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1. Introduction

In this article we discuss the existence of nonzero weak solutions of the
boundary value problem

¥ f e M ) i n . (1.1)

u > 0 in Ω (1.2)

u = 0 on δΩ, (1.3)

where γ > 1, Ω is a bounded domain in Rn, Vu denotes the gradient of u
and λ is a positive parameter. In the case γ = 1, the equation (1.1) is the
mean curvature equation or the capillary surface equation. When n = 1, this
equation describes the equilibrium state of an elastic string yielding an exterior
force f(x, u). We give the derivation of the equation (1.1) for one dimensional
elastic string in Section 2. The parameter λ depends on a tension of the
string. The purpose of this paper is to investigate the dependence between
a weak solution uλ and parameter λ.

It is easy to see that solutions of (1.1), (1.3) correspond to critical points
of the functional

hW = I (y/l + \?u\2 - lγdx - λ f F(x, u)dx (1.4)
JΩ JΩ

defined on the usual Sobolev space VFo

ly(ί2), where

Under appropriate growth conditions on F(x, u) we show the existence of a
local minimizer of Iλ in Section 3. Next we give a proof to obtain an unstable
critical point of Iλ by using the mountain pass lemma without Palais-Smale
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condition and the monotone operator theory in Section 4. We mention an

example in the case of f(x, u) = quq-1 to illustrate our result in Section 5.

Throughout this paper, we assume that the measure of Ω is equal to 1

without loss of generality. Further, we use a notation γ* = nγ/(n — γ) when

γ < n and y* = oo otherwise, repectively.

2. Derivation of the model equation for one dimensional case

In this section we derive the model equation (1.1) for one-dimensional

elastic string. Let us consider an elastic string with length £ in the free state.

We assume a constituent law between strain force F and length of extension

ξ as

F = k(ί)ξ°, (2.1)

where σ is a positive constant and k(β) is a constant of elasticity. In the

case of σ = 1, it is known as Hooke's law. Now let us consider two strings

with the length £1 and £2

 m the free state. Further consider the string

constituted by connecting each one edges of these two strings which are

stretched with length of extension ξ1 and ξ2 respectively. Then the forces

yielding to the strings are fe^Kί and k(£2)ξ2 respectively. On the other

hand, since the connected string has the length of extension ξ1 4- ξ2, the force

which works on this string is k(ί1 + / 2)(£i + ζiY- Since the strain force F

is fixed at each point from the law of action and reaction, the equation

F = w,)ξi = W2)ξi = w, + £2)(ξx + ξ2γ (2.2)

holds. Namely,

ί/σ / p \l/σ / p \l/σ

H ) • and ξ - + ( H )
By the equations (2.3), we have the relation

{2Λ)

for each £l9 £2>0. Now we assume that k{ί) is continuous in L Then

this relation shows that the function — - is linear, i.e.,

\l/σ

with some constant c > 0. Hence we have
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K
k(£) = — (K: constant). (2.5)

v

Thus the relation (2.1) reduces to

(2.6)

Hence, when the string with length £ in the free state is stretched to £ + ξ,

the potential energy is given by

e =

Now consider a deformed string which was occupied in (x, y) = (£, 0),

0 < t < /, in the free state. Let us denote by (x(ί), y(ή) the displacement

point of the string which is at (ί, 0) in the free state. Then the length of

extension at (ί, t + dt) is given by

dξ = Jdx{t)2 + dy(ή2 - dt

and, from (2.7), the local potential energy caused by this extension is given by

σ + \

Thus the potential energy of this string caused by deformation is given by

σ+l= [' κ (dξ

}oσ+ί\dt
dt

In case more general nonlinear strain relation F = φ I - I is considered instead

of (2.6), the potential energy is given by

t (2.9)•-Γ
Jowhere Φ(t) is a primitive function of φ(t).

If the curve of the deformed string is given by a non-parametrized form

as y = u(x\ 0 < x < /, then letting x = t in (2.8) we have

E =



22 Nobuyoshi FUKAGAI and Kimiaki NARUKAWA

Hence denoting

v
F(x, u)dxf

Jothe potential energy caused by an exterior force, we have the total energy

of the deformed string as

y ι + y -ι\dχ- j 0

 F{χ>
After normalizing a constant and putting γ = σ + 1, we easily see that the

Euler equation of (2.10) is equal to (1.1).

3. A local minimizer of the functional Iλ

As is stated in Introduction, we consider the functional

h\M\ = I (y/ί + \fu\2 - lfdx - λ I F(x, u)dx
JΩ JΩ

defined on the Sobolev space W0

1>y(Ω), where

F(x,u)= \ f(x,ξ)dξ.

In this section we show the existence of a minimizer in the neighborhood

of the origin of this functional.

At first we put assumptions on f(x, ξ) as follows:

(Al) f\Ω x R^R is continuous,

(A2) f(x9 ί ) > 0 o n Ω x (0, oo), /(x, ξ) = 0 on Ω x ( - oo, 0],

(A3) there exists a constant q with 1 < q < y* and the inequality

holds on β x [0, oo) with some positive constants du d2.

In the beginning we see that a solution of (1.1) satisfies a weak maximum

principle, and owing to the assumption (A2), weak solutions of (1.1) with (1.3)

are necessarily nonnegative.

THEOREM 3.1. Let the function f(x, ξ) satisfy the assumptions (Al), (A2),

(A3). // u in Wo

lfy(Ω) satisfies (1.1) weakly, that is, the equality

f (VTTjgP-_iy-
Jβ Jl + \Fu\2 = λ [ f{x,u)φdx (3.D

JΩ

holds for any φ e CQ, then u(x) > 0 almost everywhere in Ω.
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PROOF. From the assumption (A3) and the Sobolev imbedding theorem,

it is easy to see that f(x, u) belongs to W^1>y(Ω)* (the adjoint space of WQ'Ί(Ω)).

Further the linear functional

L
is continuously extended to the space JFO

1>V(Ω). Thus the equality

Jo yi+IFwl2 J
Γ <>/1 + ' F w | 1 > —ΓttΓttbc = A f /(x, φrfx (3.2)

Jo y i + I F w l 2 Jβ

holds for any φ ) e W0

1<5l(fi). Since f(x, u) > 0 in Ω, the right hand in (3.2)

is nonpositive for any v(x) < 0 in Ω. Put v(x) = min {w(x), 0}. Then v is

nonpositive and belongs to WQ Y(Ω), since u e WO

1>V(Q). Thus we have

r
=

J

β\β- y i + |FM|2 Jβ- y i + \Fu\
FuVvdx + — . FuFvdx

J y 2

Jβ- y i + IPί l2 Jβy y -h|Pι;|2

where β " = {x e ί2|w(x) < 0}. Hence Vv = 0 almost everywhere in ίλ Not-

ing ιιeWj)liy(ί2) and Poincare's inequality |M|Ly(Ω) < c||Pι;||L V ( β ), we see v = 0

in ίλ This implies that w > 0 almost everywhere in Ω.

Now we take weak solutions (1.1) as critical points of the functional Iλ.

Noting that Wtfiy(β) is compactly imbedded in Lq(Ω) (1 < q < γ*)9 we easily

see that the functional Iλ is continuously differentiable on Wolty(fl) under the

assumptions (Al), (A2), (A3). Needless to say, a local minimizer u of Iλ is

a critical point, and hence it satisfies the Euler equation weakly which is

equal to (1.1).

THEOREM 3.2. In addition to the assumptions (Al), (A2), (A3), let us assume

1 < q < 2γ in (A3) and the following.

(A4) There exists a constant r with 1 < r < 2y and the inequality

f(x,ξ)>d3ξ'-1 (3.3)

holds on Ω x [0, ζ0) with some constants d3 > 0 and ξ0 > 0.

Then there exists a positive constant λ* such that, for any 0 < λ < λ*9
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there exists a nonnegative, nonzero local minimίzer uλ. Further

\\ruλ\\LHΩ)^>0 as λ^O.

PROOF. By Poincare's inequality we may adopt the norm

Wu\\LHΩ) = ( [ \Fu\vdxJ

as the one in Wj γ(Ω). Note the function φ(X) = (^/l + X2/y - l)y is convex,

since

Further, since we assume meas (ί2) = 1, Jensen's inequality

[ φ(X(x))dx > φ(ί X(x)dx\ (3.4)

holds for any X eLλ(Ω). Putting X = \Fu\γ in (3.4) leads to the inequality

j - \γdx > I /l + ί ί |ΓiιΓdxJ - lV (3.5)

for any we Wo1>y(Ω). From the assumptions (A3) the inequality

f |F(x,u)|dx^Cl f (|u| + |iι|
JΩ JΩ

q)dx (3.6)

holds. And further the right hand in (3.6) is dominated as

c1 (\u\ + \u\q)dx<c2<(\ \Vu\ydx) + \Vu\ydx) \

JΩ (ΛJΩ / VJβ / J
with some positive constant c2 by the Poincare-Sobolev inequality. Hence

we have

/ A M > (>/l + P 2 " l) v - c2A(p + Pq) (3.7)

on the sphere ||Fw||Lr(Ω) = p. If we take p = pλ = λa with a constant α sat-

isfying 0 < α < l/(2y — 1), then

on ||Fw||Ly(O) = PA Noting 2yα < α + l < ^ α + l from 1 < q < 2γ and com-

paring the orders of λ of the first and second parts of the right hand in (3.8)

as Λ->0, we can choose a constant λ* > 0 such that the right hand of (3.8)
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is positive for any 0 < λ < λ*. Hence Iλ[u] > 0 on the sphere ||Fw||Ly(f l ) = pλ

for any 0 < λ < λ*.

Next let us put

inf / λ M = / Λ ,
ueB(pλ)

where B(pλ) = {ue W0

Uy(Ω)\ \\Vu\\Ly{Ω) < pλ). Since the inequality (3.7) holds,

Iλ φ —oo. Let us take a sequence {un} in B(pλ) such that

hLun] -+ Iλ a s n~+ °°

Since | |FwJ|L y ( β ) < pλ9 the sequence {un} is bounded in WQ'7(Ω). Noting that

WQ'Y(Ω) is compactly imbedded in Lq(Ω) by the assumption 1 < q < y*, we

can find out a subsequence {unk} and uλe WQ'Ί(Ω) such that unk^>uλ weakly

in W0

Uy(Ω) and strongly in Lq(Ω) as fc->oo. Since the norm of W0

Uy(Ω) is

weakly lower semicontinuous, the inequality

II X7iι II ^ IITΎΊ i n f II X7it II ^" r%
II V 1*1 II Tγi (y\ ^ s 11111 1111 II V lΛw% \\jy(Ω\ ^ ^ r λ

holds. Thus uλ belongs to B(pλ). As is stated formerly, the functional

- lfdxί.
is convex and continuous on WQ*Ί(Ω). Hence this functional is weakly lower

semicontinuous on VF0

1>v(ί2). Here we used the fact that a convex and lower

semicontinuous functional defined on a Banach space is weakly lower semi-

continuous. For the proof see e.g. Dacorogna [9, Theorem 1.2 in Chap.

3]. Thus the inequality

lim inf I {J\ + \Vunf - lfdx > \ (jl + \Fuλ\
2 - lfdx

JΩ JΩ

holds. Further, since the functional §ΩF(x,u)dx is continuous on U(Ω\ we

have

lim inf { ί (Vl + IFuJ2 - lfdx - λ f F(x9 ujdxl

= lim inf I (Vl + |FuπJ2 - iγdx - λ lim | F(x, ujdx
fc->oo J Ω fc-^oo J Ω

> ί (X/1 + I ^ A I 2 - Ifdx - λ f F(x, uλ)dx = 7λ[Wλ] .
Jβ JΩ

Namely, Iλ[uλ~\ = Iλ. Hence this limit function uλ is a minimizer of Iλ in
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B{pλ). Next, in order to show that uλ is an interior point of B(pλ), let us

choose a nonzero function φ(x) in CQ(Ω)Γ\B(PX) satisfying 0 < φ(x) < ξ0 in

Ω, and put u = εφ in Iλ[u]. Then from the assumption (A4), we have

Jβ Jβ

J
φ(x)rdx

Ω

for any 0 < ε < 1 with some constant c3 > 0. Since 1 < r < 2y by the assump-

tion, Iλ\_εφ] < 0 holds for sufficiently small ε > 0. This implies Iλ < 0, and

hence uλ is nonzero. And further, since Iλ[u] is positive on the boundary

of B(ρλ) (i.e. ||Fw||Ly(β) = pλ) when 0 < λ < λ* as is stated formerly, the mini-

mizer uλ is an interior point of the set B(pλ). Thus uλ is a local minimizer

of Iλ in Wo y{Ω). Finally, \\Puλ\\LHΩ) < pλ = λa^>0 as λ-^0.

THEOREM 3.3. If 1 < q <γ instead of the assumption 1 <q <2y in Theo-

rem 3.2, then the results in Theorem 3.2 holds as λ* = oo and uλ in Theorem

3.2 is a global minimizer of Iλ.

Further we assume the following:

(A5) There exists a constant s > 1 which satisfies the inequality

f(x, ζ) > d^*-1 -d5 on Ωx (0, oo) (3.9)

with some constants d4, d5> 0.

Then, this minimizer uλ satisfies

Wuλ\\Ly{Ω) -• oo as λ -• oo . (3.10)

PROOF. The first half in the theorem is clear. We have only to notice

that Iλ[u] -> oo as Wu\\Ly{Ω)-κx). Hence we only show that \\Vuλ\\Ly{Ω)-+ QQ

as λ -• oo under the assumption (A5). First let us take φ e CQ(Ω)9 φ(x)>0

in Ω with \\Vφ\\Ly{Ω)= \. In the assumption (A5), we may assume s < γ.

Then, using the assumption (A5), and noting the inequality

I P I 2

for p e R", we have

|P(p<p)Ptfx-c4λ ί \pφ\sdx + c5λ ί
Je JΩ Jβ
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where c 4 and c 5 are positive constants and

27

c6 = c 4 φsdx , cη = c5 φί/x .
JΩ JΩ

Iλ = min Iλ[u] < inf (p y — c6λps H- c7Ap).
U€ΪΓl V(β) p>()

Hence,

If we take

then we have

where

and

On the other hand, from (3.7) the inequality

p2 - If - c2λ(p

(3.11)

(3.12)

holds on | |Ftt | | L y ( β ) = p. The right hand in (3.12) is monotone decreasing on

the interval (0, (c2λ/y)1/iy~1]) for each fixed λ > 0. Let us take a constant α

with 0 < α < l/(y - 1), then

if

Thus, if A > Ao, then the right hand in (3.12) is monotone decreasing on

(0, λ"). And hence

- lγ - c2λ(λ* + λxq)

holds on | |F«| |L, ( O ) = p with 0 < p < λ". This shows that

2* - \Y - c2λ(λ* + λ«) (3.13)
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holds on the ball B{λa) ={ue W0

Uy(Ω)\ \\Fu\\Ly{Ω) < λ"} when λ > λ0. Next

take α > 0 over again so small that 1 + qa < γ/(γ — s). Then by comparing

the orders of λ as λ -• oo in the right hands in (3.11) and (3.13), we see that

the inequality

- c2λ(λ" + λ"«)

holds on B(λΛ) for λ> λx with some large constant λ1 greater than λ0. This

shows that uλ φ B(λa\ i.e. \\Vuλ\\Ly{Ω)> λa for any λ>λx. Hence we have

4. Existence and asymptotic behavior of the secondary solution

In order to find out the second critical point of /A, we put a further

assumption on f(x, ζ).

(A6) There exist constants m greater than γ and ξx > 0 such that the

inequality

«, ξ)ξ>m\ /(x,
Jo

/(*, ξ)ξ > m I /(x, i , ) ^ (4.1)

holds on ί2 x [ξ l 5 oo).

Then we have

THEOREM 4.1. Let the assumptions (Al), (A2), (A3), (A6) be satisfied. Fur-

ther, if γ < q < y* in (A3), then there exists a postίve constant λ^ such that,

for any 0 < λ < λ^9 there exists a nonnegative, nonzero critical point vλ of

Iλ. Further, this critical point vλ satisfies

* °° as λ^>0 .

REMARK. The asymptotic behavior | |Ft; λ | | L , ( O ) -^ oo as λ-+0 implies that

this solution vλ is different from the one obtained in Section 3. In fact we

show the existence of vλ by using the mountain pass lemma without Palais-

Smale condition and the monotone operator method. This suggests that vλ

is an unstable critical point, while uλ obtained in Section 3 is a local minimizer,

i.e. a stable solution.

Prior to giving the proof of Theorem 4.1, recall the Ambrosetti-Rabinowitz

mountain pass lemma without Palais-Smale condition.

LEMMA 4.1. Let I be a C1-function on a Banach space E. Suppose there

exists a neighborhood U of 0 in E and a constant α which satisfy the following:
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i) I[u] > α on the boundary of U9

ii) /[0]<α,

iii) there exists a woφU satisfying /[w 0] < α.

Then, for the constant

μ = inf max /[w] (> α), (4.2)
γeΓ weγ

where Γ denotes the class of paths joining 0 to w0, there exists a sequence

{UJ} in E such that I[uj']->μ and Γ[uj]-*0 in £*.

The proof of this lemma was given by Aubin and Ekeland [3], which

relies on Ekeland's minimization principle. The brief proof is given in [5]

by Brezis.

Now we verify that Lemma 4.1 is applicable in our situation, namely

the functional Iλ on t^,1>y(Ω) satisfies the hypotheses i), ii), iii).

Let us put

(4.3)
c2(p

where c 2 is the constant in the inequality (3.7). Then the inequality (3.7)

implies

P2 - 1Y - c2λ(p

on \\yu\\LyiΩ) = p. Thus, by taking α = c2(λp — λ)(p + pq) and U =

{u e WQ'7(Q)\ \\VU\\L7(Q) < p}, which are denoted by αp and Up respectively, the

hypothesis i) holds for these αp and Up. Since /A[0] = 0, the hypothesis ii) is

valid if αp > 0, i.e., 0 < λ < λp. Finally we check the hypothesis iii) for these

constant ap and neighborhood Up. From the inequality (4.1), the inequality

F(x, ξ) =

holds for ξ>ξx. Since f(x9ξ) is positive for ξ > 0, there exist an xoeΩ

and a neighborhood D of x0 such that the inequality

F(x,ξ)>d9ξ
m-c10 (4.4)

holds on D x (0, oo) with some positive constants c 9, c 1 0 .

Now let us take a nonnegative function φ in Q?(Ω) satisfying φ(x) > 1

on D. Then, from (4.4) the inequality

F(x, rφ{x)) > c9r
mφ(xr - c10 (4.5)

h o l d s o n U for r>ξx. H e n c e
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hίrφ]= ί (J\ + r

2\Vφ\2-\)ydx-λ ί F(x,rφ)dx
JΩ J Ω

< ί {J\ + r2\Vφ\2 - lfdx - λ ! F(x, rφ)dx
J Ω JD

< r M \Vφ\ydx-λc9r
m\ φmdx + λc10

JΩ JD

-> — oo as r -> oo . (4.6)

Therefore Iλ[rφ] < 0 for large r, and hence we have check d tlie hypothesis

i), ii), iii) by taking α = αp and U = Up in our problem when 0 < λ < λp.

Let 0 < λ < λp. Then Lemma 4.1 asserts that there exists a sequence

{UJ} in Wo'y(ί2) such that /A[u7] ->μA, which is the constant μ defined by (4.2)

for the functional Iλ, the neighborhood U = Up and vv0 = Rφ for sufficently

large R, and /A[W/]->0 in WQ'7(Ω)*. This sequence satisfies the following.

LEMMA 4.2. Lei ί/ie hypotheses in Theorem 4.1 be satisfied, 0 < λ < λp,

and {uj} be the sequence in Wo*γ(Ω) obtained in Lemma 4.1. Namely it satisfies

/A[tίJ ]->μΛ and /i[Wj ]->0 in Wo*y(Ω)*. Then this sequence {UJ} is bounded

in W^{Ω).

PROOF. The conditions Iχ\Uj~\-*μλ and /i[w7]->0 mean

Jl + \Fuj\2 - iγdx -λ\ F(x9 Uj)dx = μλ + o ( l ) , (4.7)

and IΙCjllιri '(β)* = ^(1) a s J-^oo. Here we put /1[M, ] = £,-. Operating the
equality (4.8) to ii^e W0

Uy(Ω), we have

y W ^ J

 | 2

; — I Fiol2dx - 2 f(χ9 Uj)ujdx = <C,, Wj > , (4.9)
JΩ y/1 + |Fw, | 2 J β

where <^., Uj} denotes the action of ^.e W0

Uy(Ω)* to w/e Wtff7(β) F r o m t h e

equalities (4.7) and (4.9), we have

r
{f{x, Uj)Uj - γF(x, Uj)}dx

JΩ

(4.10)
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Since the integrand in the right hand in (4.10) is nonnegative, the inequality

λ ί {/(*, Uj)Uj - yF(x, Uj)}dx < -<ζ, , Uj) + yμλ + o(l) (4.11)
Jβ

holds. From the assumption (A6), the left hand in (4.10) is estimated as

λ {f(x, uj)uj - yF(x, Uj)}dx > λ(m - y) \ F(x, Uj)dx - c n (4.12)
Jβ Jβ

with some constant c n . Combining (4.7), (4.11), (4.12), and noting m — y > 0

by the assumption, we have

[yj\ + |Fw/|2 — l)ydx = λ F(x, Uj)dx + μλ -f o(l
Jβ Jβ

< -
m

1
<

m — y

1

with some positive constants c12 and c 1 3 which are independent on uy Put-

ting WUj\\Lγ(Ω) = Pj and using Jensen's inequality, we have

ί
J

+ P,2 - i)y < ί (Vi + I ^ l2 - V?dχ
J

Since y > 1, {py} is bounded in 7, that is, the sequence {UJ} is bounded in

Hence we can find out v e ^0

1 > y(Ω) and a subsequence of {Uj}, still denoted

by {MJ}, such that MJ -• t; strongly in U(Ω) for any 1 < r < γ*9 weakly in

WQ-7(Q), and almost everywhere.

Put

- A ί
Jβ

F(x, w)dx,
Jβ

where

[u\ = I
Jβ



32 Nobuyoshi FUKAGAI and Kimiaki NARUKAWA

Then each function Uj of the sequence satisfies

K'luj ] = Γλ[uj ] + mx,Uj) (4.13)

in the sense of W0

Uy(Ω)* and Γλ[uj] -•() in W0

Uy(Ω)*. Noting the assumption

(A3), we have

f(x,Uj)^f(x9Ό) in L*to-ι\Ω)9

and hence in Wo'γ(Ω)*. By taking the limit j - ^ o o in (4.13), the right hand

side converges to λf(x, v) in WQ'V(Ω)*.

In general it is hopeless to obtain K'[v] = λf(x9v) because of the non-

linearity of K'[y~\. But fortunately we can show this in our case owing to

the convexity of K.

LEMMA 4.3. For the limit function v of the sequence {UJ} stated above,

the equality K'[v] = λf(x,v) holds in the sense of WQ%Ί(Ω)*.

The proof of this lemma is given by using the monotonicity method of

Minty and Browder. See e.g. Lions [13, Chap. 2] and Saaty [19, pp. 58-59].

Let us take λ^ = sup p > 0 A p . Then, noting

we easily see that the limit function v given above, which we denote by υλ

from now on, is the required solution stated in Theorem 4.1.

Now we show the latter part in Theorem 4.1, namely | |Ft; λ | |L V ( Ω ) -* oo as

λ -• 0. Recall

Pq)

and λp -• 0 as p -> 0 and oo, respectively, from the assumption γ < q. Hence

λp attains its maximum λ# at some point p = p0 > 0. Let us take the

sequence {UJ} in Lemma 4.2 which converges to the solution vλ. Then, for

any λ with 0 < λ < λ^, taking p = p0 in the definition of ocp and noting that

F(x, ξ) is nonnegative, we have

αPo = (Λ* - λ)c2(p0 + pξ)

<μλ= lim Iλluj]
j-*co

= lim j I (Vl + |Fu/ - \)Ux - λ I F{x, Uj)dx\
./-co IJβ JΩ J

< lim (4.14)
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Further, from (4.9) and the fact that HC/Ίlw^β)*->0 a s j-> °°> t r i e right hand

in (4.14) is equal to

lim f f(χ, uj)ujdx = - ί f(x, vλ)υλdx . (4.15)
λ

y

Hence we have, from the assumption (A3),

Po) Z -

λ
y . . . . \vχ\qdx

with some positive constants c 1 4 and c 1 5 . This implies that

W.'

L
as λ -• 0. Noting the Poincare-Sobolev inequality, we complete the proof of

Theorem 4.1.

In Theorem 3.3 we have shown the existence of global minimizer for

any λ > 0 and given the asymptotic behavior of this minimizer as λ -• oo

under the appropriate assumption on /(x, ζ). Corresponding to this, we can

give the existence and asymptotic behavior of unstable solution for large λ

if fix, ξ) satisfies a certain behavior on ξ.

THEOREM 4.2. Let the assumptions (Al), (A2) and (A6) be satisfied.

Further let us assume

(A3') there exist constants p and q with 2y < p < q < y* and the inequality

holds on Ω x [0, oo) with some constant d6 > 0.

Then there exists a nonzero and nonnegative critical point vλ for any λ > 0.

Besides these assumptions, if (A6) is valid for m>2y with ξί = 0, then vλ

satisfies

Wυλ\\Ly(Ω)^° a s λ^> OO .

PROOF. From the assumption (A3'), the inequality

hίu] > (V1 + P2 - l)y - c16λip* + p«)

16
holds on H^wH^a) = P with some constant c16 > 0. Hence if we put

_ (Vi + p2 - iγ
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instead of (4.3), then we can find out a critical point vλ of Iλ for any λ with

0 < λ < supp>0Λp. The proof is just the same. Noting sup p > 0 /l p = oo, we

see that there exists a critical point for any λ > 0. Next let us take the

function φ stated in checking the hypothesis iii) in Lemma 4.1, namely a

nonegative function φ e CQ(Ω) with φ(x) > 1 on D where F(x, ξ) satisfies the

inequality (4.4) for any ξ > 0. Then we have

rφ)dxhίrφ] = f (y/l + r2\Fφ\2 - lYdx - λ [ F{x,
JΩ JΩ

<(\ \Fφ\ydx\ry-λ I F(x,rφ)dx

= Ary-λH(r), (4.16)

where A = \Ω\Vφ\ydx and H(r) = J β F(x, rφ)dx. It is easy to see that H(r) is

continuous in r > 0, positive on r > 0 and H(0) = 0. Further, as was seen

in (4.5),

H(r) > Brm - c10 for r > ξί ,

where B = c 9 JD φ(x)mdx > 0. Since m > y, there exists # (> 0) which is inde-

pendent on λ such that

Ary - Λ//(r) < 0

for λ > 1 and r > Λ.

Take the function Λ^ as the w0 stated in Lemma 4.1 as before, and

consider the straight line from the origin to Rφ among all paths which connect

these two points. Then from Lemma 4.1, (4.16) and the positivity of H{r)

for r > 0,

0<μλ< max Iλlrφi]
0<r<R

< max \_Ary - λH(r)] -> 0 as λ -• oo ,
0<r<Λ

where μλ denotes the μ stated in Lemma 4.1.

Next let {UJ} be the sequence stated in Lemma 4.2. Namely,

Uj->vλ weakly in t^o

l y(ί2) and strongly in Lq(Ω).

Since Iλ is weakly lower semicontinuous in Wo'y(Ω), the inequality

> h ^ \ ( V I + IFWΛI2 - Wdx - λ \ F(x, v
JΩ JΩ

)dx (4.17)
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holds. From the assumption (A6) with ξί = 0, we have

F(x, vλ)dx < - /(*, vλ)vλdx .
JΩ ™ JΩ

Further, since vλe W^y(Ω) is a weak solution of (1.1), the equality

35

\x, vλ)vλdx

holds. From (4.17), (4.18) and (4.19),

> f
JΩ

- f
~ ~ \ f(x,

m JΩ
vλ)vλdx

Now we put

φ(X) = U\

Noting m > 2y, we easily see that

φ(X)

as X -> 0 and

m J\

m

2V + 2 (m = 2y)

as

(4.18)

(4.19)

(4.20)

Further φ(X) > 0 for X > 0. Thus there exists a monotone increasing convex
function g(X) on [0, oo) such that φ(X) > g(X) > 0 for X > 0 with #(0) = 0.
For example, we may put

g(X) =

(0 < X < 1)

with small ε > 0. From (4.20) and by using Jensen's inequality, we have
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μλ> ί φ(\Fvλ\
y)dx>^g(\Fvλ\

y)dx

: 0 . (4.21)

Letting λ -• oo in (4.21) and noting that μΛ->0 as λ -• oo, we see that

g( \Fvλ\
ydx)^0 as A-^oo .

VJβ /

Since g is monotone increasing and g(0) = 0, we have

\Fvλ\
ydx->0 as λ^oo .

5. For the case when /(JC, w) = ^II*"1

To illustrate our result presented in the preceding section, we consider

the boundary value problem

-y
'\ + |Pu| 2 - I ) 7 " 1 Ί
— 2 Fu = λqu*-1

w > 0 in Ω (5.2)

w = 0 on 3D, (5.3)

where l<q<γ*. In this case f(x,u) = qu%~1 and F(x, u) = ι4 , for which

solutions of (5.1), (5.2), (5.3) correspond to critical points of the functional

hίu] = ί U/l + l^l2 - Ifdx - λ ί u\dx (5.4)
JΩ Jβ

defined on the Sobolev space Wo

ly(ί2), where u+ = max {u, 0}. Then assump-

tions (Al), (A2), (A3), (A5) are satisfied. Further assumptions (A4), (A6) and

(A3') hold for 1 < q < 2γ, y < q and 2y < q < y* respectively.

Thus, it follows that

(i) When 1 < q < y, there exist nontrίvial weak solutions {wλ}, λ > 0, SMC/I

that

II^AIU^O αs^O, (5.5)

Wuλ\\Ly{Ω) -• oo as /I -• oo . (5.6)
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(ii) When γ < q < 2y, there exist nontrivial weak solutions {uλ}9 0 < λ < λ*,

and {vλ}, 0 < λ < λ^, such that

U ^ O as λ^O, (5.7)

and

Wvλ\\L1{a)^co as λ^O, (5.8)

respectively.

(iii) When 2γ < q < γ*9 there exist nontrivial weak solutions {vλ}, λ > 0,

such that

)^oo as λ^O, (5.9)

and

l l ^ λ | | L 7 ( Ω ) ^ 0 as λ -+OO. (5.10)

On the other hand, to mention the non-existence of nontrivial solutions

in problem (5.1)—(5.3) for q > 2nγ/(n — 2γ) and n > 2γ, we recall here a general

variational identity obtained by Pucci and Serrin [17] corresponding to critical

points of the functional

J β
/ [ « ] = I P(x,u,Vu)dx (5.11)

where x = ( x 1 , - , x j , u = u(xu-',xn) and Vu = (—^-, , -**-). We con-

sider integrands & = &(x, u,p\ p = (pl9 , pn\ which are of class C 1 on the

domain Ω x R x Rn

9 and the vector function

, M, p) = — - , •• , - — )(χ, M, p) (5.12)

is of class C 1 on β x R x /?". Critical points of (5.11), which are of class

C2(ί2), satisfy the Euler equation

div {&p(x, u, Vu)} = J^u(x, u,Fu)9 x e Ω , (5.13)

w h e r e ^ = ——.
du

L E M M A 5.1. Let u = u(x) be of class C2(Ω) and Pi = ^—, i = 1, ••*, n.
CXi

Then, the following identity holds in Ω:
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- div [ {(x - p) + au} &p(x, u9 p) - x^(x, u, p)]

= n&(x9 w, p) + x &x{x9 u9 p) - (1 + a)p &p(x, u, p)

- au div {&p(x, w, p)} - (x p)(div {&p(x9 u, p)} - ^u(x, u9 p)), (5.14)

where a is an arbitrary constant and ^x = -—, •••, - —
\dx, dx{

PROOF. It is easy to see that

A' ft Λ*r< ΛΛ V d f - d&<
div {(x p)^v\x, u, p)\ = L~ϊ

^ d2u ^
= p ^p(x, u, p) + Σ xj* T~(χ> M) P) + (χ'P) d i v {&p(x> w ' Z7)} ' ( 5 1 5 )

div {u&p{x9 M, p)} = Σ —- ] M — - ( x , M, p)
i 0X i op

] — - (
opi

= p - j y x , u9 p) + u div {&p\x9 u, p)} , (5.16)

div {x^(x, w, p)} = Σ JΓ {xj&ix, u, P)}
j vXj

, u9 p) + x &x(x9 u9 p) + (x p)^ύ(x, w, p)

( )

and, subtracting (5.15) and a times (5.16) from (5.17) implies (5.14).

LEMMA 5.2. Lei u e C2(ί2) be α solution of (5.13) with M = 0 on δί2

a be an arbitrary constant. Let

P(x9 p) = p-&p(x9 0, p) - J*-(x, 0, p) (5.18)

<2(x, II, p) = H J ^ X , w, p) + x J^(x, II, p)

- (1 + a)p J^(x, w, p) - aW^M(x, u, p) (5.19)

e identity

- P(x, Fw)(χ v)ds= Q(x,u,Pu)dx (5.20)
Jdβ Jβ

, vv/zere v is the outer normal vector on dΩ.

du
PROOF. Since u satisfies (5.13) on Ω and Pu = — v on dΩ,

ov
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(x Fw)(jyx, u, Vu) v) = (x v)(jy*, w, Vu) - Vu) on δί2 .

The identities (5.13), (5.14), (5.21) and the divergence theorem imply

(x v){(jyx, M, Fu) Fu) - ^ ( x , u, Vu)}ds

39

(5.21)

J dΩ

-L w, Vu) , M, F M )

, u, Vu)}dx . (5.22)

This shows (5.20).

LEMMA 5.3 (Pucci and Serrin [17, Theorem 1]). Assume Ω is bounded

and star-shaped with respect to the origin. Suppose also that

P(x, p) > 0 for all (x, p) e dΩ x Rn,

ί/iaί there exists a real number a such that

β(x, w, p) > 0 /or a// (x,u,p) e Ω x R x Rn,

(5.23)

(5.24)

w/iere P and Q are defined by (5.18) and (5.19), respectively. Assume finally

that either u = 0 or p = 0 whenever the equality in (5.24) ΛoZds. 77ιen the

variational equation (5.13) /ias no nontrivial solution u e C2 (Ω) Γ\ C1 (Ω) which

vanishes on dΩ.

PROOF. Since x v > 0 on dΩ, (5.20), (5.23), (5.24) imply Q(x, u9p) = 0

and hence u = 0 or p = 0 in ίλ It follows that u = 0 in Ω.

Now we apply Lemma 5.3 to the problem (5.1)—(5.3). In this case,

J^(x, w, p) =

for which the relation

implies that

P(x, p) = p

(5.25)

and
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x, M, p) = n^(x, ii, p) + x • J^(x, w, p)

- (1 + a)p J*p(x, M, p) - αwJ^(x, w, p)

\P\2 ~ I)7 - An'}

+ λaquq

(n - 2(1 + a)γ)(y/l + | p | 2 -/ (5.26)

Taking a = n/(2γ) — 1 the assumption of Lemma 5.3 is satisfied for a > 0

and q > n/a. Hence, there exist no nontrivial solutions for n > 2γ and

q > 2ny/{n - 2γ).

We have no result about our problem concerning the existence of solu-

tions in the case y* < q < 2ny/(n — 2y).
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