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1. Introduction and statements of the results

The aim of this note is to complete the characterization of the weighted

homogeneous Besov spaces by means of solutions of the heat equation on

/?++1, which was initiated in [2]. We retain all the notations and terminol-

ogies in [1, 2] to which the reader is referred also for background and refer-

ences to related works in the literature.

In [2, Theorem Γ] we proved that

α 00 dt\1/q

^ (tk-s/2\\(d/dt)k(wt*f)\\PtWyΎ) (l)

for any / e Sf\ where w e Λ^, 0 < p < oo, 0 < q < cc9 se R, fcisa non-negative

integer greater than s/2, Wt(x) = (4t)~n/2e~]x]2/4t is the Gauss-Weierstrass kernel

on R++1, and as usual, we use C, c, ... to denote positive constants whose

values might change from one occurrence to the next one; they might depend

on the parameters s9 p, q, k, ...9 but not on the distribution /. If a constant

depends also on /, we use subscript to denote this dependence, e.g., Cf.

For the opposite direction to (1), in the same quoted theorem, we had

to assume that w is furthermore in Jίά. In this note we shall remove this

restriction. Namely, we shall prove the following result.

THEOREM. If f e Bp\™ and k is a non-negative integer greater than s/2 +

max (0, 1/p — 1, 1/q — 1), then there is a polynomial P such that

dt\1/q

Ύ j <c\\f\\ή{s,w,Pfq). (2)

REMARK. Though we have removed the restriction w e Jid9 we have in-

troduced a new restriction on the range of k in the case either p < 1 or

q < 1. This new restriction is, however, more satisfactory than the other, as

it does not depend on the weight function w, and the result in the Theorem
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is sufficient for our study of the integrability of the Fourier transform on
weighted spaces in [3].

REMARK. In the paper [9], H. Triebel has studied various equivalent
quasi-norms on the unweighted Besov and Triebel-Lizorkin spaces. His method
was based on a rather sharp multiplier's criterion for spaces of analytic func-
tions of exponential type. It would be an interesting problem to find out
how much of his results can be extended to the present weighted case.

2. Lemmata

In the proof of the Theorem we shall need a number of Lemmata.

LEMMA 1. Let s < 0, and assume that u is a temperature on /?++1 for which

dtV">

o tj

Then there exist p > 0 and f e 9" such that u = Wt*f, and

\u(x, t)\ < C | |M| | s , w > p , 4 t s / 2 " ' 1 / 2 ' > (l + ί)" / 2 p (l + M ) " / p (3)

for all (x, t) e R++1. Consequently, f is in Bs

p\™,

(4)

and the semi-group formula holds for u, i.e., w( , r + t) = Wt*u(-, r) for all
r, t > 0.

PROOF. The proof of (3) and the existence of / is similar to that of the
sufficient part of [2, Proposition 7(i)] (cf. (29) of [2] for (3)), while (4) follows
from (1). The semi-group formula holds for u because u = Wt*f.

LEMMA 2. Let s < 0, and let Tjf J1' denote the space of all temperatures
u on /?"+ 1 for which

Ύ j < o o .

Then fp'q is a quasi-Banach space.

PROOF. First we note that, if u e Tp

s;g

w, then, as

IM ,0llp,w< M*,0IIH(P,W)

for all t > 0 (by Lebesgue differentiation theorem), we see that
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Next, observe that an equivalent quasi-norm on Hζ is given by

II0HH(P,W) = IÎ Ίlp.w

for ge9"9 where g+{x) = supr>0\Wr*g{x)\9 xeRn. This is the quasi-norm

on Hζ which we shall use in the rest of this note. By (5) and Lemma 1,

the semi-group formula holds for u, so that

M s t)\\HiPtW) < l|w( , p)||fl(pfW), t > p > 0 .

This implies that

IMIί(..w.ι,.oo) = sup rsf2\\u('9 t)\\HiPtW) < c\\u\\fis,WtPtq) (6)
ί>0

for 0 < q < oo. (From which it follows that fp%
w c f/;̂ , 0 < q < r < oo, but

we do not need this embedding in our note.)

It is obvious that || \\t(S,w,P,q) *s a quasi-norm. We next prove that Γp

s;™

is complete. Let (uj) be a Cauchy sequence in fPι™. Then (5) and (3) imply

that (uj) converges uniformly on each compact subset of /?++1, so that the

limit function u is a temperature on R++1. Furthermore, M7 ( , t) converges to

u( , t) in Sf' for each t > 0. On the other hand, from (6) we deduce that

for each ί, (Uj(',ή) is a Cauchy sequence in //£ and thus must converge to

an element in Hζ. Since Hζ cz £f' (continuous embedding), we conclude that

Uj(-91) converges to w( , t) in H% for each t > 0. Fatou's lemma then implies

that Uj converges to u in 7jf;*. The proof of the lemma is thus complete.

LEMMA 3. // P is a non-zero polynomial and 0 < p < oo, then | | P | | P f W = oo.

PROOF. AS P is non-zero, there exist β > 0 and an unbounded cone

D c Rn such that |P(x)| > β for every x in D. In D we can choose a sequence

of closed cubes (/,-) whose interiors are mutually disjoint such that there exists

M > 0 for which ( J ^ /•* = /?", where If is the cube /,- expanded M-times.

Since w is doubling and positive almost everywhere, it follows that

llPli;fW > βp ί Mx)dx
JD

> βp f w(Ij)

oo

> c Σ w(If)

> cw{Rn) = oo .

The well-known fact that w(Rn) = oo can be seen from the inequality in line

2, page 142 of [6] which is also an excellent source of references for properties

of weight functions.
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3. Proof of the Theorem

Let feBp ™. We retain all the notations in the proof of Theorem Γ in

[2, pp. 60-62]. The proof there relied on the representation

f-P = lim £ (ψj*f + PJ in ST,
m-*oo j=—m

where deg (Pm) < Nf for all m, and in that proof we had used the equation

(d/dtf(Wt*PJ = Wt*(-A)kPm = 0.

In the present case, we do not have control of Nf9 but if we assume

that k > Nf/2, then the above equation holds. A careful examination of the

proof in [2] quoted above shows that the inequality

(ί: dt\Uq

Ύ) <cf\\f\\Ms,w,p,q) (7)

holds for all k > max (s/2, Nf/2). The dependence of Cf on / comes from the

fact that various constants appearing in the proof depend on k (and hence

implicitly on / ) .

Fix a non-negative integer k for which (7) holds. Let / be a non-negative

integer greater than s/2 + max (0, 1/p — 1, l/q — 1). We shall prove that (7)

holds with k replaced by / (with possibly a different polynomial P). If / = k,

then the result is obvious. Assume next that / > fc, and let m = I — k. Put

Kt(x) = (d/dt)mWt(x). Then, as

D*Kt(x) = Γm-MWt(x)R(x1/2y/i9...,xJ2y/i)

for every t > 0, xeR" and every multi-index K = (κl9..., κn\ where \κ\ =

κί + -- + κn9 and R is a polynomial of degree \κ\ + 2m (cf. [5, Lemma 4

(iii)], it is easy to verify that

\DκKt(x)\ < CκΓ
m\x\-W~n.

Hence it follows from [1, Lemma 4.6] that

p.w) < CΓm\\g\\HiPfW) (8)

for every g e Hζ. The result for I in this case then follows from (7) (for k)

and (8).

The result for the case / < k will follow if we can prove that (7) implies

the result for k — 1; for then we can use similar proofs to show that (7) holds

for k — 2, ..., /. Note that the assumptions on / imply that

k - 1 > k - 2 > ••• = / > s/2 + max (0, 1/p - 1, l/q - 1).
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To prove that (7) holds for k - 1, let v = (d/dt)k(Wt*(f - P)) and u =

{dldtf-\Wt * (/ - P)). As v = (d/dήu, s - 2/k < 0, and

by (5) and (7), we see that, for 1 < ίx < t2 and x e Rn,

\v(x,r)\dr
J'i

as tl9 t2 -> oo, by (3) and the condition fe — 1 > s/2. It follows that

lim u(x, ί) = ^(x)
ί->oo

exists for every x e Rn. Now since

M(X, t) = - I °° v(x, r + ήdr + ^(x), (9)
J

and both u and the integral on the right-hand side of (9) are temperatures,

φ is harmonic in Rn. By [5, Theorem 17] and (3) we can find M > 0 for

which

\φ(x)\ < C(l + |x | ) M

for all x e Rn. This implies that φ must be a harmonic polynomial. By a

result in [7, Proof of Proposition, p. 299] we have Wt * φ = φ for all ί > 0,

and by [8, Chapter IV, Proof of Theorem 2.1] we can find a polynomial Q

such that (-Af^Q = φ, so that

If we replace P by P + Q, then i; is unchanged ((δ/δί)k(^ί* 6) = Wt*(-A)φ = 0),

and for this new P, (9) implies the relation

, t) = - φ,
Jo

u(x, t) = - φ , r + ί)dr (10)
Jo

for every x e Rn and ί > 0. Let M^X) = u(x, t) and ^(x) = u(x, t). Then the

semi-group formula and (10) imply that

{x)dr. (11)
Jt

We consider two cases.

[
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Case 1: 1 < p < oo.
Integrating (11) and using Minkowski's inequality we obtain

Γ 0 0

Klltf(p,w) ^ t\\Vt\\H(p,w) + \\Vr\\mp,w)dr . (12)

Jί

If q > 1, then Hardy's inequality implies that

i/βa (tk-l-sβ I),. || w ^ \

0 Γ /

by (7) for fc. (See [8, Chapter V, Lemma 3.14 for Hardy's inequality].)
Assume next that 0 < q < 1. As the estimate for the first term in the

right-hand side of (12) is obvious, we need only estimate the second term.
Noting that

i V + M < ^ M , (13)

for r > t > 0 by the semi-group formula, and discretizing the integral in r,
we obtain

foo / oo ru+iyt/2 dr\dt

<C\ ^ Σ H ÎIVw,y y
Jo \j=l Jjί/2 * / f

Γ00 / Γ2 r dt\
- Γ I Λk-s/2)qUL \ || | |4 J

Jo \Jo Γ /

= c Γ(rk-s/2\\vr\\H{p,w)y-,
Jo r

where we have used Fubini's theorem and the condition k — 1 > s/2 4- (l/# — 1).
The proof in the case 1 < p < oo is thus complete.

Case 2: 0 < p < 1.
Again we only estimate the second term in the right-hand side of (11).

Using (13) to discretize the integral in r, we get
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I(X): = f\+M<*r<f>+(x),
Jί 7=1

SO that

If 0 < q < p, then, similar to the proof in the case 1 < p < oo and
0 < q < 1 given above, we have

α: (k-l-s/2)q II τ\\q
\\p, w 7)'

r J

because k — 1 > s/2 + (l/q — 1) by our assumption.
On the other hand, if p < q, then by using again the discretization of

the integral, we obtain

(ί:
/ 1 °° / f °°

<r rl f(*-s/2)« /

I I
\ J 0 \ J ί/2
/Γ00 /

= C ( t(ksl2)q-qlp /

/ Λoo

ί°° IkJVv

») r

\q/p dt\plq

•"*) l)

by Hardy's inequality as k — 1 — s/2 > ί/p — 1 by our assumption.
Since Ĉ  in (7) depends on /, what we have proved is that, for any

non-negative integer k > s/2 + max (0, ί/p — 1, l/q — 1), there is a polynomial
P such that

< oo . (14)

To complete the proof of the Theorem, we shall verify the inequality in
quasi-norm in (2). Assume first that —s/2 > max (0, 1/p — 1, l/q — 1), and we
shall prove (2) for k = 0; the inequality for k > 0 then follows from (8) as in
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the proof of (7) for / > k. In this case (k = 0) we claim that the polynomial

P for which (14) holds is unique. For if Q is another such polynomial, then

we deduce that

\\Wt*(P-Q)\\p,w<π

for every t. Fixing a t and noticing that Wt * (P — Q) is a polynomial, we

derive from Lemma 3 that Wt * (P - Q) = 0, so that P = Q. Thus, Wt*(f-P)

in (14) depends only on the equivalent class of / in Bs

p\q. It follows that

given by Ef = Wt * (/ — P) is well-defined and is a linear map.

We next show that E has closed graph. Let /, fj9 7 = 1, 2, ..., be in

BΪZ such that J5 -> / in BJ J and Uj = Efj=Wt* (jj - P,) -> II in 7 ^ . Lemma 2

implies that u is a temperature, and Lemma 1 and (5) imply that u = Wt*g

for some geBs

p\™. It then follows from (1) that

Wfj - d\\B(s,w,p,q) = ll.ί ~ Pj- 9\\B(s,w,p,q)

<C\\Uj-u\\tis>WfP>q),

so that / = g in Bs

p\™, i.e., there exists a polynomial P such that g = / — P,

or u = Wt*(f — P) = Ef. Thus the graph of £ is closed. It follows from

the closed graph theorem that E is continuous, and hence there is C > 0 for

which

\\Ef\\τiStWfP,q)<C\\fhiStWtP,q)

for all feBs

p\qi which is (2) in this case.

In the general case, let / € BJ J and k> s/2 + max (0, 1/p - 1, 1/q - 1).
Then, as {-Aff is in Bs~q

2k>w and '

- ( s - 2/c)/2 > max (0, ί/p - 1, l/<? - 1),

the result in the previous case yields a polynomial Q for which

\\Wt*((-A)kf- β)||fe-2*.w iM)

By [8, Chapter IV, Proof of Theorem 2.1], we can find a polynomial P such

that ( — A)kP = Q. This fact and the above inequality imply the desired result

(2). The proof of the Theorem is thus complete.

The results in this paper were obtained during my stay at University of

New South Wales and Flinders University from mid-January to mid-March

1993. The writing was done when I was at Washington University. I wish to
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thank my colleagues at these institutions, in particular, Tony Dooley, Garth
Gaudry and Mitch Taibleson, for their hospitality and support.

Notes added in July 1993. We had recently obtained a simpler proof
of the Theorem which also applies to the weighted Triebel-Lizorkin spaces
by showing that we can take deg (Pm) < [s] in the representation of / — P
given at the beginning of Section 3, for every m, where [s] is the greatest
integer not exceeding s. More precisely, we proved that Theorem Γ (i) and
Theorem 4'(i) of [2] hold without the restriction w e ί ^ (see [3]). Con-
sequently, the restriction in the range of k mentioned in the first remark after
the Theorem is also removed. However, we feel that, though the proof in
the present paper is more complicated, it introduces some new ideas which
may be useful in other situations.
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