, and so the above

remark follows.

Now, we shall reduce (8.3-4) and (8.5.2) to more simple ones under some

condition in the following lemmas.

LEMMA 8.7. In addition to (8.1), assume bt+ι = 0 for some integer t with

1 ^ t ^ / - 1. Then, (8.3) and (8.5.2) for s = t imply

(8.7.1) 2 w - 3 + * 1 y 1 = ± 2 w " 3 + α o y o // ί = 1,

(8.7.2) 2 m ~ ί ~ 3 + fltyf + 2 m ~ ί " 2 + f l t " 1 7 ί _ 1 + 2 m ~ ί + f l t - 2 ~ ε ( 2 t ~ 2 ) y ί _ 2 = 0 if t^2.

P R O O F . Let t = 1. Then, the relation (8.7.1) follows from (8.5.2) for

s = 1 = d and (8.3), since X ( l , 1) = 2 and X ( l , 0) = 2 2 by Lemma 6.4.

Let t ^ 2, and consider (8.5.2) for s = t and d = 2 ί ~ 1 :

(*) Σ U o ( ~ ^ ) 2 t υ 2 m r Ar+av ε ( 2 υ ) + v ( 2 t l ; ) ξ(2 ί 1,ϋ)y,, = 0.

Here, ξ(2t~1, v) is odd and

— 1 m o d 4 if v = ί,

1 m o d 4 if i; = ί — 1,

by Lemma 6.4. Thus, (8.3) and (*) imply (8.7.2), since 2k > k + 3 if k ^ 3.

q.e.d.

LEMMA 8.8. Under the same assumption as Lemma 8.7, (8.3) and (8.5.2)

for 1 ^ s ^ ί imply

(8.8.1) 2 m ~ i " 2 + f l l 7 1 = 2m-t-2+aoyo if t ^ 1,

(8.8.2) 2

m - ί - 3 + α ι 7 t ; = 2 w - ί - 2 + α - 1 y , - ! (2 ^ i; ^ ί) if t^2.

P R O O F . The assumption bt+1 = 0 implies b s + 1 = 0 (1 ^ s ^ t). Therefore,
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by the above lemma, there hold the relations

(8.7.1)' 2m~3+aίy1 = ± 2 m - 3 + α o y 0 ,

(8.7.2)' 2 m - s " 3 + ^ 7 s + 2m-s~2+a°-ιγs_1 + 2m-s+as-2-ε{2s~2)γs_2 = 0

(1 < s ^ t).

Thus, (8.8.1) for ί = 1 is equal to (8.7.1)'.

Let t = 2. Then, (8.8.2) for v = t follows easily from (8.7.1-2)'. Consider

(8.5.2) for 5 = 2 and d = 1. Then

since X(l, 2) = 2 = X(l.l) and X(l, 0) = 2 2 by Lemma 6.4. Thus, (8.8.1) for

t = 2 is easily seen from (8.8.2) for t = 2 and the above relation. Therefore,

(8.8.1-2) hold for t = 2.

Now, let t ^ 3, and assume inductively that (8.8.1-2) hold for t - 1 ( ^ 2),

i.e., that

(8.8.1)' 2 m " ί - 1 + α i y 1 = 2 m - ί - 1 + Λ o y o ,

(8.8.2)' 2 m - ί - 2 + « t χ = 2 l"- i-1 + e"-iy l,_1 (2 S v < ί)

Then, (8.8.2) for v = t follows easily from (8.7.2)' for s = ί, 2 x (8.8.2)' for

17 = ί — 1 and (8.3) for s = t — 1. Let 2 ^k < t and assume inductively that

(8.8.2) holds for any v with k < v ^ ί. Consider the relation

ΣU o ( " i r - ^ ^ - ^ - ^ + ̂ ξid, v)yv = 0

in (8.5.2) for s = t and even integer d with 2 f e " ~ 1 ^ d < 2 / c . Then, by (6.1),

Lemma 6.4 and the condition 2k~ι g d < 2\ we see that v(d, ι;) = v(d, k) and

ξ(d, v) = ξ(d, k) for k ^ v ^ ί, since X(d, i?) = = X(d9 k). Therefore,
\ d )

(a) Σl=fc *n (*) i s e c l u a l to — 2 m ~ ί " 4 + ί I k + v(d'/c)ξ(d, k)γk

by the inductive assumption (8.8.2) for k < v ^ t. Furthermore, if υ < /c, then

v(d, i?) ^ 2*"17 (^ /c - v + 1) by Lemma 6.4, and hence

I f 'ί _1_ h- 1) _1_ ft \\ 1 ^ ii ^ * î

i - ί - 1 + α0 if i; = 0.
Therefore,

(b) Σί=o ^n (*) ^s e Q u a l t o

2̂ t; = o^ sl«5 y)7k-i (by (o.0.1-2))

= 2 m " ί ~ 3 + α k - 1 + v ( d k)^(d, fe)^-! (by Lemma 6.5).
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Thus, (*) is written as

for any even integer d with 2 * ~ 1 ^ d < 2 \ since ξ(d, k) is odd. (**) for

d = 2k~1 is (8.8.2) for v = k, since v(2k~\ k) = 1 by Lemma 6.4 (ii). Therefore,

(8.8.2) holds for any υ with 1 g i; <* ί by the induction on v. Consider (8.5.2)

for s = t and d = 1. Then, we have

2»-'-2+«o),o + Σ U i ( - 1 ) 2 ' " 1 ^ - ' - 2 - ^ = o,

since X(l, ι;) = 2 2 if ι? = 0, = 2 if ι? ̂  1 by Lemma 6.4. On the other hand,

we have

by (8.8.2) for t. Therefore, (8.8.1) holds for t. Hence, (8.8.1-2) are shown by

the induction on t. q.e.d.

LEMMA 8.9. In addition to (8.1), assume bx = 0. Then, (8.3) and (8.4) for

s = I imply

PROOF. By (8.4) for s = I, we have

Σ l jm-l-3+av + 2ι-υ-ε(2v)v _ r\
υ = 0A ϊv — KJ

If 0 g v ^ I - 2,

m - / - 3 + av + 2ι~v - ε(2y) ^ m - v - 1 + av - ε(2v),

since 2 /" t ; ^ / - i; + 2. Therefore, we have the desired result by (8.3).

q.e.d.

LEMMA 8.10. In addition to (8.1), assume bt = 0. Then, (8.3), (8.4) and

(8.5.2) are equivalent to (8.3),

(8.10.1) 2m-ι-1+aιy1 = 2m-ι-1+aoy0,

(8.10.2) 2m-ι-2+a»yv = 2m-ι-1+a»-ιyv-1 {2<v< I).

PROOF. By Lemma 8.8 for t = I - 1 and Lemma 8.9, it is sufficient to

show that (8.3) and (8.10.1-2) imply (8.4) and (8.5.2).

Let 2 ^ s ^ / and assume that (8.3) and (8.10.1-2). Since bs = 0 and

2S~V ^ 5 - v + 2 (0 ^ v ^ 5 - 2), we have

m - s - 3 + a v - [bs/2v-] + 2 S ~ V - ε(2v) ^ m - l - v + a v - ε(2v)
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Therefore, by (8.3), the left hand side of (8.4) is equal to

2 m- e -2+a. y e + 2»-»-i+«.-i 7 j_ 1 =z2

m-s-1+a°ys = 0 (by (8.10.2) and (8.3)).

Hence, (8.4) is shown.

Let l ^ s ^ ί - 1 and 2k~1^d<2k, and assume (8.3) and (8.10.1-2).

Since bs+1 = 0 , the left hand side of (8.5.2) is equal to

W Σ : = O ( ~ l)2s-v2>"-*-*+°»+^-^ + ^ξ(d, υ)γv.

[2d\
H e r e , w e s e e t h a t X(d, v) = [ ) = X(d, k) (k^v^s) b y (6.1) a n d t h e

V d )
condition 2k~1^d<2\ and so v(d, v) = v(d, k) ^ 1, ξ{d9 v) = ξ{d, k) for

k ^ v S s by L e m m a 6.4. Therefore, ] ζ * = / c in (*) is equal to

by (8.10.2). If v < k, v{d, v) ^ 2k~v ^k-υ+l by L e m m a 6.4, and so

m - s - 4 + aυ + ε{d) - ε(2v) + v(d, ι;)

' m - s - 3 + (k - ϋ) + av (1 ^ v < /c),

m — s — 2 + a0 (v = 0).

Thus, by (8.10.1-2), £ £ l £ in (*) is equal to

γk-1 2m-s-4. + ak-i-(k-l-v) + ε(d)-ε(2*-ί) + v(d,v)ξr(i y \

fci ) 7 f c _ i ( b y L e m m a 6 > 5 ) .

Therefore, (*) = 0 follows from (8.10.1-2), since d = 1 if k = 1, v(J, /c) ̂  1 and

(̂ (rf, k) is odd. Hence, (8.5.2) is shown. q.e.d.

PROOF OF THEOREM 1.8. Let n = 2m~2a (m ^ 3, a Ξ> 2). Then, fom_1 = 0.

Thus, (8.2-4) and (8.5.2) for / = m - 1 are equivalent to (8.2), (8.3) and (8.10.1-2)

for / = m - 1 by Lemma 8.10. Furthermore, (8.3) for s = 0 and (8.10.1-2) for

/ = m - 1 are equivalent to (8.3) and (8.10.1-2) for / = m - 1. Therefore,

Theorem 1.8 is proved by Theorem 1.7 and Remark 8.6. q.e.d.

Finally, we notice the following

LEMMA 8.11. If n = 2m~2 (m ^ 3), there hold the following relations in

J(Nn(m)):

2«>yi = 2a°qoyo, 2a^ιyυ = 2 ^ - ^ _ 1 y t ; _ 1 (2 ^ i; ^ m - 1)

/or some odd integer qv (0 ^ i; ^ m — 2).

PROOF. By (1.7.5) in Theorem 1.7(iii)(a), the relation
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holds in J(Nn(m)), where 2X ^ i < 2t+1. Let v'(ί, v) and ξ'(ί, υ) be the integers

such that

Y(U v) = r'«-v)ξ'(i, v) (ξ'(i, υ): odd integer)

for i ^ 2V.

The relation (*) for ί = 2m~1 is equal to

?,-i = 2 2 w " 3

7 o - Σ::Ϊ22m""2ξ'(U v)yυ9

since Y(i, m - 1) = 1 by (6.2), and v'(ί, ϋ) = 2 m - ϋ - 2 by Lemma 6.11. Also,

2m-v _ 2 ^ m - \ - v + av (0^v^m-3) holds. Thus, by (1.7.2), we have

ym_! = - 2 2yw_ 2, which is the desired relation for υ = m — A.

Consider the case ί = 2m~2 + 2k (0 ^ fe ^ m - 3) in (*). Since,

v ' ί i ι;) = ί α ϋ 1 i f f c < ϋ g m 2 ,

by Lemma 6.11, (*) is equal to

- Ym~ 2 2av~1+ε(ί)£Ίί v)y

Moreover, let k = 0 in (**). Then, we have

(***) 2«°yo = Σ : : 1

2 2 ^ ' α Φ . ,

and so the desired relation 2aiy1 = 2aoqoyo for m = 3 is easily seen, since

J(Nn(m)) is a 2-group. If m ^ 4, we have

by Lemma 8.10 for I = m — 2 and Theorem 1.7(in)(a). Hence, the desired

first relation for m ^ 4 follows from (***). Let m ^ 4 and 1 ^ / c ^ m — 3 in

(**). Then, by Lemma 8.10 for I = m - 2 and Theorem 1.7(iii)(a),

hold. Therefore, by (**), we have

where {'(i, 0) = 1. Here, Σ " = o ( - l ) 2 υ + 1 2 2 k + 1 " t ; - ( f c + 2 - t ; ) ^ ( i , ι;) is an odd

integer, and so the relation
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is obtained for some odd integers pv. The desired second relation for

v — m — 2 is obtained from (**)m_3. Now, we shall prove the desired second

relations for 2 g v ^ m — 1 by the downward induction on v. Let 1 ^ k ^

m — 3 and assume that

holds for any t; with k -\- 2 ^v ^m — 2 for some odd integer ^-x . Then,

by (**)k and the inductive assumption, it is easily seen that the relation

holds for some odd integer qk9 since J(Nn(m)) is a 2-group. Thus, the proof

is completed. q.e.d.

9. The induced homomorphism on the /-groups of the inclusion Nnl(m)cz

Nn(m)

Let Nk be the fc-skeleton of the CW-complex Nn(m)(m ^ 2) in [6, Lemma

2.1], a n d ; : Nk c Nn(m) be the inclusion. For an element aeKO(Nn(m)) (resp.

J(Nn(m))), we denote its j*-image j*(a)eKO(Nk) (resp. J(iVfc)) by the same

letter a.

Consider the inclusion

(9.1) j k a : N 8 k + ι~1 cz N 8 k + ι ( O ^ l ύ 7 ) .

8k + ι)^ KO(N8k + ι-Then, for the induced homomorphism j k / : KO(N8k + ι)^ KO(N

we have

PROPOSITION 9.2 (cf. [10, §4]). j k t l * is isomorphic if / = 7, 6, 5 or 3,

epimorphic otherwise. Furthermore,

Z2rn+ί(2β2k + 1} if 1 = 4, /c^O,

Z 2 < 2 α o i β
2 f c > ® Z 2 < 2 α l i ?

2
> =

if l = 0,k>0.

LEMMA 9.4. Le/ n ^ 0 be even. Then, the following relations hold:

2aoβ
n = 2π + 1 α 0 , 2oc^n = 2n + 1oc1 in K0{N*n + 2),

ocoβ
n = 2"α0, OLiβ" = 2"α1 ± 2n + m-3β(l) in K0(N*n+1),

where the term ± 2n+m~3β(l) in the last relation does not appear if m = 2.
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PROOF. By Propositions 2.5 and 2.7, αoβ* = 2*α0 holds in RO(Qr)

(r = 2m~1) for any integer i ^ 0, and so the first and the third relations also

hold by (3.2). In RO(Qr) (r = 2 m " 1 ) and also in K0(Nn{m)), the relation

a,βn = (βn - 2")Σs

mΓ1

2i9(5)ΠΓ="s

2

+i(2 + β(t)) + 2"αx

holds by Propositions 2.5,2.7, Lemma 2.9 (ii) and (3.2). Hence, the second

and the last relations are obtained. Let m ^ 3. Then, the relations βnβ(s) = 0

(5^> 1), 2n + i-2J(rn-ί) = 0 (2^ί^m-2) and 2n + m-2β(l) = 0 hold in

KO(Nn(m)) = K0(N4n + 3) (cf. [10, Lemma 8.1]). Therefore,

holds in K0(N4n + 2) and also in £θ(N4n + 1). Thus, we complete the proof.

q.e.d.

To study the induced homomorphism j k Λ * : J(NSk + ι) -• J(N8k + ι~i), we use

the following

(9.5) ([2,11,(3.12)] and [17]) Let X-^Y^Z be a cofiberίng of finite

connected CW-complexes and assume that the upper sequence in the commutative

diagram

K0(Z) -^U K0{Y) -^-> K0(X) • 0

J{Z) -^U 7(Y) --̂ U j(x) — . o

is exact. Then the lower sequence is also exact.

LEMMA 9.6. Let Ψ3 be the Adams operation on K0(Nk). Then

(Ψ3 - l)(2β(ί)j9£) = (32 ί - l)2 ε ( Iψ + ΣT=i( lp2ί-j2εiί)βi+j (i ^ 1),

and 3 2 i - l Ξ 2V + 3 mod 2V + 4 , where v = v2(i).

PROOF. For the monomorphism i*: R(S3) -> R(SX) in Lemma 4.5, we have

i*Ψ3(ζ(0)) = Ψ3i*(ζ(0)) = Ψ3(x + x'1 -2) = x3 + x~3 -2

= (x + x'1 - 2)(x + x " 1 + I) 2 = i*(£(0)(C(0) + 3)2).

Therefore, we have

^3(C(0)) = C(0)(C(0) + 3)2 in R(S3).

Also, by (3.2), Lemma 4.6 and the naturality of the Adams operation Ψ3, we
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have

Ψ3(2ε{i)βί) = 2β(i)j8i(j8 + 3)2 ί

in KO(Nn(m)), and so in KO(Nk) (4n + 3 = k). Thus, we have the first

half. The second half is easily shown by the induction on v (cf. [8, Lemma

7.8]). q.e.d.

LEMMA 9.7. Let m ^ 3 and k = 0. Then, the relation

2m-3 + 2ky^ =2m-3+4kyo

in J(N8k+1).

PROOF. It is sufficient to show that

holds in J(N8k + 3) = J(N2k(m)). Since y0 = yx = 0 if k = 0 by Remark 5.8,

we assume that k > 0. In case k = 1, we have 2 4y 0 = 2 2 3γx by (1.7.5) in

Theorem 1.7(iii)(a) and 7(3, 1) = 6 in (6.2). Thus, by (8.3), the desired relation

for k = 1 is obtained. In case k> 1, the desired relation is (8.10.1) for / = 2.

q.e.d.

By using the above results and Theorem 1.8, we see the following

proposition, where (ii) is Theorem 1.11:

PROPOSITION 9.8. (i) The induced homomorphism

jk/:J(N8k + ι)—+J(N8k + ι-ί) 0 M : iV 8 ^ 1 " 1 c N8k + ι, m = 2)

is isomorphic if 1 = 1,6, 5 or 3, epimorphic otherwise, and

Z / jcjo2k+l\\ if 1 — A k > 0

(9.9) K e r ; M * - ^ ^

where
appear

(ϋ)

h-

if
= min {m
m =

φ(n,

= 2.

V"(m)

m) =

Z 2 < 2 2 * + 1 J α 0 > Θ Z 2 < 2 2 ' I + 1 J α 1 > if 1 = 2, k^O,

Z2(22kJa0y®Z2(22kJa1 + ω} if l=l,k = 0,

Z2h<J(β2k)) if 1 = 0, k>0,

., v(4/c) + 2}, and the term ω = ± 2 m ~ 3 + 4 k y 0 does not

Σ7=o (s + 2 ) [ K + ^ 2 ] + (m + l)α m + 1 + 4ε(n + 1),

#G is the order of the group G, as and ε(i) are the integers in (1.4).

PROOF. Consider (9.5) for the cofibering N1'"x a N^N^N1'1 (i = 8k + /).

Then, the first half of (i) is obvious by the first half of Proposition 9.2.
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Furthermore, by (9.3), Lemmas 9.4 and 9.7, it is easy to see that Ker j M *

is generated by the generators of the group given in the right hand side of (9.9).

Now, we can show that

if / = 4, k ^ 0,

(*) #Ker7 M * ^ } 4 if / = 2 or 1, k ^ 0,

( if / = 0, k > 0.

In fact, (*) for the second case is easily seen by (9.3) and (9.5) for the cofibering

N1-1 cN^Nt/N*-1 (i = 8fc + Z). Now, Ker;fc,4* is the cyclic group

generated by J(2β2k + ί). On the other hand, by Lemma 9.6, the first half

of Proposition 9.2 and (3.5.3), (Ψ3 - l)(2β2k + 1) = (34k + 2 - l)(2β2k + 1) =

23a(2β2k+1) (a: odd) in KO(JV8k + 4 ) . Thus, 23J(2β2k+1) = 0 in J(ΛΓ8/c + 4) by

(1.1), since ./(iV1) is a 2-group by Theorem 3.5 and (1.1), and so (*) for the

first case is valid. Finally, Keryfc 0 * is the cyclic group generated by

J(β2k). In the similar way tojhe case / = 4 above, {Ψ3 - l)(β2k) = (34* - l)β2k

= 2v(4k) + 2bβ2k (b: odd) in K0(N8k). Therefore, 2v(4fc) + 2J(jS2k) = 0 in J(N8k)

by (1.1), and also 2m+1J(β2k) = 0 by (9.3). Thus (*) for the last case follows.

Now, (*) implies that

\ Ψ(n, m) = Σ ^ ( s + 2)Uas + l)/2] + (m + l)αm,
β W (/ = 1 or 2),

and hence we see by the routine calculations that

(**) (*) implies #J(Nn(m)) ^ 2<p(π'm) and the equality holds if and only if the

equality holds in (*) for any k and / with 8/c + /£Ξ4n + 3.

On the other hand, by Theorems 1.7 (ii), 3.5 and 1.8, we see easily that

#J(Nn(m)) = 2φ^m) for n = 2m~2a (a ^ 2).

Thus, we see the proposition by (*•). q.e.d.

Propositions 5.7 and 9.8 (i) imply immediately the following corollary,

which is Proposition 1.10:

COROLLARY 9.10. For the homomorphism

j*:J(Nn(m)) • JiN'-Hm)) U- N^^m) c Nn(m), m ^ 2),

j* is epimorphic, and

'Z 8<J(2)SM)> ,/ n is odd,
Ker;* = ,

Z 4 <2"Jα o > 0 Z 4 < 2 " J α x + ω> 0 Z2hrn(J{βn)) if n is even,
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where hm = min {m + 1, v2(n) + 3} and the term ω= ± 2m~ 3 + 2 ny 0 does not

appear if m = 2.

10. Proofs of Theorems 1.3 and 1.7 (iii) (b)

Let /(π, m; v) be the non-negative integer such that

(10.1) #yv = 2fin>m;v) in J(Nn{m)) (n ^ 0, m ^ 2)

by Proposition 9.8 (ii), where #γ denotes the order of γ. Then, by the definition

of yv in (5.5) and by Lemma 2.10, (3.2) and Remark 5.8,

(10.2) f(n, m;v) = 0 if n = 0 or v ^ m.

For the case m = 2, by Theorems 1.7(ii), 3.5 (cf. [7, Th. 1.3]) and (5.5),

we have

(10.3) f(n, 2; 0) = aθ9 /(n, 2; 1) = ax + ε(n).

LEMMA 10.4. If n = 2m~2a (a ^ 1) and m ^ 3, ίAβ«

/(n, m; 0) = m — 2 + α 0, /(n, m; v) = m — 1 — v + av (1 ^v <m).

PROOF. Let n = 2m~2a (a ^ 1) and m ^ 3. Then, by Corollary 9.10,

#J(βn) = 2m+ί in J(Nn(m)).

On the other hand, 2mβn= - 2m+2"-3(2β) in K0(Nn(m)) by [10, Lemma 8.1].

Thus, we obtain

/(n, m O) = m — 2 + a0.

Furthermore, Theorem 1.8 and Lemma 8.11 imply immediately

/(n, m; v) = m — 1 — v + av (1 ^v < m).

q.e.d.

Let G(ft, m) be the subgroup of J(Nn(m)) generated by γΌ (0 ^ i; < m),

and define K(n, m) = Ker;*n G(n, m), where *: J(Nn(m)) -• JίΛΓ"" 1^)) is the

homomorphism in Corollary 9.10. Then, by Lemma 5.6, Proposition 5.7 and

Corollary 9.10, we have

(10.5) X(n,W) {
l z < J 0 β π ) > if ft>0iseven,

where m ^ 2 and hm = min {m + 1, v2(ft) + 3}.

Let m ^ 3 and π: ΛΓ"(m - l)-^ΛΓw(m) be the natural projection induced
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by the inclusion i: Q2™-2 c Q2m-ι {ί(x) = x, ί(y) = y). Then, we see easily

that π*(γv) = yv (0^v<m) by the definition of γv9 where π* : J(Nn(m)) -»

J(Nn(m — 1)) is the induced homomorphism of π. Therefore, we can define

the homomorphism

π*: G(n, m) > G(w, m - 1) (m ̂  3)

by the restriction of π* : J(Nn(m))^> J(Nn(m — 1)). Also, we can define the

restricted homomorphism

*: G(n, m) • G(n - 1, m) (m ̂  2)

of j * : J(Nn(m)) -• J ίJV"" 1 ^)) in Corollary 9.10, since j*(yy) = γ, ( 0 g u < m )

holds. For these homomorphisms, we have the commutative diagram (m ̂  3)

K(n, m) = Ker j * c G(n, m) -^U G(n - 1, m)

(10.6) {π* } π*

K(n, m - 1) = Ker;* c G(n, m - 1) -^U G(n - 1, m - 1).

LEMMA 10.7. If n ψ 0 mod 2 m " 2 (m ^ 3),

π* I X(n, m): K(n, m) > K(n, m - 1)

w isomorphic.

PROOF. Since π*(J(2ε(π)j5")) = J(2ε(Π)jS") holds, π* |X(n, m) is epimorphic

by (10.5). On the other hand, we see easily that #K(n, m) = #K(n, m - 1)

by the assumption n # 0 m o d 2 m " 2 and (10.5). Therefore, π*\K(n,m) is

isomorphic. q.e.d.

LEMMA 10.8. If n φ 0 mod 2m~2 (m ^ 3), then

f(n, m;v) = max {f(n - 1, m ι>), /(n, m - 1 i;)}.

PROOF. Consider the diagram (10.6). Then the definition of f(n, m v)

in (10.1) implies that

f(n, m; v) ̂  max {f(n - 1, m; υ),f{n9 m - 1; i;)},

since 7*(y,,) = yv and π*(yj = y .̂ Moreover, if f(n, m; v)> max {f(n — 1, m; f),

/(n, m - 1; i;)}, then the non-zero element 2f(n'm;v)~ίγv in J(Nn(m)) is mapped

to 0 by;* and π*. This contradicts Lemma 10.7. Thus we have the lemma.

q.e.d.

For the case m = 3, by Lemmas 10.4, 10.8, (10.2) and (10.3), we see easily

that
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1 + a0 if n > 0 is even,
/(n,3;0) = .

I a0 if w is odd,
/(w, 3; i;) = 2 - υ + α, (i; = 1, 2) if w > 0.

PROOF OF THEOREM 1.3. The results for m = 2 and 3 are given in (10.2-3)

and (10.9). By (10.2), it is sufficient to show that f(n9 m v) (0 g t; < m) is

equal to the number given in Theorem 1.3 for the case m ^ 4 and n > 0. By

Lemma 10.4, Theorem 1.3 holds if m ^ 4 and n = 0 mod 2 m " 2 .

For the case m ^ 4 and 2m~2a < n <2m~2(a + 1), assume that Theorem

1.3 holds for (n — l9m; υ) and (n9m— ί; v) instead of (n, m; ι>). Then, we see

easily that the right hand side of the equality in Lemma 10.8 is equal to

f(n, m-l v) if a = 0,

ίmax {/(w, m - 1; 0), m - 2 + 2 m " 1 α} (ι? = 0)

tmax{/(π, m - l ; ι ; ) , m - l - ι ? + 2m-1-I7έϊ} (1 ^ i; < m) i f c o O ,

and hence to the right hand side of the equality in Theorem 1.3. Thus,

Lemma 10.8 implies Theorem 1.3 by the induction on n and m.

These complete the proof of Theorem 1.3. q.e.d.

PROOF OF THEOREM 1.7(iii)(b). Let m ^ 3 and n is odd. By Corollary

9.10,;*: J(Nn + 1{rn))-+ J{Nn(m)) is epimorphic, and Ker;* is generated by the

elements 2 / ι + 1 J α 0 , 2n+1Jzι ± 2m~1 + 2ny0 and J(βn+1). Thus, J(Nn(m)) is the

abelian group generated by Jα£ (i = 0, 1) and ys (0 ^ s < m) with the relations

in Theorem 1.7 (iii)(a) replaced n with n + 1, and in addition,

2n + 1Joco = 0, 2M + 1 J α x ± 2m-1+2nγ0 = 0 and J(βn + ί) = 0.

O n the other hand, it is easily seen that / ( n , m ; 0 ) ^ m — 2 4- 2n by Theorem

1.3, and so 2m~1 + 2ny0 = 0 in J(Nn(m)). By Lemma 7.1, the relation J(jβM + 1)

= 0 is written as

2 2 π " 1 y 0 - Σ U i y ( π + i » i ; ) ^ = 0 w h e r e 2 ' ^ n + l < 2 1 + 1 .

Therefore, we complete the proof of Theorem 1.7(iii)(b). q.e.d.

1 1 . T h e r e l a t i o n b e t w e e n J ( N n ( m + l ) ) a n d J ( N n ( m ) ) f o r /ι < 2 m l

In this section, we present the relation between J(Nn(m + 1)) and J(Nn(m))

for n < 2 m " 1 , which is stated as follows:

PROPOSITION 11.1. (i) J(Nn(m)) (m ^ 2) w the direct sum

Z 2 π + 2 - φ ) ( J α 0 ) 0 Z 2 n + 2- ε ( n)<Jα 1 > 0 G(n, m),



398 Kensό FUJΠ

where G(n, m) is the subgroup of J(Nn(m)) generated by yv (0 ^ v < m).

(ii) Let m ^ 2 and n < 2m~ 1. Then there exists an isomorphism

f: J(Nn(m + 1)) • J(Nn(m))9

which is given by

(11.2) /(JαJ = Jα, (/ = 0, 1) and f(yv) = yv (0 £ i; < m + 1).

PROOF, (i) follows immediately from Theorem 1.7 and [7, Th. 1.3].

(ii) The subgroups generated by Joct (i = 0, 1) of J(Nn(m + 1)) and

J(Nn(nή) are isomorphic via f(J<Xι) = Jα, (i = 0, 1). The assumption n < 2m~1

implies that #J(Nn(m + 1)) = #J(Nn(m)) by Proposition 9.8 (ii). On the other

hand, π*(γv) = yv for the homomorphism π * : G(n, m + l)->- G(n, m) in (10.6).

Thus G(n, m + 1) and G(«, m) are isomorphic via f(yv) = yv. Therefore, we

obtain the desired isomorphism / by (11.2). q.e.d.
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