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Abstract. Let S'(R) be the dual of the Schwartz space S(R), A a self-adjoint operator
in L?(R) and dI'(A)* the adjoint operator of dI"(A) which is the second quantization
operator of A. It is proven that under a suitable condition on A there exists a nuclear
subspace S of a fundamental space S, of Hida’s type on S’'(R) such that dI'(A)S <= S
and e WS c S, which enables us to show that a stochastic differential equation
arising from the central limit theorem for spatially extended neurons:

dX(t) = dW(t) — dT(A)* X (t)dt,

has a unique solution on the dual space S’ of S, where W(t) is an S’-valued Wiener
process.

1. Introduction

Concerning with infinite dimensional geometry and analysis, several types
of fundamental spaces on infinite dimensional topological vector spaces have
attracted several authors ([1], [4], [9], [11], [13], [14]). As it has been
known by [5], the nuclearity of the space gives us the regularization theorem
which guarantees the existence of a strong solution of the stochastic differential
equation. However, [7] tried to construct a unique weak solution of a
Segal-Langevin type stochastic differential equation on a suitable space of
infinite dimensional generalized functionals which is not nuclear, and the
fundamental spaces used in the Malliavin calculus are known not to be nuclear
[2]. With this background, we consider spaces of Hida’s type which are
nuclear.

Let (S,) be a fundamental space of Hida’s type and dI'(A) the second
quantization operator. Inspired by the works [11], [12], we construct a
fundamental space which is invariant under the semi-group e "™ and is
nuclear and smaller than (S,) even if (S,) is not nuclear. This enables us to
obtain a unique strong solution of the stochastic differential equation

dX(t)=dW(t) — dI'(A)* X (t)dt, (1.1)
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which is a special case of the types considered in [7].

First we begin with giving some notations and explanations. Let E be
a real locally convex topological vector space and E’ the topological dual
space of E. We denote by (,) the pairing of E and E’, and by |- | the
norm of E when E is a Hilbert space. Let # be a separable real Hilbert
space densely and continuously embedded in E. Then identifying #’ with
M, we have

E'c#cE 1.2)

Let u be the countably additive Gaussian measure on E whose characteristic
functional is given by

1
j exp [i<x, €>]du(x)=exr>[——2~lélff], (eE'. (1.3)

If we replace E by S’(R), (E, ) is called the white noise space [11].

Now we state our main result. Let A be a self-adjoint operator in Hilbert
space # and L?*(E, u) the space of square integrable functions with respect
to u. Further we denote by (S,) a fundamental space of Hida’s type
determined by A and denote by dI'(A) the second quantization operator of
A, which will be precisely defined later. From now on we denote the domain
of a linear operator T defined densely in # by 2(T) and set C*(T) =
NX-12(T"). We always consider 2(T") as a Hilbert space equipped with the
inner product (T"-, T":),. We mean by A >/, AeR, that (Af, f), > A(f, f)x
for all fe 2(A).

THEOREM 1.1. Let A be a self-adjoint operator in #. Suppose that
A>1+¢ for some ¢ >0 and there exist a self-adjoint operator B in # and
natural numbers p and q, satisfying the following conditions;

(1) 21 < 2(A),
(2) the identity map of 2(BY into # is a Hilbert Schmidt operator,
3) AC>(B) = C*(B).

Then there exists a nuclear subspace S of L*(E, u) such that
dr'(A)S < S.

Further, suppose that

(4 e "AC*B)<= C*(B). Then
e”HrAg =S,

If there exists a positive self-adjoint operator B and p, ge N satisfying the
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conditions (1) ~ (4) of Theorem 1.1, those conditions (1) ~ (4) still hold when
we replace B by B + 2I. Then, since B+ 2I>1+ ¢ for some ¢ >0, the
desired space S in Theorem 1.1 will be given by (Sg. ).

2. Fundamental space of Hida’s type

Before defining a fundamental space of Hida’s type, we introduce the
following notation. Let # be a separable Hilbert space. For f;esf,
i=1,2,---,n, we denote the tensor product of them by

f1®f2®"'®fm (2-1)
and define the symmetric tensor product of them by

A

~ ~ 1
f1 ®fz® ®fn = ; Z fa(l)®fa(2)® ®fa(n)’ (2-2)

« geEn

where =, is the symmetric group of degree n.
Let 4 and & be the sets of finite linear combinations of terms of (2.1)
and (2.2) types, respectively. For f;, g;e #, i =1, 2,---,n, we first set

(f[1i®f: @ ®fus g1 R 92 ® - ® gn)swon = (f1, 91)(f2> 92)oe = (fas Gndoes

(2.3)
and
(fl ®f2 ® ®fns 91 ® 92® ® gn).#a"
1 2
= <E> Z, (fa(l)’ gt((l))x’(fu(z), gz(z))x (fo'(n)’ gt(n)).#" (24)

Then the inner products (:,-)yen On % and (:,-)ye» on F are naturally
extended for the linear combinations. Let #®" and #®" be the completions
of ¥ and & with respect to the inner products (-, )en and (-, )yen. Clearly

H8n = pon (2.5)
and

(f1 ®f2 ® ®fm 91 ® g2 ®-® gn)won
=(f1 ®f2®®fm 91®92®“‘®9n)x’3"- (2.6)
We define the Wick ordering, denoted by :x®":, for x€E, according to
the case where E = S'(R). First the Wick product :{x, &, > {x, &,>---{x, &,

of random variables {x, &>, xeE, &€eE’, k=1, 2,---,n, with respect to the
probability space (E, u) is defined by the following recursion relation [6];
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X, €1>:= {x, £1>,
:<x, él> <x’ §2> <x’ £n>:= <xa él>:<x, €2> <X, én)z

_kizf $x, E % ESAu(x): (X, E;>  (x, ED (X, &>, n>2,
=2 JE

where (x, “&,) means that the term <{x, &) is excluded in the product. Using
the Wick product, we define the Wick ordering :x®": by

XL ERE® - ®ED =1(x &0, &)k &) @7

Let {¢;:i=0,1,2,---} be a complete orthonormal system in J# taken from
E’. The well known Wiener-Ito theorem states that the space L?(E, u) has
the following orthogonal decomposition
LZ(E, ﬂ) = @ Kn,
n=0
where K, consists of n-homogeneous chaos, i.e. each ¢ in K, has the formal
expression

o) = Cxm fy, fue o
In fact if £, is represented by Y2 a4 i€, ®e, ® - ®e, then the

i1,i2,0.0,in=0
right hand side of the above expression is given by
® ~ ~ ~
Z iy iy, i CXP0 €, e, @ ®e ).

i1,i2,...,in=0

Thus each y e L*(E, u) can be represented uniquely in the following way;

(x) = Ex®L [, u—ae xeE.
Moreover, we have [11]
2, = 3 N 2en.
|'/’|L (E, ) 'Z:O" |fn|x9 2.9)

Let A be a positive self-adjoint operator in #. Then there exists a
unique positive self-adjoint operator I'(A) in L?*(E, p) such that (see [12])

ratl=1
and for £,€e2(A), i=1,2,---,n,
T'(A):<x, &0 <x, &30 KX, &)
=:{x, A D (x, A&y) - x, AE ). (2.10)
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We denote by 2, the collection of all polynomials of the form

(D(X) = P(<x’ él>’ <x’ 62>,"',<X, €m>)’ éiecw(A)’

where P(t;,--,t,) is a polynomial of (t,---,t,). For each peR we define a
semi-norm , | - ||,,, by

alloll3, = j I (AY o(x)|? dp(x). (2.11)
E

It is not difficult to see that I'(A)? = I'(A?). By (2.7), each w in &, has the
following expression;

ox) =Y x4y, G.€C*AP",
n=0
ntimes
where C®(A)®" = C*(A)® C*(A)® --- ® C*(A) is the set of finite linear
combinations of the form ¢, ® &, ® --- ® &, with £,e C*(A),i=1,2,---,n. We

note that there exists a natural number k(w) such that §,=0 for
n > k(w). Since

m(n)

én = Z ai(n)éil ®6iz® o ® gi"a Eikecm(A)’ k= 1’ 2,“',",

i=

by (2.9), All - 13, can be also represented as
Y E; =°O 1(AP)®"§,|%en,
A” ”2,p ngon I( ) nl#a (212)
where
(AP®" = APRAP® - ® AP.

For p >0, (S,), is the completion of &, with respect to the semi-norm
all - ll2,,- We define the fundamental space (S,) of the Hida distributions on
E by

(Sy) = on (Sa)p- (2.13)

Let (S,)-, be the topological dual space of (S,),. Then we have

(84 = pLZ)O (Sa)-»p- (2.14)

There are several criteria for nuclearity of a fundamental space of Hida’s
type, such as ([2], [10]). Here we show a sufficient condition.
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PRrOPOSITION 2.1. Let Z be a positive self-adjoint operator in # with
eigenvalues A, > 1, k=0, 1,---, such that Y A’ <+ for some y> 0.
Then (Sz) is a nuclear space.

Proof. Here we mimic a proof from [11]. It is sufficient to show that
for any p > 0, there exist an s > 0 such that the inclusion map 1: (Sz),+ 2 —
(Sz), is a nuclear operator. For the notational simplicity, we prove the
assertion in the case where p = 0. This is equivalent to show that the inclusion
map 1: L*(E, p) - (Sz)—, is a Hilbert-Schmidt operator. Let Ny = {0, 1, 2,---}
and let I, be the set of all ordered n-tuples o = (24,...,a,), o, < - <a, in
Ng. For ael,, define

m () = #{j: a; = k}, n(a)! = ﬁ n(a)!.

k=0

Let {e,:k=0,1,2,---} be a complete orthonormal system associated with
eigenfunctions of Z such that Ze, = 4,e,, k =0, 1, 2,---. For each a€l, we set

H,(x)=1 for n=0,

Hy() = (@) 2 [] :<x, ¢>™@:  for n#0

k=0

_1 x .
= (n(e)!) 2 J] :x®m@:, om@y,
k=0
Moreover we have

FZYH,() = (n(0)!) 2 [ C:xome, (zpemebmedy
k=0

= [] A)™“H,(x), for reR
k=0

and hence

Zz“ iH, “%,—s = Z |F(Z)_5Haliz(5,u)

a

1 2s
= { n:;o /1;:"(“) }

© 0 1 h]
< I
ngo [k,,...,zk:ﬁo {lh lk"}

0 0

YA{Y A< o,

n=0 k=0
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provided that Y ;2 /A, * <1, which is valid for sufficiently large s by the
assumptions Y ° (4,7 < 4+ oo and A4, > 1. This, together with the fact that
{H,(x): a€l,,n=0, 1, 2,---} forms a complete orthonormal system of L*(E, u),
implies the inclusion map 1: (Sz),.,, = (Sz), is a Hilbert-Schmidt operator.

ExampLE 2.1 ([4], [11]). Let Z be the operator

7= —<d>2+x2+ 1. (2.15)
dx
Then
Ze,=(2n+ 2e,,n=0,1,2,...

where {e,:n=0,1,2,---} is the complete orthonormal system consisting of
Hermite functions in L*(R). If we take E = S'(R), then (S) becomes a nuclear
space by Proposition 2.1 and originally it is called the fundamental space of
the Hida distributions.

3. Proof of Theorem 1.1

Before proving Theorem 1.1, we define the second quantization operator
dI'(A) of a self-adjoint operator A as

dI'(A):<x, &1) <X, &)t
:<x7 £l> <x’ Aél> e <x’ £n>:

M=

i=1

= Gx® L NL(E R ®E)D, (3.1
where
N, =AQRI®R - RI+IRARIR @I+ +IR® - QIRA.

Let B be a self-adjoint operator which satisfies the conditions in Theorem
1.1 and set B =B + 2I. Consider the fundamental space S = (Sz) of the Hida
distributions on E. Take any w(x)e %y then the following expression holds,

w(x) = n;) &xemuh>,  h,eC(B)E. 62)

By the assumption (1) of Theorem 1.1, w(x)e 2(dI'(A)), so that

dI'(A)w(x) = 20 Ex® NGh,D. 63
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Define the Hilbert space #§ for any natural number | by
Hg=DB) = {he #:|B'h|y < 0},

where the inner product of the Hilbert space g is given by (-, ), =

(ﬁ' ) ﬁl : )X’
Noticing that C*(B) = >, 2(B") is a complete metric space equipped
with a countable system of semi norms |-|,=|B":|,, n=1,2,.--, for any

natural number k, we have, by Baire’s category theorem, a natural number
1,(= k) and a constant ¢; > 1 such that

|B*Ahl, <c,|B"hl,, heC>®). (3.4)

For any 1 <n <k and any £eC®(B) such that |£|, < 1, the assumption (2)
of Theorem 1.1 implies that (B"Ah, &), = (h, AB"¢), is continuous in h on
C*(B), so that noticing that

IB*Ah|,, = sup {(B*Ah, &); £€C(B), |¢| < 1},
we see that the norm |B"Ah|, is lower-semicontinuous in h on C®(B). The

assumption (3) of Theorem 1.1 yields that

{he C=(B); |B"Ahl, < 00} = U {heC*(B); |B"Ah|,, < m} > C*(B).

Baire’s category theorem then asserts that for some a >0 the closed set
4, = {heC>(B); |B"Ah|, < a} contains a ball of the form

ho + {he C*(B); [hlymy < b}

with hoeC*(B) and b>0. If |h|,,)<b, hy—hed,. Since |B"Ah|, is
symmetric, so0 — hy + hed,. Since h, + he 4,, we have

|IB"A(2h)|,» = |B"A(— hg + h + hy + h)|,» < 2a.
Thus we get for 1 <n <k,
|B"Ah|, < ab™'|B'™h|,,, he C*(B).

For p,q given in Theorem 1.1, set pVq=max{p, q}. Then the lower-
semicontinuity of |Ah|, on P(B?V9) is proved similarly by the assumptions
(1) and (2) of Theorem 1.1, so that by Baire’s category theorem again we get

lAhlx’ < const. |Bquh|x,’ he@(prq).

Since C*(B) = C*(B) = 2(B?"9), the two inequalities above hold for he C ©(B),
which together with
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~ k k!

BkAh < —‘2k—n B"Ah

DAL, ,,gon!(k— s P AR
completes the proof of (3.4)

Here we prepare a lemma concerning with the operator norm of tensor
product of linear operators on Hilbert space, which will be used later. Given
Hilbert spaces #, and #, and a linear operator T from #, to #,, we
denote the operator norm of T by
|Tx|.#’z

I'Tll.¢, ¢, = sUP
xeHy |X|)¢l

We note that (3.4) implies

A ey, ~og, < C1- 3.5)

For simplicity we use the notation %%{' instead of (.}fgx)é”.

Let U, i=1,2,---,n be bounded linear operators from #g to H#g. for
any natural number / and k such that | > k. We have the following lemma,
which is an extended version of the proposition of [12] on p. 299.

LemMA 3.1. Let U, i=1,2,---,n be bounded linear operators from #
to #Hg. Then

I, ®U,® - ®U, “.#g,"—'xg; <0, ||x’i,—»x’§k 10, “x’.ﬁ,—-x’ﬁk < Uy ”se’ﬁ,—-t’ﬁ,‘-

Proor. Let {6,:k=0,1,2,---} be a complete orthonormal basis of
Hg, {{:k=0,1,2,---} a complete orthonormal basis of #g« and Zc,,. 4, (6,
® - ®0,®,., ® - ®(,) a finite sum in the space #§ ® #5 '. We get

N® - QIQU,RI® - @I
(X trknbs @ - @ O ® Ly, ® -+ ® L )ormi- 1oz i1
chkl..‘knckl...ki_1lik.~+1..‘k,.(Ui6k‘~’ Uiau)x’ﬁk

Z Izckl...ki—1lik|‘+ 1..¢ani01i|§f§k

ki...ki-1ki+1...kn i

2 2
<IU; ||x’§,—»x’§k > 1> ckl...ki_llikn1...k,.01,-|.#’,il
ki..ki-1ki+1...kn i
= Uil5 1Yyt O, @ ® 0, ® L, @+ ® L) opni g oren—i
i ”ﬁl—)”ﬁk ki...kn\Yk, ki Ki+1 kn. ”ﬁl&‘*ﬁk
so that

NMOIRUiRI® - @Il psiowsr-i~woi-1oaen-i+1 < | Uillg - opg, -
B! Bk B Bk Bk



550 Hong Chul CHAE, Kenji HANDA, Itaru MiToMA and Yoshiaki OKAZAKI
Hence
Ui @U, @ @ U,llpenspen < Uy @I - @Il g op2n-1- a0
B Bk Bl Bk Bk
XI|I®U2®I® ®I”xoZ®xon 2..#.,[@#0” 1° ”I® ®I®Un”*on_.xon l@*,,
SNl g, | Uallargm g, - |1 Unllopg, 2, - (3.6)
On the other hand, by making use of (2.5) and (2.6) we have
” Ul ® U2 ® te ® Un ”i’%’;*df’ﬁ?‘

= sup (U, ®U,® @ U),(U;QU,®® U,,)f),,m/(f f)xén

fe# "

< sup (U, @U; @ QUL (Ui @ U, ® @ Unf g/ (fs gy

fe‘#o"
=|U,®9U,®® U,.”ft’%v;-ur%';‘- (3.7
Combining (3.6) and (3.7) we obtain that
U, @ Uz ® ++® Upllrtnosswsn < N Uy g sy, U llrgorgy | Unllgmorg
B! B B B B B B!
]

Now we return to the proof of Theorem 1.1. Since N, h, is also
symmetric, we have by (2.6),

|P(BYdI (A) :x®™, By 12ag.a0 = 1! (BN ) A, 2

= n!|NL Ay |20, = n! [N, Ay 2o
Bk Bk

<n(TII® - ®I®ARI® @ Dhyle)?
i=1 Bl

<Y 1@ ®IQA®I® @Il par  pon |hyltn )?
i=1 Bl Bk Bl

=n(Y 1I® QRIQARIR @I 4on . pen)* (B A, | Z0n
i=1 B BK

<nn? ||A||§,§“4,§k|(§“)®"ﬁ,,|§,a" (by Lemma 3.1)
< nlnc}|B")*"h, %0, (by (3.5))
and hence

sldr(A)ol|2, = [T BYFdr (A)ol? g 4,

= ;0 | (B)dT (A) :x®", > 22,0
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® ~ A
2.2 [(Rinenh |2
< Y n!n*c?|(B")®"h,|%en. (3.8)
n=0

Since for the natural number g given in the assumption (2) of Theorem 1.1,
Be>2¢, B9)~! <279 we choose a natural number m, such that (B9)™™ <
(2c;)”!. Then the right hand side of (3.8) is dominated by

© 1 2n - R 00 - N
) n!nzc%<“> (B amyen e < Yl |(B* e e,
n=0 201 n=0
= |P(B)ll+qmlw|i2(5,d,‘) = §I|w||§,11+qml :

Therefore we have dI'(A)S = S. As noted in Proposition 2.1, S is a nuclear
space. Thus the proof of the first half of Theorem 1.1 is completed.

Now we will prove the second half of the theorem. Note that e~/
is the self-adjoint operator defined on L?(E, ) such that

e 1A = I'(e™™), (3.9

This follows from the identity
d
af(e""):@, Ei1 )X, &y i= — AT (A)T(e74):<x, &1 )+ <%, &)

which is verified by the induction on n. By (2.10), (3.2) and (3.9), we have
the following expression;

e_'dr“‘)a)(x) — io x®, (e—:A)@n}‘l”>_ (3.10)

For any natural number k, by the assumption (4) of Theorem 1.1 and the
manner similar to that in (3.4) we find a natural number /,(> k) and a constant
¢, > 1 such that

|B*e "Ah|, < c,|B h|,, heC™(B). (3.11)
Then we have
[r(ﬁ)ke—mr(A) Cix®, ﬁn>{%1(E,dn)
= n!|(B*e~"A)®"h,|%8n
= nlle™ )" hlrsn
< nllle™™)" e - orgn hulear.
=1t ey - ey | (B2 Ay s

<nlle ™ llfé'ﬁlzwﬁkl(ﬁ'z)mﬁ"|§,an (by Lemma 3.1)
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<nlc2|(B?)®"h, 2.  (by (3.11))
and

ﬁlle_mrmw”%,k = IF(B)ke_mr(A)wlzz,l(E,du)

|7 (BYre™ ™ Cx®, by ) | Eae, am

irs

n

< Y nled|(B2)eh, %en. (3.12)
n=0

In the same manner as the proof of the first half, we choose a natural number
m, such that (BY)™™2 < c;!. Then the right hand side of (3.12) is dominated by

Y
Y nlcd"
n=0

which completes the proof of the second half of Theorem 1.1.

1 2n - R
_) |(Blz+q"'2)®"h,,|§¢8" = §|a)|§’12+qm2,

C2

4. Inveriant nuclear space

In this section we discuss the conditions of Theorem 1.1. Especially the
conditions (3) and (4) have been examined by several authors such as J.
Frohlich [3]. Let A and B be positive self-adjoint operators in the separable
Hilbert space ##. In the sequel we denote by c;, i = 3, 4,--- positive constants.

4.1. Case where A and B are non-commutative.

LEMMA 4.1. Let D and B be positive self-adjoint operators in # such
that C*(B)c C*(D) and D> 1+ ¢ for some ¢ >0. Suppose that B has a
bounded inverse and for any natural number n, there exists a constant c5 such that

IB'D fl < c3|Bf |,  feC™(B).
Then, for any natural number n, there exists a constant c, such that
IB"e™"®f |0 < c4|B"f e,  fEC™(B).
Proor. Since B"DB™" is a bounded operator, we have
|Be™™f | = [B"e B "B'f |,
= e~ "B |,

< ¢y |Bf |
| |

Next, we havve the following proposition which is implied by Lemma 4.1.
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Suppose that D is a positive self-adjoint operator in # and D > 1 + ¢ for some
¢>0. We choose and fix a complete orthonormal system {e;: i =0, 1, 2,---}
of the Hilbert space # taken from 2(D). Given {1} such that 1;>1 + ¢,
e >0, J; 1 o0, define a positive self-adjoint operator B in # by Be, = A;e;. Let
{d; ;}%=0 be the infinite dimensional matrix such that

ProrosiTION 4.1. Suppose that

d2 12'1
M ZO—'T':J‘J < + o0, fOr a” nEN. (4_1)

Then the conditions (1), (2), (3), (4) of Theorem 1.1 are satisfied for A = D and B.

Proof. To prove (1), let f= Y ae; be a finite sum. Then fe2(D) and
hence

Df = ZaiDei.
Therefore
IDf|§r = lzaiDei|§e’
= |Zai1ili_lDei|§r
< (Qa? ) (XA |Deil%)
<cs|Bf%,

where ¢s =Y 472 |Deild =Y A7) 2 di <M
Since {4; 'e;:i=0, 1, 2,---} forms a complete orthonormal system of 2(B)
and

then the identity map 2(B) > # becomes a Hilbert-Schamit operator. Of
course B has a bounded inverse B~! such that B~ le; = A; le;.
Since for any integer i and natural number n,

Y dZA3" < oo,

=0
from (4.1), we have De;e 2(B"), so that for any fe C*(B) and for any fixed
natural number N,
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N
Z (f, ei)xB"DeiBf

i=0

N
|B" 'Zo (5 ei)xDeilfr =]

13

(f; )i A "B"De; |§e’

4

1
it

N N
<3 (s e 27)( X 472" B"Def%)
< M, |B'f1%.

This implies the condition (3) of Theorem 1.1.
Since B has a bounded inverse, Lemma 4.1 yields the condition (4) of
Theorem 1.1. |

PROPOSITION 4.2. Suppose that D and B satisfy the assumptions of
Proposition 4.1 and C is a positive self-adjoint operator in # such that C and
B are commutative and 2(B) = D(C). Then the conditions (1), (2), (3), (4) of
Theorem 1.1 are satisfied for A =C + D and B.

Proor. The condition (1) is obvious from 2(B) =« 2(D) and 2(B) = 2(C).
It has been already proved in Proposition 4.1 that the condition (2) is satisfied.
Since 2(B) = 2(C), there exists a constant ¢4 such that

ICfle < c6|Bflye,  feC™(B). (4.2)
By the commutativity of C and B and (4.2), for any natural number n, we have
IB"Af % = |B"(C + D)f|%
< 2{|B"Cf|% + |BDf %}
< 2{|ICB'f|% + M, |Bf %}
< 2{ce|B"* % + M, [B"f1%)
< ¢ |B %
To prove (4), it suffices to show that for some constant 0 < c¢g < o©
IB"e " "f|, < cg|B*fly, [feC™(B).
By Theorem 1.19 of Chap. IX in [8], we have an integral equation

t

e—tAf= e—th+f e-—(t—r)CDe—rAfdr,

0

so that operating B” on both sides of the above equality and using the
commutativity of C and B, the assumption of Proposition 4.1, we get
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t
|B"e “'Af | < e "B |, + j |e™ =B De A | g dt
0
t
<|BY|e + j |B"De " *Af |, dt
0

t
<IBfle + VM, J |B"e™"Af | pdr.
0

Gronwall’s lamma then yields

|Be™"Af L < & [B'f ¢ =:cg|B'S L
This completes the proof of Proposition 4.2. ]
We have a sufficient condition for (4) of Theorem 1.1. (See [3].)

ProprosSITION 4.3. Let A and B be positive self-adjoint operators in H
such that A > 1+ ¢, for some ¢ >0 and the condition (3) of Theorem 1.1 is
satisfied. Suppose that for any natural numbers n and k, there exist a natural
number a(n) > n and a constant C; > 0 such that

|(A*B" — B"AY)f|, < C}|B*"f |, feC™(B),
and

Y —Cit<oo, foranyt>0.

Then for any natural number n, there exists a constant C"(t) > 0 such that
IB"e™"Af |, < C"(t)|B*™f | ¢

Proor. For any natural number n and fe C*(B), we have

S (=) A S (=t Lk
B" = B"A
k;o k! f k;O k! fx
N (_ l)k N k
<y A'BYf Z (A"B" B"A%) f
k=0 k' > = ’H
N (_ t)" N
< Z Aanf Z _CnIBa(n)fl
k=0 k! k=0

From the above estimate it is seen that

_ _ " ) tk
B~ Af|p < e "AB"f|,, + Z Xl CrIB*™f |,
k=0 k!
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© k
s(l + Y La)ipor, by 4> ).
K=o k!

REMARK 4.1. If D is a bounded operator in Lemma 4.1, then the conclusion
is derived from Proposition 4.3 without B having a bounded inverse.

4.2. Case where A and B are commutative.
Here we assume that A and B are positive self-adjoint operators defined

in the separable Hilbert space #.
By the spectral theorem we have the following spectral representations;

A= fm vdE(v), B= JmldF(i).
0 0

We say that A and B are commutative if E(v) and F(1) are commutative for
all v, A >0.

PROPOSITION 4.4. Suppose that A and B are commutative and there exists
the inverse B~ of B such that B~ is compact on #. Then A has countable
eigenvectors which form a complete orthonormal system of .

ProoF. Since B™! is compact and ker B! = {0}, we have
B != Z VnPns
n=1

where {P,} are orthogonal projections on J# satisfying
dim P,# < + o©

and

H =@ P,H.
n=1
By the commutativity of E(v) and P,, A maps P, into P,5#, which asserts
Proposition 4.4. |

By Proposition 4.4, A has countable eigenvalues {v;} such that Ae; = v;e;,
i=0,1,2,-, where {e;} forms a complete orthonormal system of #. Setting
Be; = e, i=0,1,2,---, we have

COROLLARY 4.1. Let A and B be as above. Supose that A >1 + ¢ for
some ¢ > 0. If for some natural number k
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then the conditions (1), (2), (3) and (4) of Theorem 1.1 are satisfied for A and B.

Proor. Following the same argument as in the proof of Proposition 4.1,
we see that for any finite sum f =) a;e; and any integer n > 0,

IB"Af % < co|B"**f 1%,

which implies the conditions (1) and (3) of Theorem 1.1. Since v;> 1,
i=0,1,2,, (2) is proved by the same argument as in Proposition 4.1. Since
A and B are commutative, we have

IB"e~"Af % < IB"f %,

which completes the proof of Corollary 4.1.

5. Strong solution for a Segal-Langevin type equation

In [7], they discussed a fluctuation phenomena for interacting, spatially
extended neurons and as a limit equation, they found a suitable fundamental
space 95 of functionals on E and studied Segal-Langevin type stochastic
differential equations including a class of the weak version of (1.1):

AX(t) = dWi(t) + X _arar(D)dt, FeDy. (5.1)

A stochastic process X(t) indexed by elements in 9 is called a continuous
L(9g)-process if for any fixed Fe 2y, Xg(t) is a real continuous process and
X,r+p6(t) = aXp(t) + BXs(t) almost surely for real numbers «, f and elements
F,Ge2; and further E[Xp(t)*] is continuous on 25 W(t) is an
L(2g)-Wiener process such that for any fixed Fe 2g, Wi(t) is a real Wiener
process.

Although the above 2 is not nuclear, appealing to the results in [7],
we get a unique continuous L(Zg)-process satisfying (5.1).

We consider the case where for A in (5.1) there exists a self-adjoint
operator B satisfying all the conditions of Theorem 1.1. In this case, by
Theorem 1.1, there is a nuclear space S invariant under both dI'(A) and a
strong continuous semigroup T(t) = e "™, If we replace 25 by S in (5.1),
then by the regularization theorem [S5] there exists an S’-valued Wiener process
W(t) such that (W(t), F) = Wy(¢t) almost surely and the strong form of the
equation with 9 replaced by S in (5.1) is the following stochastic differential
equation on S’:

dX(t) = dW(t) — dI(A)* X (t)dt.

Let T(¢)* be the adjoint operator of T(t). Since S is nuclear, again by the
regularization theorem, the stochastic integral [ T(t — s)*dW(s) is well defined
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from the weak form such that

<jt T(t — s)*dW(s), F> = J.t dW(s), T(t — s)F).
)

0

Since T(t — s)F = F + [ T(t — s)(— dI'(A))Fdr, we get

f (= *dW(s) = W) + f '(— dI"(A)*)( f T — s)*dW(s)) dr.
0

0 0

Noticing that

f ‘( —dIr (A T()* X (0)dz = T(1)*X (0) — X(0),
o

we see that

X(t) = T(t)*X(0) + f' T(t — sy*dW(s)

0

is a unique strong solution of (1.1) on §'.
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