Path integrals for coherent states and classical dynamics on a homogeneous Kähler manifold

Hideo DOI (Received January 20, 1993)

0. Introduction

The logical structure of quantum mechanics and the relation to the classical dynamics are clearly explained by path integrals. Originally R. P. Feynman formulated his approach with a Lagrangian [3]. Afterward he and the successors discovered phase space path integrals or Hamiltonian path integrals [2] [4] [5]. In particular J. R. Klauder [7] used coherent states in path integration, and S. S. Schweber [14] studied a path integral based on a Hilbert space of holomorphic functions on C^n which is a representation space of the Heisenberg group. This work is considered as a quantization of a flat Kähler manifold C^n . Concerning a curved space, H. Kuratsuji and T. Suzuki [9] found that a classical Hamiltonian on a phase space CP^1 appears in a path integral expression for a matrix element of an irreducible representation of SU(2). Also C. C. Gerry and S. Silverman [6] showed that a matrix element of the holomorphic discrete series of SU(1, 1) is represented by a path integral with a classical Hamiltonian on the Poincaré disc. As we shall observe below, these phenomena happen in a general situation.

To clarify necessary assumption, we start with a brief review of the path integral using coherent states. Let G be a Lie group, K its closed subgroup, and assume that the homogeneous space G/K has an invariant measure μ . Let (π, \mathscr{H}) be an irreducible unitary representation of G with a unit vector v_0 such that $k \cdot v_0 \propto v_0$ for all $k \in K$ and let a matrix element $\langle v_0 | g \cdot v_0 \rangle$ belong to $L^2(G/K, \mu)$. Let M be an open dense subset of G/K and g(z) a smooth section: $M \to G$ of the principal fiber bundle $G \to G/K$. Following A. M. Perelomov [11], we define a coherent state by

$$|z\rangle := g(z) \cdot v_0$$

Then an integral operator on \mathscr{H}

$$\int_{M} \mu(dz) |z\rangle \langle z|$$

is bounded and commutative with the action of G. Therefore we can assume

Hideo Doi

that the operator above equals 1. Then for z, $w \in M$ and $X \in g$ (the Lie algebra of G),

$$\langle z | e^{-tX} | w \rangle = \int \mu(dz_1) \cdots \mu(dz_{n-1}) \prod_{j=1}^n \langle z_j | e^{-\varepsilon X} | z_{j-1} \rangle,$$
$$z_n = z, \ z_0 = w, \text{ and } \varepsilon = t/n.$$

Moreover we assume that the $O(\varepsilon^2)$ -term is well-behaved, and we use the following approximation:

$$\begin{split} \langle z_j | e^{-\varepsilon X} | z_{j-1} \rangle &\approx \langle z_j | 1 - \varepsilon X | z_{j-1} \rangle = \langle z_j | z_{j-1} \rangle \{ 1 - \varepsilon \langle z_j | X | z_{j-1} \rangle / \langle z_j | z_{j-1} \rangle \} \\ &\approx \exp \left\{ \varepsilon \varepsilon^{-1} \log \langle z_j | z_{j-1} \rangle - \varepsilon \langle z_j | X | z_{j-1} \rangle \right\}. \end{split}$$

Let γ_s be a path on G satisfying $\gamma_0 K = w$ and $\gamma_t K = z$. We set $z_j = \gamma_{jt/n} K$. Then

$$\log \langle z_j | z_{j-1} \rangle = \log \langle z_j | \gamma_{(j-1)t/n} \gamma_{jt/n}^{-1} | z_j \rangle.$$

Also we note that

$$\lim_{\varepsilon \to 0} \varepsilon^{-1} \log \langle z_s | \gamma_{s-\varepsilon} \gamma_s^{-1} | z_s \rangle = - \langle z_s | \partial_s \gamma_s \gamma_s^{-1} | z_s \rangle = - \langle v_0 | Ad(\gamma_s^{-1}) \gamma_s^{-1} \partial_s \gamma_s | v_0 \rangle.$$

We now define $\lambda \in g^*$ by $i\lambda(X) = \langle v_0 | X | v_0 \rangle$ and set $\lambda_X(z) = \langle Ad^*g(z)\lambda, X \rangle$. Thus we obtain a path integral expression of a matrix element for the coherent states of π :

$$\langle z | e^{-tX} | w \rangle = \int_{\gamma_t = z, \gamma_0 = w} \mathscr{D}\gamma \exp iS[\gamma] ,$$
$$S[\gamma] = \int_0^t -\lambda(\gamma^{-1}\partial_s\gamma_s) - \lambda_X(\gamma)ds ,$$

(cf. [6], [9]). Then it is remarkable that $S[\gamma]$ is the classical action over a coadjoint orbit through $\lambda \in g^*$ with the canonical symplectic structure, which suggests that we may use path integration as a way arriving at the geometric quantization.

Our main objective in this article is to give a prescription for evaluating a path integral on a homogeneous Kähler manifold. It is closely related to the coherent states and the quantization for the Kähler manifold due to J. H. Rawnsley [12].

Let G/K be a homogeneous complex manifold and $E \to G/K$ a homogeneous holomorphic line bundle with an invariant Hermitian structure. Let ω denote the curvature form of the Hermitian connection. Also we assume that $\mu := |\omega^{\dim G/K}| \neq 0$ and $\mathscr{H} := L^2_{hol}(E, \mu) \neq 0$. Let $w, z \in G/K$ and γ a path jointing w and z. Then the classical action S along γ is defined by

486

Path integrals for coherent states

$$\int_0^t -i\gamma^*\theta - \lambda_X(\gamma_s)ds\,,$$

•

where θ is the connection 1-form and λ_X is a canonical Hamiltonian function for $X \in g$. For general points w and z of the phase space G/K, there is no path subject to the classical motion $\dot{\gamma} = X_{\gamma}$ which joints w and z. Hence, we need to consider a variant of summation of over classical paths.

Let $\{s_i\}$ be an orthonormal basis of \mathcal{H} . Regarding s_i as a holomorphic function through a fixed local trivialization of E, we set $\kappa(z, w) = \sum s_i(z)\overline{s_i(w)}$. Then $\theta = -\partial \log \kappa(z, z)$. Keeping this in mind, for a path γ with $\gamma_0 = w$, $\gamma_t = z$, we employ

$$\log \kappa(z, w) - \log \kappa(w, w)$$
 instead of $\int_0^t \partial_z \log \kappa d\gamma$,

and

$$t\lambda_X(z, w)$$
 instead of $\int_0^t \lambda_X(y) ds$.

Hence, we replace $e^{iS[\gamma]}$ by

$$p_t(z, w) = \kappa(z, w) e^{-it\lambda_X(z, w)} / \kappa(w, w) .$$

For a holomorphic section f of E, we set

$$P_t f(z) = \int p_t(z, w) f(w) \mu(dw) \, .$$

By the preceding argument, if

$$\lim_{n\to\infty} (P_{t/n})^n = \lim_{n\to\infty} \int \mu(dz_{n-1})\cdots \mu(dz_1) p_{t/n}(z, z_{n-1})\cdots p_{t/n}(z_1, w)$$

exists, the limit is considered as an evaluation of a path integral. This formulation is fairly correct. In fact $p_t = 1$ with X = 0, and we see that for the regular representation $\pi(\cdot)$ of G on E,

$$-it\lambda_X(z, w) = \log \pi(g_t^{-1})\kappa(z, w) - \log \kappa(w, w) + O(t^2)$$
, as functions of t.

Also, if G is the Heisenberg group $C^n \times R$ and K is the center $0 \times R$, we have for $X = (\xi, \tau) \in g$ and $0 < \lambda \in \mathfrak{k}^* = R$,

$$p_t(z, w) = e^{-\lambda |\xi t|^2/2} \pi(g_t^{-1}) \kappa(z, w) / \kappa(w, w) , \qquad \kappa(z, w) = e^{\lambda z \overline{w}}$$

By using the fact that $\kappa(z, w)$ is a reproducing kernel of $L^2_{hol}(C^n, \kappa(z, z)^{-1}d^{2n})$, we see that the operator $(P_{t/n})^n$ has a kernel function

 $e^{-\lambda|\xi t|^2(n-1)/2n^2}\pi(g_{t(1-1/n)}^{-1})\kappa(z,w)/\kappa(w,w)$.

Hence $\lim_{n\to\infty} (P_{t/n})^n = \pi(g_t^{-1})$ (cf. [10], [14]).

Generally the above $p_t(z, w)$ does not coincide with the kernel function of $\pi(g_t^{-1})$. As seen in §2, the extraordinary term can be removed by a formal exchange of 'exp'. The our formula is closely related to factors of automorphy [13].

1. Hamiltonians

Let G be a Lie group and K a closed subgroup. We assume that G/K is a homogeneous complex manifold. Let g and f denote Lie algebras of G and K, respectively. Fix $\lambda \in g^*$ and assume that the restriction of $i\lambda$ to f lifts on K. Let E denote a homogeneous complex line bundle with unitary structure $G \times_{i\lambda} C$ and ∇ an invariant unitary connection defined by $i\lambda$ in E. We denote by ω the curvature form of ∇ and assume that ω is a (1, 1)-form on G/K. Then it is well known that E becomes a holomorphic line bundle with a Hermitian connection ∇ . Furthermore we assume that the real 2-form $i\omega$ is nondegenerate, that is, $(G/K, i\omega)$ is a symplectic manifold. Then clearly, the universal covering of G/K is isomorphic with the universal covering of the coadjoint orbit through $\lambda \in g^*$, as homogeneous symplectic manifolds. Observe the following diagram:

where H is an isomorphism defined by the Hermitian metric on E and Δ is the diagonal mapping. Let $1 \in \Gamma(M, Hom(E, E))$ and let $\kappa(z, w)$ denote a unique holomorphic extension of $H^{-1}(1)$ on a neighbourhood of ΔM .

PROPOSITION 1.1. Let $\pi(\cdot)$ denote the left regular representation of G on $\Gamma(M, E)$. For $X \in \mathfrak{g}$, we set $g_t = \exp tX$ and

$$iH_{\mathbf{X}}(z,w) = H(\partial_t|_{t=0}\pi(g_t^{-1}) \otimes 1 \kappa(z,w)).$$

Then

$$-H_X(z,z) = \lambda_X(z) := \langle Ad^*g_z \lambda, X \rangle$$
, with $g_z K = z$.

PROOF. Let U be a subset of M and fix a nonvanishing holomorphic section s of E|U. Then $H^{-1}(1) = s \otimes s/(s, s)$, where (,) denotes the invariant Hermitian metric on E. Let h(z, w) be a unique holomorphic extension of

(s, s) on a neighbourhood of ΔU in $M \times \overline{M}$. Then $\kappa(z, w) = s(z) \otimes s(w)/h(z, w)$. For $g \in G$, $z \in U$, we define $j(g, z) \in C^{\times}$ by $g^{-1}s(gz) = s(z)j(g, z)$, and also for $X \in \mathfrak{g}$ we set $j(X, z) = \partial_t|_{t=0} j(g_t, z)$.

Since

$$H(\pi(g_t^{-1})\otimes 1 \kappa(z,z)) = j(g_t,z)h(z,z)/h(g_tz,z),$$

we have

$$iH_{\mathbf{X}}(z, z) = j(X, z) - \partial_{\mathbf{X}}h(z, z)/h(z, z)$$

We now represent s as $s = \phi f$ with a local section ϕ of $G \to G/K$ and a C-valued function f. Then by definition

$$\nabla s = \phi \{ df + i\lambda(\phi^{-1}d\phi)f \},\$$

here $d\phi$ is a section of $T^*M \otimes_R C \otimes \phi^{-1}TG$. We define $J(g, z) \in K$ for $g \in G$, $z \in U$ by $g^{-1}\phi(gz) = \phi(z)J(g, z)$. Since

$$j(g, z) = J(g, z)^{i\lambda} f(gz)/f(z)$$
, and $\partial_t|_{t=0} J(g_t, z) = -X + d_X \phi$,

where X denotes the differential of the left action, we have

$$j(X, z) = -i\lambda(Ad\phi^{-1}X) + i\lambda(\phi^{-1}d\phi) + d_X f/f$$

Also since $h = |f|^2$, we have

$$j(X, z) - \partial_X h/h = -i\lambda (Ad\phi^{-1}X) + i\lambda(\phi^{-1}d\phi) + d_X f/f - \partial_X f/f - \partial_X \bar{f}/\bar{f}.$$

The holomorphicity of s means that

$$\begin{split} &i\lambda(\phi^{-1}\overline{\partial}_{X}\phi) + \overline{\partial}_{X}f/f = 0, \\ &i\lambda(\phi^{-1}\partial_{X}\phi) - \partial_{X}\overline{f}/\overline{f} = -\operatorname{conj.}\{i\lambda(\phi^{-1}\overline{\partial}_{X}\phi) + \overline{\partial}_{X}f/f\} = 0 \end{split}$$

Thus $iH_X(z, z) = -\lambda_X(z)$.

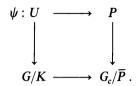
2. Totally complex polarization

Let g be a finite dimensional Lie algebra and g_c its complexification. Let $\lambda \in g^*$ and let $\mathfrak{p} \subset g_c$ be a totally complex polarization for λ [1]. We denote by G_c the 1-connected Lie group with the Lie algebra g_c . Let P and \overline{P} be analytic subgroups generated by \mathfrak{p} and $\overline{\mathfrak{p}}$, respectively. Moreover we assume that $i\lambda$ holomorphically lifts on P. Also we set $q^{i\lambda} = conj.(\overline{q}^{-i\lambda})$ for $q \in \overline{P}$. Since these characters coincide on $P \cap \overline{P}$, we can define a holomorphic function $i\lambda$ on $P\overline{P}$ by

$$(xy)^{i\lambda} := x^{i\lambda}y^{i\lambda}$$
 for $x \in P$, $y \in \overline{P}$.

Hideo Doi

Let G be an analytic subgroup generated by g and set $K = G \cap \overline{P}$. We define a holomorphic line bundle over G_c/\overline{P} by $E := G_c \times_{i\lambda} C$. Since the natural mapping $G/K \to G_c/\overline{P}$ is an open embedding, we can consider G/K as a complex manifold. Let U be an open subset and $\psi: U \to P$ a holomorphic mapping, and assume that the following diagram is commutative:



Let (α, β) be a local holomorphic section of $P \times \overline{P} \to P\overline{P}$ and set

$$\alpha(z, w) = \alpha(\overline{\psi(w)}^{-1}\psi(z))$$
 and $\beta(z, w) = \beta(\overline{\psi(w)}^{-1}\psi(z))$

We can now state a main observation, which gives a group theoretic description of a Hamiltonian function for $X \in g$.

THEOREM 2.1. $H_X(z, w) = -\langle Ad^*\psi(z)\beta(z, w)^{-1}\lambda, X\rangle.$

PROOF. We write ψ as $\psi = \phi f$ with a local section ϕ of $G \to G/K$ and a smooth mapping $f: U \to \overline{P}$. Then $s:= \psi \cdot 1 = \phi \cdot f^{i\lambda}$ is a holomorphic section of E|U. Since $\psi = \phi f$ and $\overline{\psi} = \phi \overline{f}$, we see that

$$h(z, z) := (s, s) = f^{i\lambda} \overline{f^{i\lambda}} = (\overline{f}^{-1})^{i\lambda} f^{i\lambda} = \{\overline{\psi(z)}^{-1} \psi(z)\}^{i\lambda}.$$

Thus

$$h(z, w) = \alpha(z, w)^{i\lambda}\beta(z, w)^{i\lambda}$$

For $g \in G$, $z \in U$, we define $J(g, z) \in \overline{P}$ by $g^{-1}\psi(gz) = \psi(z)J(g, z)$. Let $j(g, z) = J(g, z)^{i\lambda}$. Then $g^{-1}s(gz) = s(z)j(g, z)$. Since $\overline{\psi(w)}^{-1}\psi(gz) = \overline{\psi(w)}^{-1}g\psi(z)J(g, z)$, we obtain

$$h(gz, w)j(g, z)^{-1} = \{\overline{\psi(w)}^{-1}g\psi(z)\}^{i\lambda}.$$

Let $g_t := \exp tX \in G$, $a_t \in P$ and $b_t \in \overline{P}$ satisfy $\overline{\psi(w)}^{-1}g_t\psi(z) = a_tb_t$. Then

$$-iH_X(z, w) = \partial_t|_{t=0} \log (a_t^{i\lambda} b_t^{i\lambda}),$$
$$a_0^{-1} \overline{\psi(w)}^{-1} X \psi(z) b_0^{-1} = a_0^{-1} \dot{a}_0 + b_0^{-1} \dot{b}_0$$

Hence $H_X(z, w) = -Ad^*\psi b_0^{-1}\lambda(X)$.

In our situation, if $G_c \neq P$, the linear form $i\lambda$ does not define a character of G_c . Keeping this in mind, we consider

$$\Lambda_t(z, w) = \{Ad\beta(z, w)\psi(z)^{-1} \cdot \exp tX\}^{-i\lambda}$$

as a substitution for $e^{itH_X(z,w)} = \exp t \langle -i\lambda, Ad\beta(z,w)\psi(z)^{-1}X \rangle$. Since

$$\{\alpha^{-1}\overline{\psi(w)}^{-1}g_t\psi(z)\beta^{-1}\}^{-i\lambda}=\{\overline{\psi(w)}^{-1}g_t\psi(z)\}^{-i\lambda}(\alpha\beta)^{i\lambda},$$

we obtain

PROPOSITION 2.2. $\Lambda_t(z, w) = j(g_t, z)h(z, w)/h(g_t z, w).$

Finally we supplement the case $L^2_{hol}(E, \mu) \neq 0$. Let $\{s_i\}$ be an orthonormal basis of $L^2_{hol}(E, \mu)$ and set $k(z, w) = \sum f_i(z)\overline{f_i(w)}$ with $s_i = sf_i$. Since $H(\sum s_i \otimes s_i)$ is G-invariant, the irreducibility [8] implies that k(z, w)h(z, w) is a constant c. Hence, employing μ/c as an invariant measure on G/K, we may assume that k(z, w)h(z, w) = 1. Then

$$k(z, w)\Lambda_t(z, w)/k(w, w) = j(g_t, z)k(g_t z, w)h(w, w)$$

is a kernel function for the regular representation $\pi(g_t^{-1})$.

References

- Auslander, L. and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math., 14 (1971), 255-354.
- [2] Davies, H., Hamiltonian approach to the method of summation over Feynman histories, Proc. Camb. Phil. Soc., 59 (1963), 147-155.
- [3] Feynman, R. P., Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys., 20 (1948), 367-387.
- [4] Feynman, R. P., An operator calculus having applications in quantum electrodynamics, Phys. Review, 84 (1951), 108-128.
- [5] Garrod, C., Hamiltonian path-integral methods, Rev. Mod. Phys., 38 (1966), 483-494.
- [6] Gerry, C. C. and S. Silvermann, Path-integral for coherent states of dynamical group SU(1, 1), J. Math. Phys., 23 (1982), 1995-2003.
- [7] Klauder, J. R., The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers, Ann. Phys., 11 (1960) 123-168.
- [8] Kobayashi, S., Irreducibility of certain unitary representations, J. Math. Soc. Japan, 20 (1968), 638-642.
- [9] Kuratsuji, H. and T. Suzuki, Path integral in the representation of SU(2) coherent state and classical dynamics in a generalized phase space, J. Math. Phys., 21 (1980), 472–476.
- [10] Okamoto, K., The Borel-Weil theory and the Feynman path integral, Proceeding of International Colloquium on Geometry and Analysis, to appear.
- [11] Perelomov, A. M., Coherent states for arbitrary Lie group, Comm. Math. Phys., 26 (1972), 222-236.
- [12] Rawnsley, J. H., Coherent states and Kähler manifolds, Quart. J. Math. Oxford, 28 (1977), 403-415.
- [13] Satake, T., Factors of automorphy and Fock representations, Adv. in Math., 7 (1971), 83-110.
- [14] Schweber, S. S., On Feynman quantization, J. Math. Phys., 3 (1962), 831-842.

Department of Mathematics Faculty of Science Hiroshima University