Нікозніма Матн. J. 25 (1995), 367–370

On 4-dimensional closed manifolds with free fundamental groups

Takao MATUMOTO and Atsuko KATANAGA (Received January 11, 1994)

Abstract. Let M be a 4-dimensional connected closed manifold whose fundamental group is a free group of rank m. We will show that the punctured manifold M - pt has the homotopy type of a bouquet $\vee_m S^1 \vee_m S^3 \vee_n S^2$ of spheres for some n.

1. Introduction

Let M be a 4-dimensional connected closed manifold whose fundamental group is a free group $F_m = *_m \mathbb{Z}$ of rank m.

PROPOSITION 1. $\#_{\ell}S^2 \times S^2 \# M$ is homeomorphic to $\#_mS^1 \times S^3 \# M_1$ or $\#_{m-1}S^1 \times S^3 \# S^1 \tilde{\times} S^3 \# M_1$ for some ℓ and some simply connected closed 4-dimensional manifold M_1 according as M is orientable or not. If M has a smooth structure, then the same statement holds for a diffeomorphism.

With the help of an algebraic argument Proposition 1 would imply

PROPOSITION 2. The punctured manifold M - pt has the homotopy type of a bouquet $\vee_m S^1 \vee_m S^3 \vee_n S^2$ of spheres for some n.

Here, we may conjecture that M has the homotopy type of $\#_m S^1 \times S^3 \# M_0$ or $\#_{m-1}S^1 \times S^3 \# S^1 \times S^3 \# M_0$ for some simply connected closed 4-dimensional manifold M_0 according as M is orientable or not. In the case that M is orientable and m = 1 this conjecture is true; in fact, Kawauchi [3] proved that M is homeomorphic to $S^1 \times S^3 \# M_0$.

As a corollary of Proposition 2 we have

PROPOSITION 3. For a connected closed 4-dimensional manifold M the following statements are equivalent: (1) The Lusternik-Schnirelmann category of the punctured manifold M - pt is one. (2) The fundamental group $\pi_1(M)$ is a free group. (3) The punctured manifold M - pt has the homotopy type of a bouquet of spheres.

In fact, since $\pi_1(M) = \pi_1(M - pt)$, (1) implies (2) and follows from (3); (2) implies (3) by Proposition 2.

We may ask whether the conditions are equivalent also to the following

statement: the Lusternik-Schnirelmann category of M is two. We refer the reader to [7] for a quick review of Lusternik-Schnirelmann category.

2. Proof of Proposition 1

By attaching higher dimensional cells to M we get an Eilenberg-Maclane space $K(F_m, 1)$. If we realize the generators x_1, \ldots, x_m of $\pi_1(M)$ by $\bigvee_{i=1}^m S_i^1$ in M, this is a deformation retract of $K(F_m, 1)$. So, the composed map $f: M \subset K(F_m, 1) \xrightarrow{r} \bigvee_{i=1}^m S_i^1$ is a retraction. Even if there is no smooth structure on M we have a smooth structure on M - pt by [8] and we may assume that f is regular at m points p_1, \ldots, p_m one from each component S^1 of $\bigvee_{i=1}^m S_i^1$. We see that the submanifolds $f^{-1}(p_1), \ldots, f^{-1}(p_m)$ are orientable because they can be considered codimension one bilateral submanifolds in the universal covering of M which is orientable.

Let N_i be the connected component of $f^{-1}(p_i)$ which contains $p_i \in \bigvee_{i=1}^m S_i^1 \subset M$. Then, N_1, \dots, N_m are clearly dual to the generators of $\pi_1(M)$. By the same technique as was used in Matumoto [6] we can modify the submanifolds N_1, \ldots, N_m so that they are diffeomorphic to S^3 in the connected sum $\#_{\ell}S^2 \times S^2 \# M$ of M with ℓ copies of $S^2 \times S^2$ for some ℓ . In fact, first we take N_i and the spin cobordism connecting with S^3 which consist of only 1-handles and 2-handles; Second we embed each elementary cobordism of this cobordism in the surgered manifold of M surgered at the embedded circles parallel to the feet of the 2-handles; The framings should be compatible with the spin structure on the universal covering of M if it exists; Then, the surgered manifold is diffeomorphic to the connected sum $\#_{\ell}S^2 \times S^2 \# M$. Do surgery on this manifold at m numbers of S^3 and we get a simply connected manifold M_1 . The backward surgery would give $\#_m S^1 \times S^3 \# M_1$ or $\#_{m-1} S^1 \times$ $S^3 \# S^1 \times S^3 \# M_1$ according as M is orientable or not. We have to remark here that once $\#S^1 \times S^3$ occurs the other $\#S^1 \times S^3$ can be changed to $\#S^1 \times S^3$ without changing the homeomorphism (or diffeomorphism) type of the manifold. The detailed proof of Proposition 1 is given by Katanaga in her Master thesis [2].

3. Proof of Proposition 2

We start with lemmas:

LEMMA 3.1. If the punctured manifolds $N_1 - pt$ and $N_2 - pt$ have the homotopy type of K_1 and K_2 , then the puncture manifold $N_1 \# N_2 - pt$ has the homotopy type of $K_1 \vee K_2$.

LEMMA 3.2. If M_0 is a simply connected closed 4-manifold, then $M_0 - pt$ has the homotopy type of the bouquet $\vee_t S^2$ of 2-spheres.

The proof of Lemma 3.1 is elementary and Lemma 3.2 is an easy exercise of homotopy theory (cf. [9]).

Now $S^2 \times S^2 - pt$ has the homotopy type of $S^2 \vee S^2$. Also $S^1 \times S^3 - pt$ as well as $S^1 \times S^3 - pt$ has the homotopy type of $S^1 \vee S^3$. So, by Lemmas 3.1 and 3.2 both of $\#_m S^1 \times S^3 \# M_1 - pt$ and $\#_{m-1}S^1 \times S^3 \# S^1 \times S^3 \# M_1 - pt$ have the homotopy type of a bouquet $\vee_m S^1 \vee_m S^3 \vee_{2\ell+n} S^2$ of spheres for some ℓ , where *n* is the second betti number of *M*.

We may assume that M - pt has the homotopy type of a finite CW complex K [4, III, §5]. So, $\bigvee_{2\ell}S^2 \lor K$ and $\bigvee_m S^1 \lor_m S^3 \lor_{2\ell+n} S^2$ have the same homotopy type by Proposition 1. Then, the $\mathbb{Z}[F_m]$ -module $H_i(\tilde{K}; \mathbb{Z})$ is a direct summand of a free module and hence a projective module, where \tilde{K} denotes the universal covering of K. The following lemma implies that $H_i(\tilde{K}; \mathbb{Z}) = H_i(K; \mathbb{Z}[F_m])$ itself is a free module.

LEMMA 3.3 [1]. Any finitely generated projective $\mathbb{Z}[F_m]$ -module is a free $\mathbb{Z}[F_m]$ -module.

So, $H_2(\tilde{K}; \mathbb{Z})$ is a free $\mathbb{Z}[F_m]$ -module of rank *n*. By Hurewicz theorem $\pi_2(K)$ is isomorphic to $H_2(\tilde{K}; \mathbb{Z})$ and we get a map $g: \vee_m S^1 \vee_n S^2 \to K$ which induces an isomorphism on π_1 and π_2 .

Moreover by Hurewicz theorem ([5, Th. 7.1.6]) again the Hurewicz map $h: \pi_3(K) = \pi_3(\tilde{K}) \to H_3(\tilde{K}; \mathbb{Z})$ is a surjection, because \tilde{K} is simply connected. Since $H_3(\tilde{K}; \mathbb{Z})$ is a free $\mathbb{Z}[F_m]$ -module, we get a splitting $j: H_3(\tilde{K}; \mathbb{Z}) \to \pi_3(K)$ and get an extension $f: K_0 = \vee_m S^1 \vee_n S^2 \vee_m S^3 \to K$ of g such that $f_*: H_3(\tilde{K}_0; \mathbb{Z}) \to H_3(\tilde{K}; \mathbb{Z})$ is an isomorphism. We know that $H_i(\tilde{K}; \mathbb{Z}) = 0$ for $i \ge 4$ because K has the homotopy type of a connected punctured 4-dimensional manifold. So, $f_*: H_i(\tilde{K}_0; \mathbb{Z}) \to H_i(\tilde{K}; \mathbb{Z})$ are isomorphisms of zero modules for $i \ge 4$. Now by the theorem of J.H.C. Whitehead $f_*: \pi_i(K_0) \to \pi_i(K)$ are isomorphisms for any i and we see that f is a homotopy equivalence. This completes a proof of Proposition 2.

References

- [1] H. Bass, Projective modules over free groups are free, J. Algebra, 1 (1964), 367-373.
- [2] A. Katanaga, On weak homeomorphism types of 4-dimensional closed manifolds with free fundamental groups, Master thesis, Hiroshima Univ., 1994.
- [3] A. Kawauchi, Splitting a 4-manifold with infinite cyclic fundamental group, Osaka J. Math., 31 (1994), 489-495.
- [4] R. C. Kirby and L. C. Siebenmann, Foundational Essays on Topological manifolds, Smoothings and Triangulations, Ann. Math. Studies 88, Princeton Univ. Press, 1977.

- [5] A. Komatu, M. Nakaoka and M. Sugawara, Topology I (in Japanese), Iwanami Shoten, 1967.
- [6] T. Matumoto, On a weakly unknotted 2-sphere in a simply-connected 4-manifold, Osaka J. Math., 21 (1984), 489-492.
- [7] T. Matumoto, Lusternik-Schnirelmann category and knot complement, J. Fac. Sci. Univ. Tokyo, 37 (1990), 103-107.
- [8] F. Quinn, Ends of maps III: Dimensions 4 and 5, J. Differential Geom., 17 (1982), 503-521.
- [9] J. H. C. Whitehead, On simply connected 4-dimensional polyhedra, Comment. Math. Helv., 22 (1949), 48–92.

Department of Mathematics Faculty of Science Hiroshima University Higashi-Hiroshima 739, Japan