HIROSHIMA MATH. J. 26 (1996), 289–294

A note on pseudo resolvents

Ruey-Jen JANG

(Received November 22, 1994)

ABSTRACT. Let $E \neq \{0\}$ be a Banach lattice. From elementary operator theory we know that for any bounded operator T mapping E into itself, the resolvent $\mathbf{R}(\lambda, \mathbf{T})$ of T satisfies the resolvent equation $\mathbf{R}(\lambda, \mathbf{T}) - \mathbf{R}(\mu, \mathbf{T}) = (\mu - \lambda)\mathbf{R}(\lambda, \mathbf{T})\mathbf{R}(\mu, \mathbf{T})$. The converse of the above statement in general is not true. In this note, we study the natural inverse problem. We investigate under what conditions a pseudo resolvent on E is the resolvent of a uniquely determined positive operator on E. Furthermore, we determine necessary and sufficient conditions for a pseudo resolvent to be the resolvent of a uniquely defined positive irreducible operator.

1 Introduction

In this note we provide necessary and sufficient conditions for a family of bounded operators satisfying the resolvent equation to be the resolvent of a uniquely defined positive irreducible operator on the Banach lattice. In the following we briefly summarize basic concepts and fundamental results.

Let $E \neq \{0\}$ be a Banach lattice, the subset $E_+ := \{x \in E | x \ge 0\}$ is called the positive cone of E, elements $x \in E_+$ are called positive, and any nontrivial element $x \in E_+$ will be denoted by the notation x > 0. A linear operator S mapping E into itself is called positive if $S(E_+) \subset E_+$. We use L(E) to denote the Banach space of all bounded linear operators mapping E into itself. A subset A of E is solid if $|x| \le |y|$, and $y \in A$, implies $x \in A$. A solid subspace is called an *ideal*. A principal *ideal* is an ideal generated by a single element x and is denoted by E_x . It can be shown that if x > 0, then $E_x = \bigcup_{n=1}^{\infty} n[-x, x]$. Any $x \ge 0$ is called a quasi-interior positive element of E if its principal ideal E_x is dense in E, i.e., $\overline{E_x} = E$. A linear operator $S: E \to E$ is called *ideal irreducible* if $\{0\}$ and E are the only S-invariant closed ideals. We let r(S)

Let D be a nonempty open subset of C, and let $R: D \to L(E)$ be a function satisfying

be the spectral radius of S.

¹⁹⁹¹ Mathematics Subject Classification. 47B56.

Key words and phrases. Banach lattice, Pseudo resolvent, Positive operator.

Ruey-Jen JANG

$$R(\lambda) - R(\mu) = (\mu - \lambda)R(\lambda)R(\mu) \quad \text{for all } \lambda, \ \mu \in D.$$
 (1.1)

Such a mapping is called a *pseudo resolvent* on E. Discussion of Pseudo resolvents can be found in [1, 2, 3].

2 Main result

In the following we let S be a positive linear operator on E, $\rho(S)$ the resolvent set of S and let $\mathbf{R}(\lambda, \mathbf{S}) := (\lambda \mathbf{I} - \mathbf{S})^{-1}$, $\lambda \in \rho(\mathbf{S})$, denote the resolvent of S. It follows from positive operator theory that $\lambda > r(\mathbf{S})$ if and only if $\mathbf{R}(\lambda, \mathbf{S}) \ge \mathbf{0}$. Moreover S is irreducible if and only if $\mathbf{R}(\lambda, \mathbf{S})x$ is a quasi-interior positive element of E for each $\lambda > r(\mathbf{S})$ and x > 0, as the ideal generated by $\mathbf{R}(\lambda, \mathbf{S})x$ is invariant under S [4].

It is known that a pseudo resolvent in general need not be the resolvent of a linear operator. Necessary and sufficient conditions for when a pseudo resolvent is the resolvent of a uniquely determined closed linear operator on Banach space appeared in [3]. Our main objective is to characterize conditions under which there exists a unique positive irreducible operator T such that $R: D \rightarrow L(E)$ is the resolvent of T. We begin by stating some properties of pseudo resolvents.

PROPOSITION 2.1 [3, p. 36]. Let D be a nonempty open subset of C and $R: D \to L(E)$ be a pseudo resolvent on E. Then $R(\lambda)R(\mu) = R(\mu)R(\lambda)$ for all $\lambda, \mu \in D$. The null space $\mathcal{N}(R(\lambda))$ and the range $\mathcal{R}(R(\lambda))$ are independent of $\lambda \in D$.

PROPOSITION 2.2 [2, p. 299]. Let $R: D \to L(E)$ be a pseudo resolvent on E. The following statements are true.

- (1) For any $\lambda_0 \in D$ and any $\mu \in D$ with $|\mu \lambda_0| < ||R(\lambda_0)||^{-1}$, we have $R(\mu) = \sum_{n=0}^{\infty} (\lambda_0 \mu)^n R(\lambda_0)^{n+1}$.
- (2) $\lambda \to R(\lambda)$ is a locally holomorphic function defined on $D \subset C$ with values in L(E).

It follows from Proposition 2.2 that every pseudo-resolvent has a unique maximal extension.

The next result gives necessary and sufficient conditions for when a pseudo resolvent is the resolvent of a positive operator. The ideal of the proof is similar to that of [3, p. 37] in characterizing when a pseudo resolvent is the resolvent of a closed operator.

THEOREM 2.1. Let $R: D \to L(E)$ be a pseudo resolvent on E. Then R is the resolvent of a uniquely defined positive linear operator **T** on E if and only if

- (1) $\mathscr{R}(R(\lambda)) = E$, $\mathscr{N}(R(\lambda)) = \{0\}$ for some $\lambda \in D$, (2) There exists an $M \geq 0$ such that
- (2) There exists an M > 0 such that

$$\boldsymbol{B} := \boldsymbol{D} \cap \{\lambda | \lambda > M\} \neq \emptyset \tag{2.1}$$

and

$$R(\lambda_0)^{-1} \ge 0$$
 and $\lambda_0 R(\lambda_0) x \ge x$ for $x \ge 0$ and some $\lambda_0 \in B$. (2.2)

PROOF. Observe that condition (1) implies $R(\lambda)$ is invertible for all $\lambda \in D$ by Proposition 2.1, and (2.2) implies that $R(\lambda_0)$ is positive.

(⇒) Suppose a pseudo resolvent $R: D \to L(E)$ is the resolvent of a uniquely determined positive operator **T** on *E*. Then $\Re(R(\lambda)) = E$ and $\mathcal{N}(R(\lambda)) = \{0\}$ for all $\lambda \in D$. Furthermore, since the positivity of **T** implies the continuity of **T**, if we choose any $M > r(\mathbf{T}) \ge 0$, then $B = D \cap \{\lambda | \lambda > M\} \neq \emptyset$ (in fact $\{\lambda | \lambda > M\} \subset D$) and for all $\lambda > M$, $R(\lambda) \ge 0$ and hence

$$\lambda R(\lambda) x = \lambda (\lambda \mathbf{I} - \mathbf{T})^{-1} x = \lambda \sum_{n=0}^{\infty} \frac{\mathbf{T}^n x}{\lambda^{n+1}} \ge x \quad \text{for all } x \in E_+.$$

(\Leftarrow) Conversely, suppose R is a pseudo resolvent on E satisfying conditions (1) and (2). Then $R(\lambda)$ is invertible for all $\lambda \in D$. We now choose any $\lambda_0 \in B$ satisfying (2.2) and define

$$\mathbf{T} := \lambda_0 \mathbf{I} - R(\lambda_0)^{-1}. \tag{2.3}$$

We claim that (2.2) implies

$$\lambda_0 x \ge R(\lambda_0)^{-1} x \quad \text{for all } x \in E_+.$$
(2.4)

Indeed, let x > 0 be arbitrary, $\lambda_0 x - R(\lambda_0)^{-1}x = \lambda_0 R(\lambda_0)y - R(\lambda_0)^{-1}R(\lambda_0)y$ for a unique $y \in E_+$ such that $R(\lambda_0)y = x$ as $R(\lambda_0) \ge 0$ is one to one and onto E by assumption. So that $\lambda_0 x - R(\lambda_0)^{-1}x = \lambda_0 R(\lambda_0)y - y \ge 0$ by (2.2) and we conclude that $\lambda_0 x \ge R(\lambda_0)^{-1}x$. Therefore, $\mathbf{T}x = \lambda_0 x - R(\lambda_0)^{-1}x \ge 0$ for all $x \in E_+$, i.e., **T** is a positive operator on E.

By the definition of T in (2.3),

$$(\lambda_0 \mathbf{I} - \mathbf{T}) R(\lambda_0) = R(\lambda_0) (\lambda_0 \mathbf{I} - \mathbf{T}) = \mathbf{I},$$
(2.5)

and hence $\mathbf{R}(\lambda_0, \mathbf{T}) = R(\lambda_0)$. Furthermore, for any $\lambda \in D$,

$$(\lambda \mathbf{I} - \mathbf{T}) R(\lambda) = [(\lambda - \lambda_0)\mathbf{I} + (\lambda_0 \mathbf{I} - \mathbf{T})] R(\lambda)$$

= $[(\lambda - \lambda_0)\mathbf{I} + (\lambda_0 \mathbf{I} - \mathbf{T})] R(\lambda_0) [\mathbf{I} - (\lambda - \lambda_0) R(\lambda)]$
= $\mathbf{I} + (\lambda - \lambda_0) [R(\lambda_0) - R(\lambda) - (\lambda - \lambda_0) R(\lambda) R(\lambda_0)]$
= $\mathbf{I} + \mathbf{0}$
= \mathbf{I} .

Ruey-Jen JANG

Similarly, $R(\lambda)(\lambda I - T) = I$ for all $\lambda \in D$. We then conclude that $R(\lambda)$ is the resolvent of T, as $R: D \to L(E)$ is locally holomorphic on D and has a unique maximal extension on an open subset Δ of C satisfying (1.1) which can not be continued analytically beyond Δ [1, pp. 188–189].

Suppose now we choose a different $\tilde{\lambda} \in B$ satisfying (2.2) and define

$$\mathbf{S} := \tilde{\lambda} \mathbf{I} - R(\tilde{\lambda})^{-1}. \tag{2.6}$$

By the same argument we can show that $S \ge 0$, $R(\lambda, S) = R(\lambda)$ for all $\lambda \in D$. In particular, $(\tilde{\lambda}I - S)^{-1} = (\tilde{\lambda}I - T)^{-1}$, hence $(\tilde{\lambda}I - S) = (\tilde{\lambda}I - T)$ and S = T. So that T is independent of the choice of $\lambda_0 \in B$ satisfying (2.2).

On the other hand, if there exists an $M_2 > 0$ such that condition (2) holds, we then proceed with a similar argument. Indeed, we choose any $\lambda_2 \in D \cap \{\lambda | \lambda > M_2\}$ satisfying (2.2) and define $\mathbf{T}_2 := \lambda_2 \mathbf{I} - R(\lambda_2)^{-1}$. Then $\mathbf{R}(\lambda, \mathbf{T}) = R(\lambda) = \mathbf{R}(\lambda, \mathbf{T}_2)$ for all $\lambda \in D$ and thus $\mathbf{T} = \mathbf{T}_2$. This shows that the positive operator \mathbf{T} is uniquely determined by the pseudo resolvent satisfying conditions (1) and (2).

Let Q be the set of all quasi-interior positive elements of E.

PROPOSITION 2.3. Let $R: D \to L(E)$ be a pseudo resolvent on E. Suppose there exists an $\alpha > 0$ such that

(1) $(\alpha, \infty) \subset D$,

(2) $\lambda R(\lambda) x \ge x$ for all $\lambda > \alpha$, $x \in E_+$,

(3) $R(\lambda)x \in Q$ for all $\lambda > \alpha$, x > 0.

Then $\beta := \inf \{ \alpha_{\gamma} | \alpha_{\gamma} > 0 \text{ satisfying (1) (2) (3)} \}$ also satisfies conditions (1), (2) and (3).

PROOF. If $\beta = 0$, we are then in a position to show that $(0, \infty) \subset D$, $\lambda R(\lambda)x \ge x$ for all $\lambda > 0$, $x \in E_+$ and $R(\lambda)x$ is a quasi-interior positive element of E for every x > 0, $\lambda > 0$. Let $\lambda > 0$ be given, then there exists an $\alpha_{\gamma} > 0$ such that $0 < \alpha_{\gamma} < \lambda$. Since α_{γ} satisfies hypotheses (1), (2) and (3), we have $\lambda \in D$, $\lambda R(\lambda)x \ge x$ for all $x \ge 0$ and $R(\lambda)x$ is a quasi-interior positive element of E for every x > 0. Therefore we have shown that $\beta = 0$ satisfies conditions (1), (2) and (3) as $\lambda > 0$ were arbitrary.

If $\beta > 0$, then by the property of infimum that for any $\lambda > \beta$ there exists an α_{γ} such that $\beta < \alpha_{\gamma} < \lambda$. Thus the argument can proceed as in the case $\beta = 0$.

THEOREM 2.2. Let $R: D \to L(E)$ be a pseudo resolvent on E. Then R is the resolvent of a uniquely defined positive irreducible operator on E if and only if there exists an $\alpha > 0$ such that

(1) $\mathscr{R}(R(\lambda)) = E, \ \mathscr{N}(R(\lambda)) = \{0\} \text{ for some } \lambda \in D,$

292

⁽²⁾ $(\alpha, \infty) \subset D$,

- (3) $\lambda R(\lambda) x \ge x$ for $x \ge 0$, $\lambda > \alpha$, and $R(\lambda_0)^{-1} \ge 0$ for some $\lambda_0 > \alpha$,
- (4) $R(\lambda)x \in Q$ for all x > 0 and $\lambda > \alpha$.

PROOF. (\Rightarrow) Clearly, if R is the resolvent of a positive irreducible operator T, we can choose $\alpha > r(T) \ge 0$. It then follows from the proceeding discussion in Theorem 2.1 that (1) (2) (3) hold and (4) follows from the irreducibility of T.

(\Leftarrow) Conversely, suppose there exists an $\alpha > 0$ such that $R(\lambda)$ satisfies hypotheses (1) ~ (4). Then let

$$\beta := \inf \{ \alpha_{\nu} | \alpha_{\nu} > 0 \text{ satisfying conditions } (1) \sim (4) \}.$$
(2.7)

We have as guaranteed by Proposition 2.3 that

$$(\beta,\infty)\subset D,$$

$$\lambda R(\lambda) x \ge x$$
 for all $\lambda > \beta$, $x \in E_+$,

and

$$R(\lambda)x \in Q$$
 for all $\lambda > \beta$, $x > 0$.

We choose a number $\lambda_0 > \beta$ so that $R(\lambda_0)^{-1} \ge 0$ and define

 $\mathbf{T} := \lambda_0 \mathbf{I} - R(\lambda_0)^{-1}.$

By Theorem 2.1, we see that conditions (1), (2) and (3) imply that T is a positive operator which is uniquely determined by the given pseudo resolvent. It remains to show that T is irreducible.

(case i) Let $\beta = 0$. Since $(0, \infty) \subset \rho(\mathbf{T})$ and **T** is bounded, we see that $r(\mathbf{T}) = 0$. Hence **T** is irreducible as $R(\lambda)x$ is a quasi-interior positive element of *E* for all x > 0, $\lambda > 0$.

(case ii) If $\beta > 0$, then we conclude that $\beta \ge r(\mathbf{T})$. If $\beta > r(\mathbf{T})$, then **T** is a positive operator such that the resolvent coincides with the given pseudo resolvent. Hence we see that for any $\lambda \in (r(\mathbf{T}), \beta)$, $(\lambda, \infty) \subset D$ and $\lambda R(\lambda)x = \lambda(\lambda \mathbf{I} - \mathbf{T})^{-1}x \ge x$ for all $x \ge 0$. Furthermore, there exists $\mu > \beta$ such that $R(\mu)x$ is a quasi-interior positive element of *E* for all x > 0 by (4). Therefore for any x > 0, it follows from the resolvent equation

$$R(\lambda)x = R(\mu)x + (\mu - \lambda)R(\lambda)R(\mu)x$$

that $R(\lambda)x \ge R(\mu)x$ for all x > 0 as $\mu - \lambda > 0$ and $R(\lambda)$, $R(\mu) \ge 0$. Thus $E_{R(\mu)x} \subset E_{R(\lambda)x}$ and we conclude that $R(\lambda)x$ is also a quasi-interior positive element of E for all x > 0. Hence this contradicts the definition of β . Therefore $\beta = r(\mathbf{T})$ and \mathbf{T} is thus irreducible. This completes the proof of our main result.

Ruey-Jen JANG

References

- E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Coll. Publ. 31, Providence (R.I.) 1957.
- [2] R. Nagel (editor), One-parameter semigroups of positive operators, Lect. Notes in Math. 1184, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986.
- [3] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer 1983.
- [4] H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York, 1974.

Department of Mathematics Texas Tech University Lubbock, Texas 79409-1042 U.S.A.