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Abstract. Let S'(R) be the dual of the Schwartz space S(R), A a self-adjoint operator

in L2(R) and dΓ(A)* the adjoint operator of dΓ(λ) which is the second quantization

operator of A. It is proven that under a suitable condition on A there exists a nuclear

subspace S of a fundamental space SA of Hida's type on S'(R) such that dΓ(\)S c= S

and e~tdr(A)S c= S, which enables us to show that a stochastic differential equation

arising from the central limit theorem for spatially extended neurons:

dX(t) = dW(t) - dΓ(\)*X(t)dt,

has a unique solution on the dual space S' of 5, where W(t) is an S'-valued Wiener

process.

1. Introduction

Concerning with infinite dimensional geometry and analysis, several types
of fundamental spaces on infinite dimensional topological vector spaces have
attracted several authors ([1], [4], [9], [11], [13], [14]). As it has been
known by [5], the nuclearity of the space gives us the regularization theorem
which guarantees the existence of a strong solution of the stochastic differential
equation. However, [7] tried to construct a unique weak solution of a
Segal-Langevin type stochastic differential equation on a suitable space of
infinite dimensional generalized functionals which is not nuclear, and the
fundamental spaces used in the Malliavin calculus are known not to be nuclear
[2], With this background, we consider spaces of Hida's type which are
nuclear.

Let (SA) be a fundamental space of Hida's type and dΓ(\) the second
quantization operator. Inspired by the works [11], [12], we construct a
fundamental space which is invariant under the semi-group e~tdΓ(A) and is
nuclear and smaller than (SA) even if (SA) is not nuclear. This enables us to
obtain a unique strong solution of the stochastic differential equation

dX(i) = dW(i) - dΓ(\)*X(t)dt, (1.1)
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which is a special case of the types considered in [7].
First we begin with giving some notations and explanations. Let E be

a real locally convex topological vector space and E' the topological dual
space of E. We denote by < , > the pairing of E and £', and by \ \E the
norm of E when E is a Hubert space. Let J^f be a separable real Hubert
space densely and continuously embedded in E. Then identifying 3? ' with
Jtf , we have

E 'c j fcE. (1.2)

Let μ be the countably additive Gaussian measure on E whose characteristic
functional is given by

(1.3)

If we replace E by S'(R), (E, μ) is called the white noise space [11].
Now we state our main result. Let A be a self-adjoint operator in Hubert

space Jf and L2(E, μ) the space of square integrable functions with respect
to μ. Further we denote by (5A) a fundamental space of Hida's type
determined by A and denote by dΓ(\) the second quantization operator of
A, which will be precisely defined later. From now on we denote the domain
of a linear operator T defined densely in Jf by @(Ί) and set C°°(T) =
nw°°=i^(Tn). We always consider ^(Tn) as a Hubert space equipped with the
inner product (Ύn , T" ) .̂ We mean by A > λ, λeR, that (A/,/)^ > λ(f, f)#>
for all/eΦ(A).

THEOREM 1.1. Let A be a self -adjoint operator in ffl. Suppose that
A > 1 + ε, for some ε > 0 and there exist a self-adjoint operator B in 3? and
natural numbers p and q, satisfying the following conditions

(1) @(BP) c

(2) the identity map of @(Bq) into 3tf is a Hubert Schmidt operator,
(3) AC^dC^B).

Then there exists a nuclear subspace S of L2(E9 μ) such that

dΓ(A)Sc:S.

Further, suppose that

(4) e~tAC(X)(E)c:C(X)(E). Then

If there exists a positive self-adjoint operator B and p, geN satisfying the
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conditions (1) ~ (4) of Theorem 1.1, those conditions (1) ~ (4) still hold when
we replace B by B + 21. Then, since B + 21 > 1 + ε for some ε > 0, the

desired space S in Theorem 1.1 will be given by (SB+2i)

2. Fundamental space of Hida's type

Before defining a fundamental space of Hida's type, we introduce the
following notation. Let Jίf be a separable Hubert space. For //eJf,
i = 1, 2, ,n, we denote the tensor product of them by

/ι®/2® ®/,,, (2.1)

and define the symmetric tensor product of them by

/I ®/2® •••<§>/„=- Σ Λ(l )®/σ<2)® ®/<,(π), (2.2)
nl aeΞn

where Ξn is the symmetric group of degree n.
Let ^ and !F be the sets of finite linear combinations of terms of (2.1)

and (2.2) types, respectively. For fh gf f ejf , ί = 1, 2, - 9n, we first set

(/I ®/2 ® " ®/n> 01 ® 02 ® ••• ® 0nXr«» = (/I > 0lM/2> 02)^*"(/n> 0nXτ>

(2.3)

and

(/I ®/2 ® - ®/π, 01 ® 02® - ® 0n)^n

2j (/<τ(l)» 0τ((l))jf(/σ(2)9 0τ(2))jT "* (/<r(n)> 9τ(n))jV' (2.4)
r,τeHn

Then the inner products ( , }#*n on ^ and ( , )#>sn on & are naturally
extended for the linear combinations. Let 3tf ®" and ^®π be the completions
of ^ and #" with respect to the inner products ( , )#>»n and ( , )#>$». Clearly

and

(/I

= (/ι®/2® '--^/n, 0ι ®0 2® ••• ®0n)jr®" (2-6)

We define the Wick ordering, denoted by :x®n:, for xeE, according to

the case where E = S'(R). First the Wick product : <x, £ι><x, ξ2> ••• <χ

5 O
 :

of random variables <x, ^fc>, xeE, ξkeE', k = 1, 2, ,n, with respect to the
probability space (£, μ) is defined by the following recursion relation [6]
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:<*, ξiXx, ξ2>-<x, ζn>'= <x, £ι>:<*, £2>-<*, £„>:

- Σ f <x>ξιXx,ξk>dμ(x):<x9ξ2> <x,"ξk> <x,ξn>:, n>2,
k = 2 JE

where <x, v£k> means that the term <x, ξky is excluded in the product. Using
the Wick product, we define the Wick ordering :xΘπ: by

Let {βi'. i = 0, 1, 2,«« } be a complete orthonormal system in 3? taken from
E''. The well known Wiener-Ito theorem states that the space L2(E, μ) has
the following orthogonal decomposition

L2(£, μ) = 0 Kπ,

where Kn consists of n-homogeneous chaos, i.e. each φ in Kπ has the formal
expression

φ(x) = (:x*n :,/„>, fneJ?»".

In fact if /„ is represented by £" ίz ίn=0

αiι,ί2,...,in^ι ® ̂  2 ® ••• ® ̂ in, then the
right hand side of the above expression is given by

00

Thus each \j/eL2(E,μ) can be represented uniquely in the following way;

00

Moreover, we have [11]

π = 0

Let A be a positive self -adjoint operator in tf. Then there exists a
unique positive self-adjoint operator Γ(A) in L2(£, μ) such that (see [12])

Γ(A)1 = 1

and for ^6^(A), / = 1, 2, ,n,

(2.10)
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We denote by ^A the collection of all polynomials of the form

ω(x) = P«x, ^>, <x, £2>,-,<x, ξm», £,eC°°(A),

where P(ti9- 9tm) is a polynomial of (fι, *>O For each peR we define a
semi-norm A || ||2tJ, by

U-J (2.11)

It is not difficult to see that Γ(λ)p = Γ(λp). By (2.7), each ω in ^A has the
following expression;

ω(x)= £ <:**%ft,X 0πeC°°(AΓ,
n = 0

n times

where C°°(A)βl1 = C°°(A)® C°°(A)(g) — ® C°°(A) is the set of finite linear

combinations of the form ^ ® ξ2 (§) - ® ξw with ̂  e C°° (A), i = 1, 2, , n. We
note that there exists a natural number fe(ω) such that gn = 0 for
n > fe(ω). Since

by (2.9), A|| || 2,1, can be also represented as

where

For p > 0, (5A)P is the completion of ^A with respect to the semi-norm
A II ' \\2,P- We define the fundamental space (5A) of the Hida distributions on
E by

Let (SA)_P be the topological dual space of (SA)P. Then we have

•w-u.ω-. (2,4)

There are several criteria for nuclearity of a fundamental space of Hida's
type, such as ([2], [10]). Here we show a sufficient condition.



546 Hong Chul CHAE, Kenji HANDA, Itaru MITOMA and Yoshiaki OKAZAKI

PROPOSITION 2.1. Let Z be a positive self-adjoint operator in tf with

eigenvalues λk > 1, fc = 0, 1, , such that X^°=0^jΓy < + °° for some y > 0.
Then (Sz) is a nuclear space.

Proof. Here we mimic a proof from [11]. It is sufficient to show that
for any p > 0, there exist an 5 > 0 such that the inclusion map / : (Sz)p+2s ->
(Sz)p is a nuclear operator. For the notational simplicity, we prove the
assertion in the case where p = 0. This is equivalent to show that the inclusion
map i: L2(E, μ)->(Sz)_s is a Hubert-Schmidt operator. Let N0 = {0, 1, 2, }
and let !„ be the set of all ordered n-tuples α = (α1?...,απ), α x < ••• < αn in
NJ. For αeln, define

nt(a) = #{;:aj. = fc}> n(α)! = f [ n,(α)!.
fc = 0

Let {ek: k = 0, 1, 2, } be a complete orthonormal system associated with
eigenfunctions of Z such that Zek = λkek9k = 0, l,2, . For each αelπ we set

Hα(x) =1 for n = 0,

Hα(x) = (n(α)!)~2 f j : <x, eky
n^: for n / 0

_1 °°

Moreover we have

/WH.(x) = (n(α)!)~* f

00

= Π (4)Wk(α)Hα(*)> fOΓ >*eR

and hence

oo Γ oo r 1 psΊ

^ Σ Σ τ-V
« = 0 Lfc l , . . . , fcn = 0 (.Λfci * Λfcn J J

0 fc=
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provided that Σ£°=0Λt~2s < 1> which is valid for sufficiently large s by the

assumptions Σ*=0^
y < + °° an(* ^k > 1. This, together with the fact that

(Hα(x): αeln, n = 0, 1, 2, } forms a complete orthonormal system of L2(£, μ),
implies the inclusion map i: (Sz)p+2s-+(Sz)p is a Hubert-Schmidt operator.

EXAMPLE 2.1 ([4], [11]). Let Z be the operator

+ x2 + 1. (2.15)

Z£>π = (2n + 2K,, n = 0,1,2,- -

where {en: n = 0, 1, 2, } w ίΛ^ complete orthonormal system consisting of
Hermite functions in L2(R). If we take E = S'(R), then (Sz) becomes a nuclear
space by Proposition 2.1 and originally it is called the fundamental space of
the Hida distributions.

3. Proof of Theorem 1.1

Before proving Theorem 1.1, we define the second quantization operator
dΓ(A) of a self-adjoint operator A as

(3.1)

where

Let B be a self-adjoint operator which satisfies the conditions in Theorem
1.1 and set B = B + 21. Consider the fundamental space S = (Sg) of the Hida
distributions on E. Take any ω(x)e^g then the following expression holds,

ω(x)= |χ:x®w:Λ>, £neC°°(Br.

By the assumption (1) of Theorem 1.1, ω(x)e^(dΓ(A)), so that

dΓ(A)»W-Σo<:x-:.NA^>. (3J)
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Define the Hubert space 2tf g< for any natural number / by

&& = @(Bl) = {hGJ^:\Blh\^ < oo},

where the inner product of the Hubert space Jίf gz is given by ( , )^>~l =

(*'•,*'•)*.
Noticing that C°°(B)= Π£=ι^(BΛ) is a complete metric space equipped

with a countable system of semi norms | \n = |B" |̂ , n = 1, 2, , for any
natural number fc, we have, by Baire's category theorem, a natural number
/ι(> k) and a constant ct > 1 such that

\Bk^h\^<c,\B^h\^ hεc*(B). (3.4)

For any 1 < n < k and any £eC°°(B) such that \ξ\# < 1, the assumption (2)
of Theorem 1.1 implies that (B"A/ι, ξ)^ = (h, AWξ)^ is continuous in h on
C°°(B), so that noticing that

IB'AΛI* = sup {(BfcA/!, ξ)*; ξeC«>(B)9 \ξ\* < 1},

we see that the norm \BnA.h\^> is lower-semicontinuous in h on C°°(B). The
assumption (3) of Theorem 1.1 yields that

<oo}= (j {/ιeC°°(B); \BnAh\#> < m} => C°°(B).

Baire's category theorem then asserts that for some a > 0 the closed set
Δa = {/ιeC°°(B); \BnAh\^ < a} contains a ball of the form

with /ι0eC°°(B) and b > 0. If \h\l(n}<b, h0-heAa. Since IB'AΛI^ is
symmetric, so — h0 + hεAa. Since Λ0 H- heAa, we have

= |B"A(- h0 + h + h0 + h)\* < 2a.

Thus we get for 1 < n < fc,

^αfr-MB'WΛI^, ΛeC°°(B).

For p, f̂ given in Theorem 1.1, set p V q = max {p, ^}. Then the lower-
semicontinuity of |A/ι|^ on @(Bpyq) is proved similarly by the assumptions
(1) and (2) of Theorem 1.1, so that by Baire's category theorem again we get

\\h\jf < const. \Bpvqh\#>9

Since C°°(B) c C°°(B) c ^(Bpv«), the two inequalities above hold for heC°°(B),
which together with
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n=onl(k-ή)\

completes the proof of (3.4)
Here we prepare a lemma concerning with the operator norm of tensor

product of linear operators on Hubert space, which will be used later. Given
Hubert spaces J&Ί and Jjf2

 an<i a linear operator T from Jίf1 to ^2»
 we

denote the operator norm of T by

We note that (3.4) implies

l | A | l^S«i^^B»c-C l ' (3.5)

For simplicity we use the notation ^f|Γ instead of (^fg«)®n

Let Ut, i= 1, 2, ,n be bounded linear operators from Jfgi to Jtffr for
any natural number / and k such that / > k. We have the following lemma,
which is an extended version of the proposition of [12] on p. 299.

LEMMA 3.1. Let Ui9 i = 1, 2, ,n be bounded linear operators from 3tf$ι
to 3e&. Then

|| U, ® l/2 (8) - (8) VJrin^+n < II I/, ||^gί.^gk || l/2 ll^Sl^Sk - II ̂ ll^s,-^Sk

PROOF. Let [θk: k = 0, 1, 2, } be a complete orthonormal basis of
{Cfc fc = 0? 1, 2, } a complete orthonormal basis of Jfgk and Σckl ,,,kn(θkl

®θk.<8)ζk.+l® '~® ζkn) a finite sum in the space Jίf |ί ® Jf |Γ~'. We get

*!...*!- 1*1+ l...kn

*ι...*,-ι*,+ ι

so that

I ® I ® 17



550 Hong Chul CHAE, Kenji HANDA, Itaru MITOMA and Yoshiaki OKAZAKI

Hence

ΐβjr£-*-^

^ιll^Sί^δkll^2ll^gI^gk Ίl^ll^g/^gk. (3.6)

On the other hand, by making use of (2.5) and (2.6) we have

= SUP ((£/! ® U2 ® - ® £/„)/, (U, ® U2 ® - - ® n ,
Bk B'

i=l B 1 B

^ n!n2 ||A||i,iιrίrih|(Bl'rί.li - (by Lemma 3.1)

Sfi!n2c?|(§Irιlί,β* (by (3.5))

and hence

SUP ((I/! ® t/2 ® - - - ® t/J/, (l/i ® l/2 ® - - ® n
Bk

= III/! ® C/2® -® Un\\j,^^k. (3.7)

Combining (3.6) and (3.7) we obtain that

II c/! (g) ι/2 ® - ® i

Now we return to the proof of Theorem 1.1. Since N ί̂, is also

symmetric, we have by (2.6),
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Since for the natural number q given in the assumption (2) of Theorem 1.1,
Bq>2q, (B*)'1 <2~*, we choose a natural number m^ such that (B*)~mι <
^Ci)"1. Then the right hand side of (3.8) is dominated by

2n oo

KB1 qmι}®nhn\#>§n < y nl I(B 1+βmι)®"Λ1,|Lβn

Therefore we have dΓ(Δ)S a S. As noted in Proposition 2.1, S is a nuclear
space. Thus the proof of the first half of Theorem 1.1 is completed.

Now we will prove the second half of the theorem. Note that e~tdΓ(A)

is the self-adjoint operator defined on L2(E, μ) such that

*)β (39)

This follows from the identity

which is verified by the induction on n. By (2.10), (3.2) and (3.9), we have
the following expression;

For any natural number fe, by the assumption (4) of Theorem 1.1 and the
manner similar to that in (3.4) we find a natural number /2(> fe) and a constant
c2 > 1 such that

\Eke~tAh\χ, < c2 |B
ί2/ι|^, /ιeC°°(B). (3.11)

Then we have

<Ξ n! |

= n! I
B'2 Bk

^ |(8l2Γ ί"|i - (by Lemma 3.1)
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<n\c2

2

n\(Blrnhn\Jr*n (by (3.11))

and

»np-tdΓ(A)m\\2 _ \Γ(iχ\k(,-tdΓ(λ)n.\2
B\\e ω\\2,k — I1 W e ω\L2(E,dμ)

oo ^
V"1 I Γ'(Ώ\k s, — tdΓ(A.) /. v®π. It \ |2

— 2-ι \λ W e \ X 9 nn/\L2(E,dμ)

< Σn\c2

2

n\(Blrnhn&*>>. (3.12)

In the same manner as the proof of the first half, we choose a natural number
m2 such that (Bq)~m2 <c2

l Then the right hand side of (3.12) is dominated by

V 2nf * Y" ~12+ m2®n* 2 22, n\c2

nl — I |(B2 qm2Γnhn\Jrβn = z\ω\2j2+qm29

which completes the proof of the second half of Theorem 1.1.

4. Inveriant nuclear space

In this section we discuss the conditions of Theorem 1.1. Especially the
conditions (3) and (4) have been examined by several authors such as J.
Frόhlich [3]. Let A and B be positive self-adjoint operators in the separable
Hubert space tf. In the sequel we denote by ch ί = 3, 4, positive constants.

4.1. Case where A and B are non-commutative.
LEMMA 4.1. Let D and B be positive self -adjoint operators in 3tf such

that C°°(B) c C°°(D) and D > 1 + ε for some ε > 0. Suppose that B has a
bounded inverse and for any natural number n, there exists a constant c3 such that

Then, for any natural number n, there exists a constant c4 such that

|B"e-'D/U<c4|B"/U /eC«(B).

PROOF. Since B"DB~" is a bounded operator, we have

<c4\Bnf\*

•
Next, we havve the following proposition which is implied by Lemma 4.1.
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Suppose that D is a positive self-adjoint operator in 3C and D > 1 + ε for some
ε > 0. We choose and fix a complete orthonormal system {e{\ i = 0, 1, 2, }
of the Hubert space tf taken from ^(D). Given {λt} such that λt > 1 + ε,
ε > 0, λt t oo, define a positive self -adjoint operator B in Jf by Bβf = A^. Let

{dij}i?j=o be the infinite dimensional matrix such that

D*ι = Σ <*ι.Λ
j=o

PROPOSITION 4.1. Suppose that

°° γ°° d? λin

Mn = Σ '"la.!"' J < + oo, /or off neN. (4.1)
i = 0 Λ-

conditions (1), (2), (3), (4) of Theorem 1.1 are satisfied for A = D

. To prove (1), let f=Σaieι be a finite sum τhen /e^(D) and

hence

D/=Σα,De,.

Therefore

where cs = ΣV 2 |Dβ,li = ZV'ZJVu ^ ̂ i
Since {λ^e{\ i = 0, 1, 2, } forms a complete orthonormal system of

and

Σ
1 2

*e

then the identity map ^(B) -> Jf becomes a Hilbert-Schamit operator. Of
course B has a bounded inverse B"1 such that E~1ei = λ^~1eί.

Since for any integer i and natural number n,

Σ W < oo.
J = 0

from (4.1), we have D^E^(BW), so that for any /eC°°(B) and for any fixed
natural number N,
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IB" Σ (/, e^Όefc = \ Σ (/,

= I Σ (/.

'i\je

N N
/ V"1 / f \9 ι ?M\ / V"1 ι —( / (/» ej#>Ai)( > /.•V £^ι \J 9 l/Jf i / V ̂  I

i = 0 i = 0

This implies the condition (3) of Theorem 1.1.
Since B has a bounded inverse, Lemma 4.1 yields the condition (4) of

Theorem 1.1.

PROPOSITION 4.2. Suppose that D and B satisfy the assumptions of
Proposition 4.1 and C is a positive self -adjoint operator in 3? such that C and
B are commutative and ^(B) c ^(C). Γλew ί/ze conditions (1), (2), (3), (4) of
Theorem 1.1 are satisfied for A = C 4- D αwc/ B.

PROOF. The condition (1) is obvious from ^(B) c ^(D) and ^(B)
It has been already proved in Proposition 4.1 that the condition (2) is satisfied.

Since ^(B) c ®(C), there exists a constant c6 such that

(B). (4.2)

By the commutativity of C and B and (4.2), for any natural number n, we have

To prove (4), it suffices to show that for some constant 0 < cs < oo

By Theorem 1.19 of Chap. IX in [8], we have an integral equation

e~ ί A/=e~ ί €/+ e~(ί~τ)CDe~τA/dτ
Jo

so that operating Bn on both sides of the above equality and using the
commutativity of C and B, the assumption of Proposition 4.1, we get
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Γ
Jo

f |e-('-')

Jo

Γ iβv-'
Jo

GronwalΓs lamma then yields

+

< e E " ^ =:cβ

This completes the proof of Proposition 4.2.

We have a sufficient condition for (4) of Theorem 1.1. (See [3].)

PROPOSITION 4.3. Let A and B be positive self-adjoint operators in 3tf
such that A > 1 + ε, for some ε > 0 and the condition (3) of Theorem 1.1 is
satisfied. Suppose that for any natural numbers n and fc, there exist a natural
number α(n) > n and a constant CJ? > 0 such that

|(A*B" - B AVl* ,, /e C»(B),

and

Then for any natural number n, there exists a constant Cn(i) > 0 such that

— Cl < oo, /or α«j t > 0.

PROOF. For any natural number n and /eC°°(B), we have

N (_ f\kN

Σ kl
A*/

*ι

-(A*B"-B"A*)/

N

Σ

From the above estimate it is seen that

oo fk

' J •** ' J ***• ί-^ i t * '

,α(n)ί/v
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*α(w)/l,r (by A > l).

REMARK 4.1. If D is a bounded operator in Lemma 4.1, then the conclusion
is derived from Proposition 4.3 without B having a bounded inverse.

4.2. Case where A and B are commutative.
Here we assume that A and B are positive self-adjoint operators defined

in the separable Hubert space tf.
By the spectral theorem we have the following spectral representations;

Λoo foe

vdE(v)9 B = λdF(λ).
Jo Jo

We say that A and B are commutative if E(v) and F(λ) are commutative for
all v, λ > 0.

PROPOSITION 4.4. Suppose that A and B are commutative and there exists
the inverse B"1 of B such that B"1 is compact on Jtf. Then A has countable
eigenvectors which form a complete orthonormal system of 3?.

PROOF. Since B"1 is compact and kerB"1 = {0}, we have

n=l

where {Pn} are orthogonal projections on tf satisfying

dimPnJ^ < + oo

and

By the commutativity of E(v) and Pn, A maps Pn3tf into Pntf, which asserts
Proposition 4.4.

By Proposition 4.4, A has countable eigenvalues {vj such that Aef = viei,
i = 0, 1, 2, , where {et} forms a complete orthonormal system of J^. Setting
Bet = λteh i = 0, 1, 2, , we have

COROLLARY 4.1. Let A and B be as above. Supose that A > 1 + ε for
some ε > 0. If for some natural number k

£ v?Σ — = c 9 < + c o ,
i = 0 λi
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then the conditions (1), (2), (3) and (4) of Theorem 1.1 are satisfied for A and B.

PROOF. Following the same argument as in the proof of Proposition 4.1,
we see that for any finite sum / = ̂ a{e{ and any integer n > 0,

which implies the conditions (1) and (3) of Theorem 1.1. Since v, > 1,
i = 0, 1, 2, , (2) is proved by the same argument as in Proposition 4.1. Since
A and B are commutative, we have

which completes the proof of Corollary 4.1.

5. Strong solution for a Segal-Langevin type equation

In [7], they discussed a fluctuation phenomena for interacting, spatially
extended neurons and as a limit equation, they found a suitable fundamental
space 3)E of functional on E and studied Segal-Langevin type stochastic
differential equations including a class of the weak version of (1.1):

dXP(t) = dWF(t) + X-dΓ(A)F(t)dt9 Fe®E. (5.1)

A stochastic process XF(t) indexed by elements in $)E is called a continuous
L(^£)-process if for any fixed Fe^E9 XF(t) is a real continuous process and

XΛF+βG(t) — aXp(t) + βXo(t) almost surely for real numbers α, β and elements
F9 Ge@E and further E[XF(i)2~\ is continuous on £®E. WF(i) is an
L(<£>E)' Wiener process such that for any fixed Fe@E9 WF(i) is a real Wiener
process.

Although the above Q)E is not nuclear, appealing to the results in [7],
we get a unique continuous L(^£)-process satisfying (5.1).

We consider the case where for A in (5.1) there exists a self-adjoint
operator B satisfying all the conditions of Theorem 1.1. In this case, by
Theorem 1.1, there is a nuclear space S invariant under both dΓ(\) and a
strong continuous semigroup T(t) = e~

tdΓ(A}. If we replace @E by S in (5.1),
then by the regularization theorem [5] there exists an S'-valued Wiener process
W(t) such that <W(f), F> = WF(t) almost surely and the strong form of the
equation with Q)E replaced by S in (5.1) is the following stochastic differential
equation on 5':

dX(t) = dW(t) - dΓ(\)*X(t)dt.

Let T(ί)* be the adjoint operator of T(t). Since S is nuclear, again by the
regularization theorem, the stochastic integral JQ T(t — s)*dW(s) is well defined



558 Hong Chul CHAE, Kenji HANDA, Itaru MITOMA and Yoshiaki OKAZAKI

from the weak form such that

/ f' \ f'
( T(t - s)*dW(s), F } = \ (dW(s), T(t - s)F>.
\Jo / Jo

Since T(t - s)F = F + £ T(τ - s)(- dΓ(A))Fdτ, we get

Γ T(t - s)*dW(s) = W(t) + \ (- dΓ(A)*)( \ T(τ - s)*dW(s) ]dτ.
Jo Jo VJo /

Noticing that

Γ*
(- dΓ(\)*)T(τ)*X(Q)dτ = T(t)*X(Q) -

Jo

we see that

ίJo
T(t - s)*dW(s)

is a unique strong solution of (1.1) on S'.
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