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On equilibrium solutions of a bistable reaction-diffusion

equation with a nonlocal convection
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ABSTRACT. We are concerned with an ecological model described by a bistable

reaction-diffusion equation with a nonlocal convection. We prove that there exist two

symmetric stationary solutions.

1. Introduction

We are concerned with a bistable reaction-diffusion equation with a
nonlocal convection.

(1) ιιt = duxx - [(K * u)u]x + ku(l - u)(u -a), x e R, t > 0, (0 < a < 1)

where K * u = JΛ K(x — y)u(y, t)dy and d, k are positive constants. Here u =
w(x,ί) denotes the population density at time ί and the position x. The con-
vection term [(K * u)u]x corresponds to an aggregating mechanism of the pop-
ulation. The function f(u) = ku(i — u)(u — a) represents the growth rate of
the population. Several spatially aggregating population models were dis-
cussed in [1], [2], [3] and [4]. In this paper we specify the kernel K(x) to be
the following function:

*«-{•-* ε:s.
where ft is a positive constant. With this choice of the kernel, one can see that
M(X, ί) moves in the right (resp. left) direction when

(x f°°
u(y,t)dy-\ u(y,t)dy<0. (resp. >0)

J —oo Jx

This means that the individuals move in the direction of higher distribution.
When the aggregative convection term [(K * u)u]x is absent, we have a well-
known bistable reaction-diffusion equation.

ut = duxx -h ku(ί — u)(u — a).
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It is known that u = 0, u = 1 are stable stationary solutions, while the solution
u = a is unstable. When 0 < α < 1/2, there exists one pulse-like solution, which
plays a role of a "separator". We expect that due to the interplay of the effects
of "diffusion" and "aggregation" equation (1) has a stable pulse-like equilibrium.

We study the existence of stationary solutions of (1). Hence let us
consider the stationary equation of (1):

r / f x fee \ - I /

(3) 0 = du" + I u(y)dy - u(y)dy )u\ +ku(l - u)(u - α), x e R,
LVJ-oo Jx / J

where ' denotes d/dx and where we chose b = 1 without loss of generality.
First we define a solution of (3) as a nonnegative function such that

(i) ueC2(R)ΓίLl(R)ΠLco(R).
(ii) u satisfies (3).

Our main result is as follows.

THEOREM. Let a > 0, k > 0 be arbitrarily fixed. Then there exists αo > 0
such that for 0 < a < αo the equation (3) has two positive symmetric solutions.

Here we call a solution of (3) symmetric if u(x) = u(2xo — x) for some XQ.
A similar result was obtained in [1]. They use singular perturbation tech-
niques to find stationary solutions. They treat the case when the diffusion con-
stant d is sufficiently small. We employ a "shooting method" as used in [2].
Our method applies to arbitrary d > 0. We have also obtained a necessary
condition on the parameter a to guarantee the existence of (not necessarily
symmetric) solutions of (3).

2. Proofs

From Lemma 1 in [2] it follows that a solution of (3) satisfies

w(±oo)=0 and ιι ;(±oo)=0.

We introduce a new function p(x) defined by

p(x) = u(y)dy.
J-oo

Then (3) becomes

(4) du" + {(2p - I)u}' + ku(ί - u)(u - a) = 0,

where / = J^ u(y)dy, the total population number to be determined. We
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transform (4) into the three dimensional system of differential equations.\t-
(5) lu' = v

[ v' = (ί/d){(I - 2p)v + few3 - (ka + k + 2)w2 + feαw}.

The boundary conditions of (5) at x = +oo are

Γ (p(-oo),M(-oo),t;(-oo)) = (0,0,0)

\ (p(cx>), ιι(cx)), t?(oo)) = (/, 0,0).

Note that the constant / is unknown α priori. In order to show the existence
of a symmetric solution of (3), it is sufficient to show that there exists a
solutuion of (3) such that

(7) f (p(-oo),«(-oo),»(-oo)) = (0,0,0)

for some /, XQ and MO (For details, see [2]). Thus we will look for a solution
of (5) connecting O = (0,0,0) and Q = (7/2, MO? 0). We consider a trajectory
originating from 0. All points on the p-axis are critical points of (5). To
investigate the behavior of the flow of (5) near 0, we linearize (5) about the
critical point O. The Jacobian matrix of the linearized system at O is

/O 1 0

A= I 0 0 1

\0 ka/d I/d.t

The eigenvalues of A are

0 and {/ ± (I2 + 4dka)i/2}/2d = μ± .

An eigenvector corresponding to μ+ is

There exists a one-dimensional unstable manifold U near the point O, which is
tangent to e.

Let α, β (0 < α < β) be the two solution of the quadratic equation

few2 - (ka + k + 2)tι + ka = 0.

Define the two lines mi, mi by m\ = {(p, M, υ)\u = α, v = 0} and ni2 —
{(p, M, v)\u = j8, v = 0}. Then note that the two lines themselves are trajectories
of (5).

In the following (p(x),w(x),ι;(x)) denotes a solution of (5). We outline
the proof of our main Theorem. Define the regions D, E and G by D =
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{(p,n,t?)|0 < p < //2,α < u < β,υ = 0}, E = {(p,u,υ)\p = 1/2, 0<u<β,v>0}
U{(p,n,t>)|0<p^//2, u = β,υ>0} and G = {(p,ιι,ι;)|p = //2, α < u < β,
v = 0}. When / is sufficiently large or sufficiently small, we will show that the
trajectory on the unstable manifold U reaches the region E (Lemmas 3 and 4).
Next, when / takes an appropriate value, we will show that the trajectory on U
reaches the region D (Lemma 6). By a continuity argument, it can be shown
that there exist two values /ι,/2 such that when I = I\ or /2, the trajectory
reaches the segment G. This completes the proof.

LEMMA 1. Choose m such that m > μ+. Suppose 0 < w(0) < mp(0)3

0 < 0(0) < mtι(O). Then for any x > 0 as long as 0 < p(x) < 7/2,0 < w(x) < j8,
we have u(x) < mp(x)} v(x) < mu(x).

PROOF. We consider the following two cases.
(i) Suppose that there exists the smallest XQ > 0 such that M(XQ) = wp(xo)

and I (XQ) < WM(XO). Then it follows that wp'(xo) - w'(*o) ^ 0. On the other
hand, we have mp'(xo) — M'(XO) = WM(XO) — V(XQ) > 0, which is a contradiction.

(ii) Suppose that there exists the smallest x0 > 0 such that M(XO) <
mp(xo), V(XQ) = WM(XO). Then it follows that ι/(x0) - WM'(XO) > 0. On the
other hand, we have

vr - mu' = (l/d){(I - 2p)mu + ku3 - (ka + k + 2)w2 + kau} - m2u

< (u/d){ku2 - (ka + k + ΐ)u + ka + Im- dm2}

< (u/d){ka + Im-dm2}

<0

at x = XQ, which is again a contradiction. Π

LEMMA 2. Let I > 0 be sufficiently small. Suppose w(0) > (//2d)p(0),
ι (O) > (I/2d)u(0). Then for any x > 0 as long as 0 < p(x) < 1/2, 0 < u(x) <
2μ+p(x)) we have u(x) > (I/2d)p(x)3 v(x) > (I/2d)u(x).

PROOF, (i) Suppose that there exists the smallest XQ > 0 such that M(XO) =

(//2d)p(x0), t (xo) > (//2d)ιι(xo). It then follows that M ;(XO) - (//2d)p/(x0) <
0. On the other hand we have t/(x0) - (I/2d)p'(xQ) = V(XQ) - (I/2d)u(xQ) > 0,
which is a contradiction.

(ii) Suppose that there exists the smallest XQ > 0 such that M(XO) >
(I/2d)p(xQ), v(x0) = (I/2d)u(xQ). It follows that ι/(x0) - (I/2d)uf(x0) < 0.
On the other hand we have at x = XQ,

Ό' - (I/2d)uf = (l/d){(I - 2p)v + ku3 - (ka + k + 2)u2 + kau} - (I/2d)v

- 2p)(I/2d) + ku2 - (ka + k + 2)ιι + ka- I2/4d}



Bistable reaction-diffusion equation 551

> (u/d){I2/4d + few2 - (feα -h fe -h 4)ιι + feα}

> (w/d){/2/4<? - (feα + fe + 4)μ+/ + feα}.

The last expression is positive when / is sufficiently small. This leads to a
contradiction. Π

REMARK. Lemma 2 is also valid when / (>0) is sufficiently large.

There is a portion of the one-dimensional unstable manifold U which lies
in the octant {(p, M, υ)\p > O,M > 0, v > 0}. we denote this portion by C7+.

LEMMA 3. Let d > 0, fe > 0 be fixed and choose I > 0 sufficiently small.
Then the trajectory on C7+ reaches the region E = {(p,M,ι?)|p = //2,0 < u < /?,
v > 0}.

PROOF. Define a cone W by W = {(p, M, ι;)|0 < p < //2, (//2d)p < u <
mp, (I/2d)u <v< wu}, where m satisfies μ+ < m < 2μ+. It then follows from
Lemmas 1 and 2 that the trajectory on 17+ is trapped in W as long as 0 < p <
1/2. Hence the trajectory must reach the region E. Π

LEMMA 4. Let d > 0, fe > 0 be fixed and choose I > 0 sufficiently large.
Then the trajectory on 17+ reaches the region E = ED {(p, u, υ)\0 < p < 1/2,

PROOF. The proof is similar to that of Lemma 3. Π

LEMMA 5. Let s be a number such that (k/2d)l/2I < s < k(a + l)/2. Sup-

pose t (O) < ,, 1

 λj{-fcκ2(0) -h (feα -h fe + 2)ιι(0) - kα}(//2 - p(0)). Then for
(I H-sjα

any x > 0 as /0n# as a < w(x) < /?, we Jiai e t (x) < γ- Γ/{~fc^W +

(fea H- fe + 2)ιι(x) - fea}(//2 - p(x)).

PROOF. Suppose that there exists the smallest XQ > 0 such that t (xo) =
1

-(ka + k + 2)u(xQ)-ka}(I/2-p(xQ)). Then we have at

- 2p)v + few3 - (ka -h fe + 2)w2 + fcαw}

{-2fewt; -h (feα -h fe -h 2)ϋ}(I/2 - p)

k + 2)ιι - ka}u
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( . {few3 - (ka + k + 2)w2 + fcαw}

- ̂  (1/2 - p)2\u + i (1/2 - p)2(ka + k- 2sΛ
a } a J

This contradicts the choice of XQ. Π

LEMMA 6. Let d>0, k>0 be fixed and put I = (dfc/8)1/2. TTien there
exists αo -SMC/I ί/iαί for 0 < α < 0o £Λe trajectory on U+ reaches the region

D = {(p,ιι,ι?)|0 < p < 1/2, a < u < β,v = Q}.

PROOF. Put m = (fc/8d)1/2 4- (ka/d)1/2. It is easy to see that μ+ < m <
2μ+. We define a cone VbyV = {(p, w, ι?)|(//2d)p <u<mp, (I/2d)u <v<mu,
0 < u < 3α}. Note that a < 3a < β when 0 < α < 1/3. Since the eigenvector
e is contained in V near the origin, U+ lies in F near the origin. When α is
sufficiently small, it is easily verified that Lemma 2 is also valid for / =
(dfc/8)1/2, 0 < u < 3α, It then follows form Lemmas 1 and 2 that the trajectory

on U+ is trapped in V as long as 0 < u < 3a. Hence the trajectory reaches the

cross section Vc of F, where Vc = {(p, M, v)\(I/2d)p <u < mp, (I/2d)u <v< mw,
u = 3a}. Define a surface S by

v = (πbμ {~fc"2 + (ka + k + 2)u ~ ka}(1/2 ~ p)

From Lemma 5 we know that no trajectories starting below the surface S can

reach the surface S. We will show that the cross section Vc is on the underside
of the surface S if a is sufficiently small. Put 5 = fe/4. Then s satisfies the
assumption of Lemma 5. Vc is below the surface S if the following inequality is

valid.

(8)

It is easy to show that the inequality (8) is valid when α is small. Since
p' = u > 0 and uf = v > 0, the trajectory starting from Vc reaches the region

D. This completes the proof. Π
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We can now prove our main theorem using Lemmas 3, 4 and 6. Let
d > 0, k > 0 be arbitrarily fixed and choose a so small that inequality (8) is
satisfied. By Lemma 1 the trajectory on 17+ reaches one of the following
three regions, that is, D, E or G = {(p, u, v)\p = 1/2, α < u < β, v = 0}. Define
T by T = {/ > 0|The trajectory on £7+ reaches the region D}. Note that 17+
depends continuously on /. By Lemmas 3, 4 and 6 it follows that T Φ 0 and
T is bounded. Hence inf T = I\ > 0 and sup T — /2 > 0 exist. By Lemma 6
it is clear that I\ φ /2 We will show that the trajectory on C7+ reaches G
when / = /i or / = /2. Let us consider the case / = l\. By the continuous
dependence of the unstable manifold 17+ on the parameters and the con-
tinuous dependence of the solutions of (5) on initial values, it is easy to see
that T is open. Therefore 17+ intersects dD when I = I\. In fact, one can see
that 17+ must intersect the segment G when I = I\. (Recall that the two lines
mi, m2 are trajectories of (5).). The case / = /2 can be treated analogously.
This completes the proof of the Theorem. Π

The following lemma shows the shape of the solutions of (3).

LEMMA 7. Let uφQ be a (not necessarily symmetric) solution of (3).
Then u has only one local maximum point.

PROOF. Assume that u has more than one local maximum point. Then
there exist three points XQ < xi < x2 such that M(XQ) = u(x\) = ufa) and

= 0.

Case (i). Γ u(y)dy < (1/2) Γ u(y)dy.
J —00 J—00

Multiply (4) by u' and integrate on the interval [XQ,XI]. Then we have

'(9)

,«(x)

"+j"'(2J"
XQ JXQ \ J —

udy-I)(u')2dx + F(u]
X l

ΓU(X)

where F(ιι)(x) = {2u2 + ku(\ - u)(u - a}}du. Since M'(XI) = 0 and F(w)(x0) =
Jo

F(II)(XI), (9) becomes

xo \ -oo

udy-l}(u')2dx = 0.
/

f x

Since 2 udy — I < 0 on the interval [xo,*ι)5 this leads to a contradiction.
J-oo

Case (ii). Γ u(y)dy > (1/2) Γ u(y)dy.
J— 00 J— 00-00 J— 00

This case can be treated similarly.
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0

= 0.
— 00

The next proposition shows a condition on a with respect to the existence
of a (not necessarily symmetric) solution of (3).

PROPOSITION. // (3) has a (not necessarily symmetric] solution u φ 0, then
the parameter a must satisfy

(10) 2{k(a + 1) + 2}2 - 9k2a > 0.

PROOF. We may assume that w'(0) = 0.

Case (i). f° u(y)dy < (1/2) Γ u(y)dy.
J— 00 J— 00

Multiply (3) by u' and integrate on the interval (— oo,0). Then we have

f M" u(y)dy-l}(u')2dx + F(u)
J— 00 \ J— 00 /

ΓSince 2 u(y)dy — I < 0 on the interval (— oo,0), we have
J-oo

fw(0)

^(w)l-oo = {2«2 + Ml - ")(" - a)}du > °
Jo

Hence

(11) (fc/4)w2(0) - {k(a + 1) + 2}w(0)/3 + te/2 < 0.

Since there must exists w(0) which satisfies inequality (11), a needs to satisfy

[k(a + l)H-2} 2 /9-fc 2 α/2>0.

Case (ii). f W(y)dy > (1/2) Γ u(y)dy.
J— 00 J — 00

This case can be treated similarly. Π

REMARK. From the inequality (10) we know that a satisfies

0 < a < {5k - 8 - (9k2 - 144k)1/2}/4k (k > 16).

When k > 8 -f 6\/2, this becomes an essential restriction on α.

3. Concluding remark

We have shown that equation (3) has two positive symmetric solutions.
These solutions have different L1 norm. We conjecture that the large pulse-
like stationary solution is stable and the small one is unstable. The small pulse
may play a role of a "separator". These facts are numerically confirmed in [1].

Numerical computations in [1] suggest that there exist exactly two
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symmetric solutions of (3). However, whether equation (3) has more than two
symmetric solutions or not is unknown. The question about the existence of
nonsymmetric solutions is still open.
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