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ABSTRACT. We show that the singular nonlinear second-order differential equation

(E) u"(r) + ™κ'(r) +/(r, u(r)) = 0 in (θlt θ2)

has at most one positive solution in C 1 ^ , ^ ] with boundary conditions

(BCJ uφj = ξ1>0, u(θ2) = ξ2>0

(BC2) u'iθ,) = u(θ2) = 0

(BC3) I 1 Pi \ it

where α£, ft e ( - O O , OO) satisfy ccf + βf Φ 0, i = 1, 2.

1. Introduction

Singular, nonlinear boundary value problems appear in a variety of appli-

cations and often only positive solutions are of interest. This problem arises

in the study of pseudoplastic fluids, boundary layer theory, the theory of

tubular chemical reactors and reaction-diffusion theory. There are many

authors considering the uniqueness and existence of positive solutions of

(/) u"{r) + * iι'(r) + /(r, u(r)) = 0 in (0, 1)

with boundary conditions

(Cl) iι(0) = κ(l) = 0 ,

(C2) ii'(0) = iι(l) = 0 ,
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(C3) cMO) + c2u'(0) = c3u(l) + c4iι'(l) = 0,

where k e {0,1, 2, 3, ...} and c x c 3 + c x c 4 — c2c3 > 0.

See, for example, Brown and Hess [1], Baxley [2], Brezis and Oswald

[3], Cohen and Laetsch [5], Callegari and Nachman [6], Fink, Gatica,

Herandez and Waltman [7], Gatica, Oliker and Waltman [8], Kwong [10],

O'Regan [17, 18].

Recently, Gatica, Oliker and Waltman [8], Kwong [10], Brezis and

Oswald [3] showed the following important results:

THEOREM A. ([8]: Theorem 3.1) Let k = 0 and / : (0,1) x (0, oo) -• (0, oo)

be continuous such that f(r,u) is a (strictly) decreasing function of u for each

fixed r and such that for any given r o e(0, 1), ξx > 0, ξ2eR. Equation (I)

with initial condition u(r0) = ξt and u'(r0) = ξ2 has at most one solution in a

neighborhood of r0. Then (I) has at most one positive solution satisfying (C3)

in C ^ C l l n C ^ C l ) .

THEOREM B. ([8]: Theorem 4.1) Let k e {1,2,3,...}, pe(0,1) and
h e C([0,1]: [0, oo)) such that

0< P(l-i
Jo

r)~ph(r)dr < oo .
Jo

Then

(II) u"(r) + -u'(r) + h(r)u~p(r) = 0 in (0, 1)

has at least one positive solution satisfying (C2) in C^O, l]ΠC 2(0, 1).

THEOREM C. ([10]: Theorem 2) Assume that q(t) > 0 in (0, 1) and f(u)/u

is decreasing in (0, oo) and not constant in any neighborhood of u = 0. Then

(III) u"(r) + q(r)f(u(r)) = 0 in (0, 1)

has a unique solution satisfying (C2) in C^O, l]ΠC 2 (0, 1).

THEOREM D. ([3]: Theorem 1) Consider the problem

(IV)

and make the following assumptions:

(1°) For a.e. xeΩ, the function u^f(x,u) is continuous on [0, oo) and the

function u -+f(x, u)/u is strictly decreasing in (0, oo),

(2°) For each u > 0, the function u^f(x9u) belongs to L°°(Ω).

Ju+f(x,u) =
u > 0, u φ 0
M = 0

0 in
in
on

Ω,
Ω,
dΩ
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Then, there exists at most one solution of (IV) in ifoΠL°°(Ω).

REMARK 1. The assumption "/(u)/u is decreasing in (0, oo) and is not a

constant in any neighborhood of u = 0" in Theorem C, is imposed to exclude

the situation in which f(u) behaves like a linear function in a neighborhood

of u = 0, that is, f(u)/u behaves like a strictly decreasing function near u = 0.

REMARK 2. The proof of Theorem D is based on the following results:

ί u Vu - ί
JdΩ JdΩ

2° (^2/uiWui = {u\lu2)Vu2 = 0 .
JdΩ JdΩ

These results imply that uj(θi) exist and ui(θdlui(Qd = u\(θ^lu2iβ^ = 0
(ί,j = 1, 2), if ul9 u29 are radial and Ω = {x\θx < \x\ < θ2}.

It is clear that if f(r9 u) is (strictly) decreasing in u e (0, oo),

f(r9 ύ) = h(r)u~p

9 h(r)uq

9 u - h(r)u\ ua + u~a

for any given p e [0, oo), q e [0,1), λ e (1, oo), α e [0,1] and h e C((0,1); [0, oo)),

then /(r, u) satisfies "/(r, u)/u is strictly decreasing in w". But, Theorems A,

B, C and D can not be applied to most of these functions, for example,

/(r, u) = uί/2

9 u - u2

9 M1/2 - h(r)u and M"1 + u .

Furthermore, Theorem B does not tell us if the positive solution of (II) with

(C2) is unique. Inspired by the above-mentioned results, we will give a concise

approach to establish some uniqueness theorems (in C1{θl9 0 2]) which general-

ize Theorems A, C, D, the uniqueness results in [1-10, 12-13, 17-20] and

confirm the uniqueness of Theorem B.

2. Main Results

Let m > 0 and 0 < θ1 < θ2 < oo. In order to abbreviate our discussion,

throughout this paper, we say u(r) is a positive solution of (E) which means

that ueCί[θl9θ2] satisfies (E) and is positive in (Θί9θ2)9 and suppose that

the following assumptions hold:

(Ax) f:(θί9θ2) x (0, oo) -• (—00,00) is locally Lipschitz continuous in

u e (0, 00) for each fixed re{θl9 Θ2)9

(Ai) f(r>u)/u is strictly decreasing with respect to MG(0, 00) for each fixed
re(θl9θ2).
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We now consider the uniqueness of positive solutions of

(E) u"(r) + ju'{r) + /(r, u(r)) = 0 in (θt, θ2)

with boundary conditions

(BC±) M ( θ 1 ) = ξ 1 > 0 , W ( 0 2 ) = £ 2 > O

(BC2) u'(θ1) = u{θ2) = 0

where αf, /?f e (—oo, oo) satisfy αf -h ft2 ^ 0, i = 1, 2.

In order to prove our main results, we introduce the following concepts:

Suppose that u and v are two positive solutions of (E). Let

w(r) ΞΞ u(r)υ'{r) - u'{r)υ(r), 0 < θ± < r < θ2 < oo

be the wronskian of u and v. It is clear that w(r) satisfies

in (θl9 θ2). Assume that u(r) > v(r) in (α, b) c (θ l 9 02), it follows from (1) and

(A2) that rmw(r) is strictly decreasing in (α, b). Hence, we see that

(2) iι(l>y (fc) - u'(6)ι?(6) = w(b) < (α/fc)mw(α) = (α/b)m(u(α)t/(α) - u'(α)t?(α)).

Using the above-mentioned results, we establish the following uniqueness

theorems which generalize the uniqueness results in [1-10, 12-13, 17-20].

REMARK 3.

(1*) If m > 0 is an even integer, then we can relax the restriction on θί9 θ2

to —oo < θ1 < θ2 < oo.

(2*) If /(r, u) satisfies some stronger assumption than (A2), for example,

"/(r, u) is (strictly) decreasing with respect to u e (0, oo)",

then we can obtain the uniqueness results in C^O, 1)ΠC[0,1] similar to the

following Theorems 1, 2 and 3, by using the Maximum principle with respect

to the function H(r) = u(r) — v(r).

THEOREM 1. (E) has at most one positive solution satisfying boundary

condition
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PROOF. Assume, on the contrary, that u and v are two distinct positive
solutions of (E) satisfying (BC^. First, we claim that u and v intersect in
(0i,02). Suppose on the contrary that u(r)>v(r) in (0i,02). It follows from
(2), ii'ίβj > υ'φj and

u'(θ2) - υ\θ2) < 0

that

0 < ξ2(Ό'(θ2) - u'(θ2)) < (ΘJΘJ'ξΛυ'iθJ - u'(θx)) < 0 ,

which gives a contradiction. Hence, there exists 03e(01,02) such that

u(θ3) = v(θ3)>0.

Next, we claim that u and v intersect in (03, θ2). Suppose to the contrary
that u(r) > v(r) in (03, θ2). It follows from u'(θ3) > ι/(03), M'(02) - v'(θ2) < 0
and (2) that

0 < ξ2(Ό'(θ2) - u'{θ2)) < (Θ3/Θ2)
mu(θ3)(v'(θ3) - u'(θ3)) < 0 ,

which again gives a contradiction. Thus, there exists θ4e(θ3,θ2) such that

u(θt) = υ(θt)>0.

Repeating the same argument, we obtain a strictly decreasing sequence

such that θn G (03, 0π_i) and u(θn) = v(θn) > 0 for all n = 5, 6, ....
By the Bolazano-Weierstrass theorem, we see that {0Π}£L5 has an accumula-

tion point, say η e [03, 04]. It is clear that u(η) = v(η) > 0 and u'(η) = v'(η\
which combined with (Ax) implies u(r) = υ(r) in (0i,02) (see, Hartman [9]).
This gives a contradiction, thus the proof is complete.

THEOREM 2. (E) has at most one positive solution satisfying boundary

condition (BC2).

PROOF. Assume, on the contrary, that u and v are two distinct positive
solutions of (E) satisfying (BC2). Just as in the proof of Theorem 1, we claim
that u and υ intersect in (0i,02) Suppose on the contrary that u(r)>v(r)
in (0!,02). It follows from (BC2) and (2) that

0 = U(Θ2)Ό'(Θ2) - W(θ2)v(θ2) < {ΘJΘWφjv'φj - u\θ1)v(θί)) = 0,

which gives a contradiction. Hence, there exists 03e(0i,02) such that
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It follows from w(03) = u(03) > 0, u(02) = ι;(02) = 0 and Theorem 1 that u{r) =

v(r) in (03,02), which together with (Ax) implies u(r) = v(r) in (0 l 50 2). This

completes the proof.

REMARK 4.

(1*) If 0! = 0 and m > 0, then Theorem 2 follows from Theorem D (Brezis

and Oswald [3]).

(2*) Consider the equation (E) in case that θx > 0 or m = 0. It is clear that

(E) can be reduced to an equation of the form

u"(r) + /(r, u{r)) = 0, 0X < r < θ2 .

For the case m = 0, this is obvious. For the case θx > 0, the change
of variables

u(r) = v(s) and rγ~m = s

reduces (E) to the equation

d2v 1

Ίέ- +

 n__m)2
s2m/il~m)f(sm~m)> v) = °> 0? < s < 02* ,

where 0* = 02

1"m and 0 | = θ{~m. Thus, if θ± > 0 or m = 0, Theorem 2

follows from Theorem C (Kwong [10]).

THEOREM 3. (E) has at most one positive solution satisfying boundary

condition (BC3).

PROOF. Assume, on the contrary, that u and v are two distinct positive

solutions of (E) satisfying {BC3). We split the proof into the following cases:

Case (1). Suppose that αx = 0. Thus, u and v satisfy urφx) = v'{θx) = 0.

We claim that u and v intersect in (0i,02). Suppose on the contrary that

u(r) > v{r) in (0 l 5 02). It follows from (2) that

(3) tι(02y(02) - S(θ2)v(θ2) < (ΘJΘ2nu(θ1)Ό'(θ1) - u'iθMθi)) = 0

It is clear that <x2β2 Φ 0. In fact, if α2 = 0 or β2 = 0, then u and v satisfy

tι'(02) = t?'(02) = 0 or u(θ2) = Ό(Θ2) = 0 ,

respectively. Both of these equalities imply

U(Θ2)Ό'(Θ2)-U'(Θ2)Ό(Θ2) = 0,

which combined with (3) gives a contradition. Since oί2β2φO and u, v satisfy

(£C3), M(02)I;/(02) - Mr(02)i;(02) = 0. This and (3) gives a contradiction. Thus,

there exists 03 e (θl9 θ2) such that M(03) = v(θ3) > 0.
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Next, we claim that u and v intersect in (0 l 5 03). Assume, on the contrary,

that u(r) > υ(r) in (0 l 5 03). If follows from (2) and M'(03) < t/(03) that

0 < U(Θ3)(Ό'(Θ3) - u\θ3)) < (ΘJΘtnuiθJυ'iθJ - u'VMΘi)) = 0,

which gives a contradiction. Hence, there exists 04 e (0 l 5 03) such that w(04) =

vψA) > 0. By Theorem 1, we see that u(r) = v(r) in (04, 03), this and {Ax)

imply u(r) = v(r) in (θl9 02).

Case (2). Suppose that βx = 0. Hence, u and v satisfy u ^ ) = v{θγ) = 0,

and so M(0I)I/(0I) — w'(0iM#i) = 0. The rest of proof is the same as in Case

(1), so we omit the details.

Case (3). Suppose that α2 = 0. Thus, u and v satisfy w'(02) = t/(02) = 0.

Just as in the proof of Case (1), we claim that u and v intersect in (0 l 5 02).

Assume, on the contrary, that u(r) > v(r) in (0 l 5 02). It follows from (2) that

(4) 0 = u(θ2)v'(θ2) - U'(Θ2)Ό(Θ2) < (θ1/θ2r(u(θ1)Ό'(θ1) - i i ' ^ M β i ) ) = 0

It is clear that oc1βί φ 0. In fact, if αx = 0 or βx = 0, then u and v satisfy

w '(01) = 1/(0^ = 0 or M(0!) = i ; ^ ) = 0, respectively. Both of these equalities

imply uφjv'iθj — n'(0iM0i) = 0, which together with (4) gives a contradic-

tion. Since (xίβίφ0 and M, V satisfy (BC3% we see that M ^ J I / ^ ) - u'iθ^viθ^

= 0. This contradicts (4). Hence, there exists 03 e (0 l 5 02) such that M(03) =

v(θ3) > 0.

Next, we claim that u and v intersect in (03, 02). Assume, on the contrary,

that u(r) > v(r) in (03, 02). It follows from (2) and u'(03) > t;r(03) that

0 = u(θ2)v'(θ2) - u'(θ2)υ(θ2) < (Θ3/Θ2ru(θ3)(v'(θ3) - u'(β3)) < 0 ,

which gives a contradiction. Thus, there exists 04 e (03, 02) such that M(04) =

t;(04) > 0. Using Theorem 1, we see that u(r) = v(r) in (03, 04), which com-

bined with (A^ implies u(r) = v(r) in (θl9 02).

Case (4). Suppose that β2 = 0. Hence, u and v satisfy M(02) = v(θ2) = 0,

and so u(02)t/(02) — w'(02M02) = 0. The rest of the proof is the same as in

Case (3), so we omit the details.

Case (5). Suppose that α1α2jβ1j?2 φ 0. Thus, u and v satisfy

u(θ2)υ'(θ2) - u'(θ2)v(θ2) = uφjv'φj - u'φMθi) = o.

The rest of the proof is quite similar to Case (1) or Case (3), so we omit

the details.

By Cases (l)-(5), the proof is complete.
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REMARK 5. If f(r, u) =f(u) satisfies a stronger assumption than (Λ^ for
example, assume that (Af) f: [0, oo)->( —oo, oo) is locally Lipschitz continuous
in u e "[0, oo)" (that is, / is well-defined at the point u = 0) and consider the
equation (E) for the case θx = 0 and m > 0. Then, we can show that the
positive solution u of (E) satisfies M'(0) = 0. Since ue C1 [0, 02]> ϋ m rmu'(r) = 0.

r-*0

Integrating the above equation on [0, r], we obtain

mu'(r) + I Γ smf{u(
Jo
I u ( s ) ) d s = 0

Jo

and therefore

iι'(r) = - r - m \ smf(u(s))ds .
Jo

It follows that

~m \
Jo

\u'(r)\ <: Mr~m smds , 0 < r < θ2 ,
m + 1

where M = {max \f(u(s))\: 0 < s < θ2} (Since / is continuous at u = 0, M exists).
Thus, u'(0) = 0. Therefore, the boundary condition α^O) + ftu'iO) = 0 is
equivalent to u(0) = 0 i/ αx φ 0. For the case /(0) = 0, the boundary value
problem (E)-(BC3) with αx Φ 0 has no positive solutions.

EXAMPLES:

(1) It follows from Theorem 1 that u(r) = r(l — r) is the unique positive
solution (in C^O, 1]) of

(Λ\ $u"{r) + 2 [ r ( 1 " r)Ύu~P = ° in ( 0 ' ! )

in case p G (0, oo).
(2) It follows from Theorem 2 that w(r) = 1 — r2 is the unique positive solu-

tion (in C^O, 1]) of

in case p e (—oo, 1) and m>0.
(3) It follows from Theorem 3 that u(r) = r is the unique positive solution

(in C^O, 1]) of

<r\ KW + (w/Φ'W - [m/r^1]^^ = 0 in (0, 1)

in case m > 0 and p e (1, oo).
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REMARK 6. We apply the results of this paper and the other known
results concerning the uniqueness of positive solutions of Emden-Fowler type
equations

(V) u"{r) + -\

with various boundary conditions:

Relations of f(u) and m

(a)

(b)

(c)

(d)

(e)

(f)

fiμ) = u
1 < p <

m > 1

f(u) = u

l<p<
m > 1

f(u) = u

1 <p<
m = 1

f(u) = u

m> 1

P
J

(m

P
5

(m

00

p +

-oo < p <
m>0

P> 1,
m>0

+ 3/m-l),

+ 3/m-l),

H (P + l )/2 f

1,

= 0

Boundary
conditions

V(0) = 0,
u(θ2) =

> 0 is

Results

(Uniqueness
[Ni [14, 15]

(Uniqueness
{Ni [14, 15]

jC/nigueness
\jVi [14, 15]

(Non-uniqueness

[Lin and Ni [11]

or Γ Uniqueness
(BC2), or < Our main results
(BC3) [{cf. [3, 10])

(BCX), or Γ Uniqueness

(BC2), or -< Our main results

{(BC3) {(cf. [10])
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