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0. Introduction

The logical structure of quantum mechanics and the relation to the
classical dynamics are clearly explained by path integrals. Originally R. P.
Feynman formulated his approach with a Lagrangian [3]. Afterward he and
the successors discovered phase space path integrals or Hamiltonian path
integrals [2] [4] [5]. In particular J. R. Klauder [7] used coherent states
in path integration, and S. S. Schweber [14] studied a path integral based
on a Hubert space of holomorphic functions on Cn which is a representation
space of the Heisenberg group. This work is considered as a quantization
of a flat Kahler manifold Cn. Concerning a curved space, H. Kuratsuji and
T. Suzuki [9] found that a classical Hamiltonian on a phase space CP1

appears in a path integral expression for a matrix element of an irreducible
representation of 51/(2). Also C. C. Gerry and S. Silverman [6] showed that
a matrix element of the holomorphic discrete series of SU(l, 1) is represented
by a path integral with a classical Hamiltonian on the Poincare disc. As
we shall observe below, these phenomena happen in a general situation.

To clarify necessary assumption, we start with a brief review of the path
integral using coherent states. Let G be a Lie group, K its closed subgroup,
and assume that the homogeneous space G/K has an invariant measure μ.
Let (π, 3tf) be an irreducible unitary representation of G with a unit vector
v0 such that k voccvo for all keK and let a matrix element (vo\g vo}
belong to L2(G/K, μ). Let M be an open dense subset of G/K and g(z) a
smooth section: M ^G of the principal fiber bundle G -• G/K. Following
A. M. Perelomov [11], we define a coherent state by

\z):=g(z)-v0 .

Then an integral operator on Jf

ί μ(dz)\z}(z\
JM

is bounded and commutative with the action of G. Therefore we can assume
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that the operator above equals 1. Then for z, w ε M and l e g (the Lie
algebra of G),

= [
J

zπ = z, z0 = w, and ε = t/n.

Moreover we assume that the O(ε2)-term is well-behaved, and we use the
following approximation:

« exp {εε"1 log <z</|zi/_1> - ε<z j |X|z J _1>} .

Let ys be a path on G satisfying y0K = w and ytK = z. We set zy =

Then

log (Z lz,-^) = log (Zjhu-ut/nyjy^Zj}

Also we note that

limε"1 log <zs\ys.χ
1\zs} = - < z β | 5 Λ y Γ 1 I O = - ^

We now define A eg* by α(JT) = <ι;0|ΛΓ|t;0> and set λx(z) = <Ad*g(z)λ9 X).
Thus we obtain a path integral expression of a matrix element for the coherent
states of π:

<z I e~tx I w> = 3>y exp iS [7] ,
J

=
Jyt=*. yo=

= Γ-
Jo

(cf. [6], [9]). Then it is remarkable that S[y] is the classical action over a
coadjoint orbit through λ e g* with the canonical symplectic structure, which
suggests that we may use path integration as a way arriving at the geometric
quantization.

Our main objective in this article is to give a prescription for evaluating
a path integral on a homogeneous Kahler manifold. It is closely related to
the coherent states and the quantization for the Kahler manifold due to J. H.
Rawnsley [12].

Let G/K be a homogeneous complex manifold and E -• G/K a homoge-
neous holomorphic line bundle with an invariant Hermitian structure. Let
ω denote the curvature form of the Hermitian connection. Also we assume
that μ := | ω d i m G / * | Φ 0 and Jf := ! £ , ( £ , μ) φ 0. Let w, z € G/K and y a path
jointing w and z. Then the classical action S along γ is defined by
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f
Jo

-iy*θ-λx(y,)ds9

where θ is the connection 1-form and λx is a canonical Hamiltonian function

for l e g . For general points w and z of the phase space G/X, there is no

path subject to the classical motion γ = Xy which joints w and z. Hence,

we need to consider a variant of summation of over classical paths.

Let {sj be an orthonormal basis of Jf. Regarding Sf as a holomorphic

function through a fixed local trivialization of £, we set τc(z, w) = ]Γ s^zjs^w).

Then 0 = - d log κ(z, z). Keeping this in mind, for a path γ with y0 = w,

yf = z, we employ

of Γ
Jo

log κ(z, w) — log κ:(w, w) instead of | dz log xdy ,

and

tλx(z, w) instead of | λx(y)ds.

Hence, we replace eiS[y] by

Jo

p,(z, w) = τc(z, w)e Iίλ*(z'w)/κ;(w, w).

For a holomorphic section / of £, we set

PJ{z)=[Pt(z9w)f(w)μ(dw).

By the preceding argument, if

lim (Pt/n)
n = lim μ(dzn_γ) μ{dzx)ptιn{z, z n_ x) ^ ( Z i , w)

exists, the limit is considered as an evaluation of a path integral. This formu-

lation is fairly correct. In fact pt = 1 with X = 0, and we see that for the

regular representation π( ) of G on £,

— itλx(z9 w) = log π(g~ι)κ(z, w) — log κ(w, w) + O(ί2), as functions of t.

Also, if G is the Heisenberg group Cn x R and K is the center 0 x R, we

have for X = (ξ9τ)e$ and 0 < λ e I* = R,

pt(z9 w) = ^~λ|ξί|2/2π(gfί"
1)κ:(z, w)//c(w, w), κ(z, w) = eλzw .

By using the fact that κ(z, w) is a reproducing kernel of Llol(Cn, κ(z, z)~ίd2n),

we see that the operator (Pt/n)
n has a kernel function
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m 9 w)/κ(w, w).

Hence lim^^ (Pί/M)" = π ^ " 1 ) (cf. [10], [14]).
Generally the above pt(z, w) does not coincide with the kernel function

of n(g^). As seen in §2, the extraordinary term can be removed by a
formal exchange of 'exp\ The our formula is closely related to factors of
automorphy [13].

1. Hamiltonians

Let G be a Lie group and K a closed subgroup. We assume that G/K
is a homogeneous complex manifold. Let g and I denote Lie algebras of G
and K, respectively. Fix λ e g* and assume that the restriction of iλ to ϊ
lifts on K. Let E denote a homogeneous complex line bundle with unitary
structure G xiλC and V an invariant unitary connection defined by iλ in
E. We denote by ω the curvature form of V and assume that ω is a
(1, l)-form on G/K. Then it is well known that E becomes a holomorphic
line bundle with a Hermitian connection V. Furthermore we assume that
the real 2-form iω is nondegenerate, that is, (G/K, iω) is a symplectic manifold.
Then clearly, the universal covering of G/K is isomorphic with the universal
covering of the coadjoint orbit through λ e g*, as homogeneous symplectic
manifolds. Observe the following diagram:

E\E\E

M — ^ — M x M,

where H is an isomorphism defined by the Hermitian metric on E and Δ
is the diagonal mapping. Let 1 e Γ(M, Hom(E, £)) and let κ(z9 w) denote a
unique holomorphic extension of H'1^) on a neighbourhood of AM.

PROPOSITION 1.1. Let π( ) denote the left regular representation of G on
Γ(M9 E). For X e g, we set gt = exp tX and

iHx{z, w) = Hiδ^oπig;1) ® 1 κ(z, w)).

Then

-Hx(z, z) = λx{z) := (Ad*gzλ, X\ with gzK = z .

PROOF. Let U be a subset of M and fix a nonvanishing holomorphic
section s of E\ U. Then H'1^) = s ® s/(s, s), where ( , ) denotes the invariant
Hermitian metric on E. Let h(z, w) be a unique holomorphic extension of
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(s, s) on a neighbourhood of AU in M x M. Then / φ , w) = s(z) (x) s(w)/fo(z, w).
For g e G, z e £/, we define ;(#, z) e C x by g~ιs(gz) = s(z)j(g, z), and also for
ΛΓ e g we set 7(ΛΓ, z) = dt\t=oj(gt, z).

Since

κ{z, z)) =j(gt, z)h(z, z)/h(gtz, z),

we have

Mx(z9 z) = j(X, z) - dxh(z, z)/h(z9 z).

We now represent s as s = φf with a local section φ of G -+ G/K and a
C-valued function /. Then by definition

Vs = φ{df + iλ(φ-1dφ)f},

here d^ is a section of T*M ®R C ® φ~xTG. We define J(#, z) e K for # 6 G,
z e 1/ by g^φigz) = φ(z)J(g, z). Since

j(flf, z) = J(flf, z)ίλ/(^z)//(z), and dt\t=0J(gt9 z)=-X + dxφ ,

where X denotes the differential of the left action, we have

j(X9 z) = -iλ{Adφ-γX) + iλiφ-'dφ) + dxf/f.

Also since h = | / | 2 , we have

;(x, z) - dxh/h = -iλiλdφ-'x) + u r ^ ) + dx/// - a,/// - d

The holomorphicity of s means that

~ dχf/f= -conj.{iλ{φ-ιdxφ) + δ*///} = 0 .

Thus ίHx(z, z) = -λx(z).

2. Totally complex polarization

Let g be a finite dimensional Lie algebra and gc its complexification. Let
/leg* and let p <= gc be a totally complex polarization for λ [1]. We denote
by Gc the 1-connected Lie group with the Lie algebra gc. Let P and P be
analytic subgroups generated by p and p, respectively. Moreover we assume
that iλ holomorphically lifts on P. Also we set qiλ = conj.(q~iλ) for q e P.
Since these characters coincide on POP, we can define a holomorphic function
iλ on PP by

/Λ := χ ί λy ί λ far x e P , y e P .
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Let G be an analytic subgroup generated by g and set K = G Π P. We define
a holomorphic line bundle over GJP by E := Gc x iλ C. Since the natural
mapping G/K -• Gc/P is an open embedding, we can consider G/K as a com-
plex manifold. Let U be an open subset and φ :U -* P a holomorphic map-
ping, and assume that the following diagram is commutative:

φ: U • P

G/K > GJP .

Let (α, β) be a local holomorphic section of P x P -+ PP and set

α(z, w) = α((A(w)"V(z)) and β(z9 w) =

We can now state a main observation, which gives a group theoretic
description of a Hamiltonian function for l e g .

THEOREM 2.1. /^(z, w) = - (Ad*φ{z)β{z, w)-U, X>.

PROOF. We write φ as φ = φf with a local section ^ of G -• G/X and
a smooth mapping f:U^>P. Then 5 := ι/̂  1 = φ fiλ is a holomorphic sec-
tion of E\U. Since φ = φf and ^ = ^/, we see that

h(z, z) := (s, 5) =

Thus

Λ(z, w) = α(z, w)/Aj8(z, w)ίA .

For g e G, z eU9 we define J(#, z) G P by g~1φ(gz) = φ(z)J(g, z). Let 7(0, z) =
J(#, z)u. Then g'^igz) = s(z)j(g, z). Since ^(w)~V(0*) = φM^gψWJig, z),
we obtain

Let gff := exp tX e G, ate P and t t e P satisfy φ(w)~1gtφ(z) = α ^ . Then

Hence Hx(z,w)= -Ad*φbo1λ{X).
In our situation, if Gc φ P, the linear form iλ does not define a character

of Gc. Keeping this in mind, we consider

Λt(z, w) = {Adβ(z, w)φ(zy1 exp tX}~iλ

as a substitution for eίίH*<z'w> = exp ί < -iλ, Adβ(z, w)φ(z)~1X}. Since
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we obtain

PROPOSITION 2.2. Λt(z9 w) =j(gt, z)h(z, w)/h(gtz, w).

Finally we supplement the case L%ol(E, μ) Φ 0. Let {sj be an ortho-

normal basis of L\ol(E, μ) and set fe(z, w) = Σfi{z)fi(w) with st = s/j. Since

^ ( Σ 5 i ® s ί ) *s ^-invariant, the irreducibility [8] implies that k(z, w)h(z, w) is

a constant c. Hence, employing μ/c as an invariant measure on G/K, we

may assume that k(z, w)h(z, w) = 1. Then

/c(z, w)Λf(z, w)//c(w, w) = 7(0,, z)fc(0rz, w)Λ(w, w)

is a kernel function for the regular representation π^," 1 ) .
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