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1. Introduction

This paper is devoted to the study of the oscillatory (and nonoscillatory)

behavior of second order functional differential equations of the type

(A) (|y(ί)|β sgn /(ί))' + q(t)\y(g(t))\* sgn y(g(t)) = 0

for which the following conditions, collectively referred to as (H), are assumed

to hold:

(a) α is a positive constant;

(b) q(t) is a positive continuous function on [a, oo), a ̂  0;

(c) g(t) is a positive continuously differentiable function on [α, oo) such

that g'(i) > 0 for ί ^ a and lim g(t) = oo.
r-»oo

By a solution of (A) we mean a function -yeC 1(T J ? J oo), Ty ^ α, which has the

property | j/|α sgn/eC1^, oo) and satisfies the equation for all sufficiently

large t in [Ty, oo). Our attention will be restricted to those solutions which

are nontrivial in the sense that sup {|y(ί)l ί ^ T} > 0 for any T> Ty. Such
a solution is said to be oscillatory if it has an infinite sequence of zeros

clustering at oo; otherwise it is said to be nonoscillatory. By definition, the

equation (A) is oscillatory if all of its solutions are oscillatory and

nonoscillatory otherwise.

The oscillation results for (A) to be proved in this paper are as follows.

THEOREM 1. The equation (A) is oscillatory if

(1.1) Γ q(t)dt = oo.
Ja

THEOREM 2. Suppose that

Γ00

(1.2) q(t)dt < oo
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and that g(t)^t for t ^ a.

(i) The equation (A) is oscillatory if either

(1.3) lim sup ία q(s)ds> 1
ί-»oo 'ί

or

q(s)ds >
Jt (« +

(1.4) l iminff
ί-»oo

(ii) The equation (A) is nonoscillatory if

(1.5) limsup(0(t))α \ q(s)ds< **
(α + irH

THEOREM 3. Suppose that (1.2) holds and that g(t) ̂ t for t ^ α.

(i) Γλe equation (A) z'j oscillatory if either

(1.6)

Γ(1.7) lin
ί-

(ii) The equation (A) is nonoscillatory if

Γ°° tfα

(1.8) lim sup ί« q(s)ds < Γ.
-» J, (α+ir 1

We also consider the parametrized equation

(Aλ) (|/(ί)|α sgn /(ί))' + λq(t) \y(g(t))\" sgn y(t)) = 0, A > 0,

subject to the conditions (H), and examine its strong oscillation and strong

nonoscillation. Here we say that (AΛ) is strongly oscillatory [respectively
strongly nonoscillatory] if (AA) is oscillatory [respectively nonoscillatory] for

all values of λ > 0 in the sense defined above. There is a class of equations

of the form (Aλ) for which the situation of strong oscillation and that of strong

nonoscillation can be completely characterized, as the following theorem shows.

THEOREM 4. Suppose that (1.2) holds and that

(1.9) 0 < lim inf —, lim sup < oo.
- -
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(i) The equation (AA) is strongly oscillatory if and only if

Γ00

(1.10) lim sup ία q(s)ds = oo.
f->00 Jt

(ii) The equation (AA) is strongly nonoscillatory if and only if

Γ00

(1.11) lim ία q(s)ds = 0.

The above-mentioned theorems form a natural generalization to (A), (AA)

of the basic oscillation results recently developed in [4] for the half-linear

ordinary differential equations

(B) ( |/rsgny)'

(BA) ( |/rsgn/)'

In proving these theorems a crucial role is played by two types of comparison

principles which relate the oscillation or nonoscillation of functional differential

equations of the form (A) to that of suitably associated equations without

functional arguments of the form (B). Such comparison principles are

presented in Section 2, and the proofs of our main results are given in Section

3. The final Section 4 concerns the possibility of extending our oscillation

theory to equations of the forms

(C) p W I / ( f ) l β sgn /(ί))' + q(t)\y(g(t))\"sgny(g(t)) = 0,

(Q) (pWI/(ί)lβsgn/(ί))' + λ q ( t ) \ y ( g ( t } ) \ « s g n y ( g ( t ) ) = 0.

2. Comparison principles

We begin with a preliminary result which is an extension of the second

order version of a result of Onose [7].

LEMMA 1. Let F(ί, x) be a continuous function on [α, oo) x R which is

nondecreasing in x and satisfies sgn F(t, x) = sgn x for each fixed t ^ a. Let

α and g(t) be as in (A). If the differential inequality

(2.1) (|x'(ί)lβ sgn x'(ί))' + F(t, x(g(t))) £ 0

has an eventually positive solution, then so does the differential equation

(2.2) (iy(ί)lβsgn/(ί))' + F(

PROOF. Let x(ί) be an eventually positive function satisfying (2.1). Let

T> a be such that x(ί) > 0 and x(g(t)) > 0 for t ^ T. Since (2.1) implies that
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x'(t) is decreasing for t ^ Γ, x'(t) is eventually one-signed, that is, either x'(ί) > 0
for t ̂  T or there is T' > T such that x'(ί) < 0 for t ^ Γ. The latter case
is impossible, for if x'(t) < 0 for t ^ Γ', then, integrating the inequality
x'(f) ^ x'(T'), £ ^ T', from T' to ί and letting ί -» oo, we see that x'(f) -> - oo
as ί->oo, which contradicts the assumed positivity of x(t). It follows that
x'(t) > 0 for t ^ T. Integrating (2.1) over [ί, oo), we have

ί F(s,x(g(s)))ds, t^T,

where ω = lim (x'(t))x ^ 0, that is,

ω + Fs, x s ) ds , t £ Γ.ί>
An integration of the above inequality over [T, t] yields

Γr / Γ°° \*
(2.3) x(t) ^ x(T) + ω + F(r, x(g(r)))dr} ds, t ^ T.

J r \ Js /

We now put Γ^ = min {Γ, inf g(t)} and define the set Yc C^, oo) and

the mapping J^: Y^CCT^, oo) by

y= {yεC[T^ oo): 0 ̂  y(t) g x(t), t ̂  T^}

and

x(T) + Γ (ω + Γ F(r, y(g(r)))dr\ ds, t £ T,
Jr \ Js /

x(t), T^^t^T.

Then it is verified without difficulty that 2? is a countinuous mapping which
sends 7 into a relatively compact subst of 7 So, J^ has a fixed element y e 7
by the Schauder-Tychonoff fixed point theorem. This fixed element y = y(i)
clearly satisfies the functional integral equation

•t / |Όo V

Γ \ J s T ' y g r /

= x(T) + | I ω + I F(r, yto(r)))dr ds, t ̂  T,

from which it readily follows that y(t) is a positive solution of the differential
equation (2.2) on [T, oo).
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We now state and prove two comparison principles on which the proofs
of our main results (Theorems 2-4) are based. The first one is a natural
extension of the classical Sturmian comparison theorem for second order linear
ordinary differential equations. See [1] and [3].

THEOREM 5. Consider the equations (2.2) and

(2.4) (|/(ί)|« sgn y(t)Y + G(f, y(h(t))) = 0,

where α, g(i) and F(ί, x) are as in Lemma 1, and h(t) and G(f, y) satisfy the
following conditions:

(a) h(t) is a positive continuously differ entiable function on [α, oo) such

that h'(i) > 0 for t^a and lim h(i) = oo
f->oo

(b) G(f, y) is a continuous function on [α, oo) x IR which is nondecreasing
in y and satisfies sgn G(ί, y) = sgn y for each fixed t ^ a.

Suppose moreover that

(2.5) g(t)*h(t), ί^α,

and

(2.6) F(t, x) sgn x ^ G(ί, x) sgn x, (t, x)e [α, oo) x R.

If (2.2) is nonoscillatory, then so is (2.4); or equivalently, if (2A) is oscillatory,
then so is (2.2).

PROOF. Suppose that (2.2) is nonoscillatory. Then, (2.2) has a nonoscilla-
tory solution x(t) which may be assumed to be eventually positive. As in
the proof of Lemma 1 we see that x'(t) is eventually positive, so that in view
of (2.5) and (2.6) there is T> a such that

xfo(ί)) £ x(h(t)) and F(ί, x(g(t))) £ G(ί, χ(Λ(t))) for ί ̂  T.

It follows that x(ί) satisfies the diίϊerential inequality

(|x'(ί)|α sgn x'(ί))' + 'G(ί, x(h(t))) gO, ί ̂  T.

Lemma 1 then shows that the equation (2.4) possesses a positive solution y(t)
for ί ̂  T, which implies that (2.4) is nonoscillatory.

The second result in this section is a variant of a comparison theorem
of Mahfoud [5]. See also [3].

THEOREM 6. Let (2.2) be as in Lemma 1 and suppose that it is
nonoscillatory. Then, for any continuously differentiable function k(i) on [α, oo)
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such that k'(i) > 0 and k(t) ^ g(t) for t ^ α, the equation

k'(i\
(2.7) (|z'(ί)r sgn z'(ί))' + _;; FGΓ MM*)), z(/c(ί))) = 0

is nonoscillatory, where g ~ 1 ( s ) denotes the inverse function of g(t).

PROOF. Let y(t) be a nonoscillatory solution of (2.2). We may assume
that y(t) > 0 for ί ^ Γ> a. Repeating the procedure which led to (2.3) in the

proof of Lemma 1, we see that

(2.8) y(t) = y(T) + Γ (ω + Γ F(r, y(g(r)))dr\ ds, t ̂  T,

where ω = lim (y'(t))Λ ^ 0. We use the change of variable r = g 1(k(ρ)) in
ί-> 00

F(r, y(g(r)))dr. Noting that k~l(g(s))^s, we find

F ( r , y ( g ( r ) ) ) d r = ,
'tow) 0(0

r̂̂  dP>
s 0'(0 CMP)))

and so from (2.8) we obtain

Γt / f oo k'(o\ \^
^ y(Γ) + ω + F(g-l(k(p))9 y(k(p))) _1^ — dp <fa,

J τ \ J s 0(0 (fe(p))) /

Let Γ^ = min {T, inf g ( t ) } . Define

Z = {z€C[7;, ω): 0 ̂  z(t) ̂

and let ^ denote the mapping from Z to €[7^, oo) defined by

fί / Γ°

ω +
JrV Js

JL// \

, z(k(p))) _£ dp ds, ί £ Γ.

Then, as is easily verified, all the conditions of the Schauder-Tychonoff fixed
point theorem are satisfied for ^ and Z, and hence there exists a zεZ such
that z = &z, i.e.,
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fί / f 00 1L// \ \ ά

z(ί) = y(Γ) + ω + F(g-*(k(p)), z(k(p}}} _^ dp ds, t* T.
JΛ Js 9(9 (k(p))) J

Differentiation of the above equation shows that z(t) is a solution of (2.7) for
ί ^ Γ. Since z(t) is positive for t ^ T, we conclude that (2.7) is indeed
nonoscillatory.

Important special cases of Theorem 6 are contained in the following
corollary.

COROLLARY. Consider the functional differential equation (2.2) and the
ordinary differential equation

(2.9) (|z'(t)|'sgnzW+ „ !u. f(g"1(0.z(0) = 0.
0(0 (0)

(i) Suppose that g(t) g t for t ^ a. If (2.2) is nonoscillatory, then so is
(2.9).

(ii) Suppose that g(i) ^ t for t ^ α. T/* (2.9) w nonoscillatory, then so is

(2-2).

3. Proofs of oscillation theorems

PROOF OF THEOREM 1. Assume that (A) has an eventually positive solution
y(i). Since y'(t) is also eventually positive, there exist positive constants c
and T such that y(g(t)) ^ c for t ^ T. Combining this inequality with

ΓJrIT

which follows from integration of (A), we see that

Γ00

c* q(t)dt < oo.
Jr

This contradics the assumption (1.1). Similarly, (A) has no eventually negative
solution, and so (A) is oscillatory.

In order to prove Theorems 2-Λ we need the following oscillation and
nonoscillation criteria for the half-linear ordinary differential equations (B)
and (BA).

LEMMA 2. Suppose that (1.2) holds.

(i) The equation (B) is oscillatory if either
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Γ00

(3.1) lim sup ία q(s)ds>l

or

(3.2) lim inf ία q(s) ds >
V '— J t * V '

(ii) The equation (B) is nonoscillatory if

(3.3) lim sup ία q(s)ds <
~

Γ°α

I
Jί (« + z+1

LEMMA 3. Suppose that (1.2)
(i) 77ze equation (BA) w strongly oscillatory if and only if

Γ00

(3.4) lim sup ία g(s)ds = oo.
ί— >• oo IJ f

(ii) 77ze equation (BA) w strongly nonoscillatory if and only if

(3.5) l imία |%(s)έfa = 0.
ί->00

Jr

For the proofs of these lemmas we refer to Kusano, Naito and Ogata [4] .

PROOF OF THEOREM 2. (i) Suppose that (1.3) or (1.4) holds. Since (1.3)

and (1.4) are the same as (3.1) and (3.2), respectively, the equation (B) is

oscillatory by (i) of Lemma 2. Since g(t)^t for t ^ a, Theorem 5 applied

to (A) and (B) shows that the equation (A) is oscillatory.
(ii) We apply to (A) the second statement of the corollary to Theorem

6, according to which the nonoscillation of (A) is implied by that of the

equation

(3.6) (|z'(ί)lα sgn z'(ί))' + ̂  1(t)) |z(ί)|α sng z(ί) = 0.
9(9 (0)

By (ii) of Lemma 2, a sufficient condition for nonoscillation of (3.6) is

Since this is equivalent to the condition (1.5), the desired conclusion follows.

PROOF OF THEOREM 3. (i) From the first statememt of the corollary to

Theorem 6 it follows that the oscillation of (A) is implied by that of the
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equation (3.6). By (i) of Lemma 2 the oscillation of (3.6) is in turn implied
by either of the following conditions:

(3-7) li

Γ00 gfor'C
J, ff'GΓ'ί

(3.8) lim sup t *w

 1

w ;&> - .; * - P ' " - 1 '" (α+l) α + 1

To complete the proof it suffices to observe that (3.7) and (3.8) are equivalent
to (1.6) and (1.7), respectively.

(ii) Suppose that (1.8) holds. Since (1.8) is identical with (3.3), (ii) of
Lemma 2 then implies that the equation (B) is nonoscillatory. In view of
Theorem 5 we see that the retarded differential equation (A) must be oscillatory.

PROOF OF THEOREM 4. The proof is divided into two steps.
(The first step) We consider the two equations

(3.9) (|z'(ί)Γ sgn z'(ί))' + λq(t) |z(yί)lα sgn z(γt) = 0,

(3.10) (|z'(ί)|αsgnz'(ί))' + λq(t)\z(y-ίt)\^gnz(y-it) = 0,

where γ > 1 is a constant, and show that the strong oscillation or strong
nonoscillation of (3.9) is equivalent to that of (3.10).

That the strong nonoscillation of (3.9) implies that of (3.10) is an immediate
consequence of Theorem 5. To prove the converse we proceed as follows. Let
(3.10) be strongly nonoscillatory. By (i) of the corollary to Theorem 6, the
ordinary differential equation

(3.11) (|tι'(ί)lβ sgn ιι'(ί))' + λγq(γt)\u(t)\* sgn u(t) = 0

is strongly nonoscillatory. The "only if" part of Lemma 3-(ii) then implies

(3.12) lim ία I γq(ys) ds = 0.

Note that (3.12) is equivalent to

(3.13) lim ία

From the "if" part of Lemma 3-(ii) it then follows that the equation

(3.14) (\u'(t)\* sgn u'(t))' + λ γ ' i q ( γ - 1 t ) \ u ( f ) \ Λ sgn u(t) = 0

is strongly nonoscillatory. Comparing (3.14) with (3.9) via (ii) of the corollary
to Theorem 6 shows that (3.9) is strongly nonoscillatory as desired. Observe
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that (3.12) and (3.13) are equivalent to (1.11).

If (3.10) is strongly oscillatory, then so is (3.9) by Theorem 5. Conversely,

if (3.9) is strongly oscillatory, then so is the equation (3.14) by (ii) of the

corollary to Theorem 6. The strong oscillation of (3.14) implies that

(3.15) l imsupf" γ 1q(γ ls)ds=σo.
ί-»00 Jί

(cf. Lemma 3-(i).) Since (3.15) is equivalent to

Γ00

(3.16) lim sup t* yq(ys)ds = oo,

(i) of Lemma 3 ensures that (3.11) is strongly oscillatory. The desired strong

oscillation of (3.10) now follows from (i) of the corollary to Theorem

6. Observe that (3.15) and (3.16) are equivalent to (1.10).
From the above observations we see that the equations (3.9) and (3.10)

are strongly oscillatory [respectively strongly nonoscillatory] if and only if

(1.10) [respectively (1.11)] is satisfied.

(The second step) Because of the assumption (1.9) on g(t) there exist

constants y > 1 and T > a such that

(3.17) V'lt^g(t)^γt9 t*T.

For this choice of γ consider the equations (3.9) and (3.10).

By virtue of Theorem 5 the strong oscillation of (AA) implies that of (3.9)

and the strong oscillation of (3.10) implies that of (AΛ). This fact combined
with the equivalence of (3.9) and (3.10) observed above shows that (Aλ) is
strongly oscillatory if and only if so is (3.9) or (3.10). It follows that (AA) is

strongly oscillatory if and only if (1.10) holds.
On the other hand, again by Theorem 5, the strong nonoscillation of (Aλ)

implies that of (3.10) and the strong nonoscillation of (3.9) implies that of
(AA). In view of the equivalence of (3.9) and (3.10) it turns out that (Aλ) is
strongly nonoscillatory if and only if so is (3.9) or (3.10), and hence that the
strong nonoscillation of (Aλ) implies and is implied by the condition
(1.11). This completes the proof.

REMARK. When specialized to the case α = 1, Theorem 4 covers the

second order versions of the main results of Kusano [2] and Naito [6].

EXAMPLE 1. Consider the equation

(3.18) (|/(ί)|βsgn/(ί))' + λt-*\y(yt + <5)|α sgny(yί + δ) = 0, ί ^ α,

where α>0, /? > 0, y > 0 and δ are constants. This is a special case of (AA)
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in which g(t) = γt + δ and q(t) = t~β. Suppose that a > 0 is large enough
so that γt + δ > 0 for ί ̂  a.

Let β ^ I. Then, since q(t)dt = oo, Theorem 1 implies that (3.18) is
Jα

strongly oscillatory.
Γ00

Let β > 1. Then, q(i)dt < oo and

oo < < α + ,

1
(β = α + 1),

α

0 (β > α + 1).

Therefore, by Theorem 4, (3.18) is strongly oscillatory if 1 < β < α + 1 and
strongly nonoscillatory if β > α + 1.

Finally let β = α + 1. Then, applying Theorems 2 and 3, we conclude
that (3.18) is oscillatory if either

y > 1 and λ >

or

7 ^ 1 and λ
4- 1

and that (3.18) is nonoscillatory if either

α
7 ^ 1 and

. + 1

or

y > 1 and λ < y α

4. Extensions

Our purpose here is to show that, by a simple transformation, the results
regarding (A), (Aλ) can easily be carried over to the more general equations

(Q, (Cλ):

(C) (p(ί)|/(ί)lαsgn/(f))' + q(t)\y(g(t))\" sgnyfo(ί)) = 0,

(CJ (P(f)l/(0lβsgn/(f))' + λq(t)\y(g(t))\* sgnyfo(f)) = 0,
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provided that p(t) is a positive continuous function on [α, oo) such that

(4-1) Γr^ = °°
J C

Define the function P(t) by

-ΓJα

ds

and introduce the transformation (£, y ) -> (τ, 7) given by

(4.3) τ = P(t), 7(τ) = 3>(ί)

This transformation reduces (C) and (Cλ) to

(D) (I 7(τ)|α sgn 7(τ)) ' + Q(τ) | Y(G(τ))\< sgn 7(G(τ)) = 0

and

(Dλ) (I 7(τ)|α sgn 7(τ)) ' + λβ(τ) | r(G(τ))|" sgn 7(G(τ)) = 0,

respectively, where a dot denotes differentiation with respect to τ, and

(4.4) β(τ) = (p(ί))1/α^(0? G(τ) = P o ̂  o P^(τ).

Since (D) and (DA) are in the form of (A) and (AA), oscillation and
nonoscillation criteria for (D) and (DΛ) are derived directly from Theorems
1̂ . Taking into account the fact that G(τ) ̂  τ [or G(τ) ̂  τ] if g(t)£t [or

^ ί] and using the relations

/•oo poo

β(τ)= 9(ί)Λ,
JO Ja

Γ Q(σ)dσ = (P o p-'(τ)) f °°
Jτ Jp-^τ)

ί°
Jτ

Q(σ)dσ = (P» g o p-i(τ)

one can translate the results for (D) and (DΛ) into the following oscillation
and nonoscillation theorems for (C) and (CΛ).

THEOREM Γ. The equation (C) is oscillatory if

(4.5) Γ«( ί)Λ=oo.
J a

THEOREM 2'. Suppose that
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ΓJ a

(4.6) I q(t)dt«x>.

and that g(t)^t for t ^ a.
(i) The equation (C) is oscillatory if either

(4.7) lim sup (P(ί))α q(s) ds > 1
'"00 Jr

or

ί*°° Γ/Λ

(4.8) lim inf (P(ί))α q(s)ds >

(ii) The equation (C) is nonoscillatory if

(4.9) lim ί ί"Jί (α

THEOREM 3'. Suppose that (4.6) /z0Ws ««ί/ ί/zα/ g(i) ^t for

(i) 77ze equation (C) w oscillatory if either

(4.10) lim sup (P(g(t})Y q(s)ds > 1
Jί

or

αα

(4.11) liminf(P(#(ί)))α q(s)ds>
ί-* oo I

«/ ί

(ii) The equation (C) is nonoscillatory if

(4.12) limjmp (P(ί))α

THEOREM 4'. Suppose that (4.6)

(4.13) 0 < l i m i n f , lim sup < oo.
f-oo p(ί) ί-ooF p(t)

(i) ΓΛ^ equation (CA) w strongly oscillatory if and only if

(4.14) lim sup (P(ί))α g(s)έ/s = oo.
ί-> oo IJί

(ii) 77z£ equation (CA) w strongly nonoscillatory if and only if
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(4.15) lim(P(ί))α q(s)ds = 0.
Jt

These theorems are illustrated by the following example.

EXAMPLE 2. Consider the equation

(4.16) (ίβ|/(ί)|β sgn/(ί))' + λr^ogfΓ'MtTsgn y(ί^ = 0,

where α, β and 7 are positive constants and a > 1. This equation is a special
case of (DA) in which

The function p(i) clearly satisfies (4.1) and the function P(t) defined by (4.2)
can be taken to be P(t) = log ί.

If β ^ 1, then (4.16) is strong oscillatory by Theorem Γ.
If β > 1, then

oo (1 <β < α + 1),

q(s)ds = { — (β = α + 1),

0 (β > α + 1).

From Theorem 4' it follows that (4.16) is strongly oscillatory i f l < β < α + l

and strongly nonoscillatory if β > α + 1.

Suppose that β = α + 1. Then, applying Theorems 2' and 3', we conclude

that:
(i) in case 7 < 1, (4.16) is oscillatory if

λ> y~ α

and nonoscillatory if

λ<\ α

h 1.

(ii) in case 7 > 1, (4.16) is oscillatory if

α
λ>

and nonoscillatory if

λ<y -., α "+1



Half-linear functional differential equations 385

References

[ 1 ] T. A. Canturija, On a comparison theorem for linear differential equations, Izv. Akad.
Nauk SSSR, Ser. Mat, 40 (1976), 1128-1142. (Russian)

[ 2 ] T. Kusano, On strong oscillation of even order differential equations with advanced
arguments, Hiroshima Math. J., 11 (1981), 617-620.

[ 3 ] T. Kusano and M. Naito, Comparison theorems for functional differential equations with
deviating arguments, J. Math. Soc. Japan, 33 (1981), 509-532.

[ 4 ] T. Kusano, Y. Naito and A. Ogata, Strong oscillation and nonoscillation of quasilinear
differential equations of second order, Differential Equations and Dynamical Systems 2
(1994), 1-10.

[5] W. E. Mahfoud, Comparison theorems for delay differential equations, Pacific J. Math.,
83 (1979), 187-197.

[6] M. Naito, On strong oscillation of retarded differential equations, Hiroshima Math. J.,
11 (1981), 553-560.

[ 7 ] H. Onose, A comparison theorem and the forced oscillation, Bull. Austral. Math. Soc.,
13 (1975), 13-19.

Department of Mathematics
Faculty of Science

Hiroshima University

Present address of the first author: Department of Applied Mathematics, Faculty of Science,
Fukuoka University, Fukuoka 814-80, Japan






