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Introduction

Tessellation automata on finitely generated free groups are investigated.
Given a finitely generated free group G, we can construct hyperbolic tessellation
on its Cayley graph, which is a tree. The vertex set of the graph is G
itself. On each vertex we place an automaton with a finite set of states
Q. Each of these automata is influenced by its neighbors, the number of
which equals twice the number of generators of the free group G. With these
local interactions we construct a dynamical system on the space QG. We call
the elements of QG configurations as usual. In this way we obtain a cellular
automaton on hyperbolic tessellation. We refer such automata as "tesselletion
automata on free groups." In this paper we clarify relations among period
preservability, injectivity and surjectivity of parallel maps. We also show the
equivalence of finite orderedness and strong Poisson stability.

Historically, tessellation automata theory began with the work of Von
Neumann [7]. Then Moore [6] showed the Garden of Eden theorem which
states that violation of local injectivity implies existence of a Garden of Eden
pattern. A Garden of Eden pattern is a partial configuration which cannot
be reproduced in any environments. This shows an obstruction to self-
reproducing property. Amoroso, Cooper and Patt [1] clarified the concept of
a Garden of Eden configuration. Sato and Honda [8] investigated the relations
among period preservability, Poisson stability and finite orderedness of parallel
maps based on dynamical system theory. All these works, being very fruitful,
were done in the framework of Euclidean tessellations. The aim of this paper
is to extend cellular automata theory to non-Euclidean tessellations.

In section 1 we define tessellation automata on free groups and introduce
group actions on them. In section 2 we define periods of configurations by
using lattice of subgroups. In section 3 we state and prove the main theorems
on injectivity, surjectivity, Poisson stability, strong Poisson stability and period
preservability of parallel maps. In section 4 we state and prove the main
theorem on finite orderedness and Poisson stability.
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1. Tessellation automata on free groups

Although we describe our theory in the rank 2 case, the following
arguments does not depend on the number of generators.

Let G be a free group generated by 2 elements α, b. G acts as a
transformation group on the set G itself by operating from the left or from
the right.

DEFINITION 1.1 For any x, yeG if one of the following equations holds,
we say x and y are directly connected.

x = ya

x = yb,

This binary relation on the set G is symmetric (but not transitive). Figure
1 shows the connectivity of the space G. Usually this graph is called the
Cayley graph of G. This graph can be viewed as a fractal pattern. Figure
1 contains only level 5 construction for the sake of clarity to vision. With
local interaction of automata, infomation travels along paths in this
graph. Each vertex represents an element of G. The center of the figure
correspond to a unit element e of G. The word abab'1, for example,
corresponds to a vertex which can be reached starting from the center vertex
traveling along a path described below. The path begins at the center vertex.
Then the path proceeds right, up, right, down. The words should be read from
left to right. Systematic treatments for graphs with group actions can be found
in Dick and Dunwoody [3].
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Fig. 1 Cayley graph of G
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We define a metric on the space G. Let x, y be any pair of elements of
G. If x = y, we define p(x, y) = 0. If x φ y, let z be the shortest word such
that x = yz. We define p(x, y) as the length of the word z. It is easily
verified that p is a metric on the space G. We denote by Bn(x) the ball of
radius n with center xeG, that is,

When x = e, we will write Bn for short.
Let Q = {0, l,...,s — 1}. A configuration over Q is a map from G to

Q. The set of all configurations over Q is denoted by C(Q) or simply C if
there can be no confusion. A local map is a map / from Q5 to Q such that

/(O, 0, 0, 0, 0) = 0.

A parallel map f' C(Q)-+C(Q) induced by a local map / is defined as
follows. For αeC(β), xeG,

^xα'1), α(xb), αίxίr1)).

The pair of G and / forms a discrete time dynamical system. Being
viewed as a cellular automaton, the state of a cell at time t is determined by the
states of neighboring cells at time t — 1.

We define a metric d on C. Let α, β be any elements in C. If α = β,
define d(α, β) = 0. If α / /?, let fe be the least nonnegative integer such that
<x\Bk^β\Bk. We set d(α, j?) = (1 + fe)'1. It is easily verified that d is a
metric on C. The topology induced by this metric coinsides with the product
topology of Q endowed with the discrete topology. The well known
Tichonov's theorem assures that C is a compact space.

G acts on "the space" G from the left or from the right. Via this action
we define the action of g*(geG) on αeC as follows. For xeG

It is clear that the map g*: C -+ C is bijective. So if we identify g and g*9 G
is regarded as a transformation group acitng on the configuration space C.

PROPOSITION 1.2 The action of G on C has the following properties.
(1) The action of any 0eG is commutative with any parallel map f.

To be precise, for α e C, x e G

(2) For any gεG, the map g* : C -> C is continuous.

PROOF. (1) Both sides of the formula equal to
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f(*(g~lx)9 αfo-^α), αto^xα-1), αfa-'xfr), αfoΓ^fe'1)).

(2) Let / be the length of g as a word in G. Let ί/fc(α) be any ball of
radius (1 + fc)"1 with center α in C. Then we have the following

This shows the continuity of the map g* : C -> C.

2. Defining Periods via subgroups

In this section we introduce the notion of period. We need subgroups
of G of finite index. There are infinitely many such subgroups. It is known
that all subgroups of free groups are also free. See Schreier [9] or Kurosh [4] .

We give some examles here.

EXAMPLE 2.1 Denote by e(a, x) the algebraic sum of the exponents of a
in the expression of the element x e G as a word. Since G is a free group,
e(a, x) is uniquely determined by x. e(b, x) is defined in the same
manner. We partition G into n disjoint classes

HJ = {x e G I e(a, x) = j (mod ή)}.

Clealy H0 is a subgroup of G of index n. This construction is very simple
and it shows that there are infinitely many subgroups of G of finite index. It
also shows that there exists a normal subgroup of G of arbitrarily given index.

EXAMPLE 2.2 The subgroup generated by the element a is not a normal
subgroup of G. Its index is infinite.

For free groups the set of coset representatives of a subgroup can be
chosen to form a tree in the Cayley graph. See Kurosh [4]. We call such
a set fundamental domain or fundamental set of the subgroup as in the case
of Fuchsian groups. Figure 2 shows an example of a fundamental set of the
subgroup

{x e G I φ, x) = e(b, x) = 0 (mod 2)} .

The subgraph emphasized by bold lines represents a fundamental set.
Let H be any subgroup of G. H acts on the configuration space C(Q)

in the sense described in the previous section.

DEFINITION 2.3 If ft*α = α for all /ιe/f, α is said to be H invariant.

Every αeC(β) is left unchanged by the action of the trivial subgroup {e}
of G. So for any αeC(<2) there exists at least one subgroup of G that leaves
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Fig. 2 An example of a fundamental set

α unchanged. If we have two such subgroups Hl9 H2, the smallest subgroup
of G that includes both H^, H2 has the same property. There exists a maximal
subgroup in the family of subgroups under whose action α is left
unchanged. This maximal subgroup is uniquely determined.

DEFINITION 2.4 Let F = {H^ieA} be the family of all subgroups of G
that leave a configuration αeC unchanged. The period of α is the maximal
subgroup in the family F, and is denoted by ω(α). A configuration αeC(Q)
is said to be a periodic configuration if ω(α) is of finite index. The set of all
periodic configurations is denoted by CP(Q) or simply CP.

We introduce the second notion of period, namely stable period.

DEFINITION 2.5 Let = {H^ieΛ} be the family of all normal subgroups
of G that leave a configuration αeC unchanged. The stable period of α is
the maximal normal subgroup in the family F, and is denoted by ί2(α).

Let F be the family of normal subgroups in the sbove definition. For
Hί9 H2eF, let H be the the smallest subgroup of G that includes both H^
and H2. H is also a normal subgroup of G and acts on α trivially. Thus
the above definition makes sense.

The following proposition relates two notions of period.

PROPOSITION 2.6 For any geG, αe C(β), the following two equations hold.

(1) ω(g*u) = gω(a)g~l

9

(2)
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PROOF. (1) Let h e ω(α), x e G. If replace x by gh ~ 1 g ~ 1 in the following
defining equation of g*

we have

Thus we have (ghg~^g*OL = g*a. This shows gω(u)g~l ^ ω(g*a).
The converse argument is possible almost in the same way.
(2) is a special case of (1).

A configuration αeC(β) might be called a stably periodic configuration if
f2(α) is of finite index. But this notion is redundant, since we can always
find a normal subgroup of finite index contained in a given subgroup of finite
index.

3. Period preservability and Poisson stability

In this section we prove the equivalence of injectiυity, Poisson stability
and strong Poisson stability in the space CP.

DEFINITION 3.1 Let / be a parallel map. / is said to be period preserving
on C if for all αeC if for all αeC, ω(/α) = ω(α). Likewise / is said to be
period preserving on CP if for all αeCP, ω(/α) = ω(α).

DEFINITION 3.2 Let M ̂  C. f is said to be surjective on M if
/(M) = M. / i s said to be injective on M if for α, βeM, /(α) =/(/?) implies

The following proposition is simple and essential.

PROPOSITION 3.3 ω(α) < ω(/(α)) where A < B means A is a subgroup (not
necessarily proper) of B.

PROOF. Let Λeω(α). From the definition of ω, /ι*α = α. From proposi-
tion 1.2, ft*/α =/Λ*α =/α. Thus we have /ιeω(/α).

From the above proposition we conclude that CP is an invariant set of
any parallel maps.

The following arguments are based on the theory of dynamical systems.
See Bhatia and Szegό [2].

DEFINITION 3.4 Let α 6 C and / be a parallel map. α is said to be
Poίssson stable with respect to / if there exists a sequence of intergers
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nl<n2< such that

lim/Λί(α) = α.
i-»αo

Let MeC. / i s said to be M Poisson stable if every point in M is Poisson
stable with respect to /. α is said to be strongly Poisson stable with respect
to / if there exists a nonnegative integer nα such that /Πα(α) = α where nΛ

A

depends on α. / is said to be M strongly Poisson stable if every point in M
is strongly Poisson stable with respect to /.

THEOREM 3.5 Let f be a parallel map. f is infective on CP if and only
tf f ™ period preserving and surjectίve on CP.

PROOF. Let / be injective on CP. Suppose that there exists αeCP such
that ω(/(α)) φ ω(α). Let

E = {βeCP\ω(β)>ω(f («))}•

The set E is finite because α is periodic. From Proposition. 3.3 (2)
/(£) c E. Injectivity of / and finiteness of E yield /(£) = E. Recall that
aφE and/(α)e£. This contradicts the injectivity of/ on CP. Thus injectivity
for Cp implies period preservability.

Next we will show injectivity implies surjectivity. For any αeCP we set
EΛ = {βeCP\ω(β) = ω(α)}. EΛ is again a finite set. f\EΛ can be regarded as
an element of the permutation group of EΛ. As this group is finite, there
exists a nonnegative integer n such that /"(α) = α. If we take j3=/w~1(α),
we have f(β) = α. This means / is surjective on CP.

Conversely, let / be period preserving and surjective on CP. Suppose
there exist α, βeCP such that α Φ β and /(α) =/(/?)• Then α, βeEΛ. Injectivity
and surjectivity of /1EΛ are equivalent because EΛ is a finite set. This leads
to a contradiction. Thus period preservability and surjectivity on CP imply
injectivity on CP.

THEOREM 3.6 Let f be a parallel map. The following statements are
equivalent.

(1) f is injective on CP.
(2) / is strongly CP Poisson stable.
(3) / is Cp Poisson stable.

PROOF. (1) => (2): From theorem 3.5 / is period preserving and surjective
on CP. For any αeCP let EΛ = (βeCP\ω(β) = ω(α)}. As before f\EΛ is
regarded as an element of the permutaion group acting on the finite set
EΛ. Let k be the order of f\EΛ. Then we have
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(2)=>(3) is obvious.
(3) =>(!): Suppose / is not injective on CP. From theorem 3.5 / is not
period preserving or not surjctive on CP.

In the case / is not period preserving, there exists αeCP such that
f(EΛ) is a proper subset of EΛ. Thus there exists j?e£α such that for every
interger «, /"(/?) Φ β. This β cannot be Poisson stable with respect to /
because d(β, fn(β)) > 1 for all n.

In the case / is not surjective, there exists αeCP such that <xφf(CP). If
we consider the finite set £α, the same conclusion can be derived as above.

In either case contradiction arises.

4. Parallel maps of finite order and Poisson stability

In this section we deal with the relation between finite-orderedness and
Poisson stability.

DEFINITION 4.1 A configuration αeC that has the following property is
said to be a transitive configuration. For any βeC, there exists a sequence

0ι, 02, 03»-. .eG such that lim,,^ 0*(α) = β.

LEMMA 4.2 There exists a transitive configuration in C.

PROOF. Let Bn be a ball in G of radius n with center e as defined in
section 2. An easy calculation shows that there are 2 3W — 1 cells (elements
of G) in this ball. The number of configurations restricted on this ball is

52 3"-ι ^γe write this number as bn. Let 0ijeG, 1 < i, 1 <j < bt be chozen

as follows. For any pair of ordered pairs (m, n) =£ (p, q), the translated balls
g~t

l

HBm and g-*Bp are disjoint.
All configurations defined on the ball Bn can be numbered from 1 to

bn. Let these be βl9 β2,...,βbn.
We define αeC as follows. oc\g^j

iBi, = gfj(βj), and on the complement
of these balls the value of α is 0.

This α clearly has the required property.

DEFINITION 4.3 A configuration which has quiescent state on all but a
finite number of cells is said be a finite configuration. We denote the set all
finite configurations as CF.

Clealy CF is a countable dense subset of C and invariant under the actions
of parallel maps and G.

DEFINITION 4.4 Let / be a parallel map. / is said to have finite order
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if there exists a positive integer n such that fn = I where / denotes the identity
map. The least such positive integer n is called the order of /. Let M £ C
be an invariant subset of/. / is said to have finite order on M if fn\M = I\M
for some positive interger n.

THEOREM 4.5 Let f be a parallel map. The folowing statements are
equivalent.

(1) / has a finite order.
(2) / has a finite order on CF.
(3) / is strongly C Poisson stable.

PROOF. Notice that CF is a /-invariant dense subseet of C.
For / is continuous, the equation fn\M = I\M on a dense subset of C

is equivalent to the equation /" = identity. Thus (1) and (2) are equivalent.
(1)=>(3) is evident.

We will show (3) =>(!). From lemma 4.2 there exists a transitive
configuration αeC. By assumption there exists a nonnegative integer n such
that /n(α) = α. From the definition of α, for any βeC we have a sequence
0ι, 02> - e G such that limm_00 0*(α) = β. Since / is continuous, we have

/"(/?) =/"( lim 0*(α)) = lim <7*/"(α) = β.
tn~* <x> tn~~* oo

Thus / has finite order.

5. Conclusions

We introduced cellular automata on free groups, and succeded in
constructing a theory analogous to that of Euclidean tessellations. We would
like to extend the results here to wider class of cellular automata defined on
graphs which have group actions.

We have not mentioned that period configurations CP are dense in
C. This is proved in the coming paper Yukita [10], and also the results in
free groups are reproduced in Fuchsian group cases.

The question whether the Garden of Eden Theorem holds in the
non-Euclidean theory is yet to be investigated.
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