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ABSTRACT. We present an explicit description of the Royden compactification of the

discrete topological space Z of integers. It is defined to be the Gelfand space of the

Royden algebra of bounded, Dirichlet finite functions. We identify it with a quotient

space of the Cech-Stone compactification βZ. The quotient map is expressed in terms

of properties of subsets of Z. Moreover, the quotient topology is also described in

such a way.

1. Introduction

In the classification theory of Riemann surfaces, significant roles are
played by different boundaries, invented by Wiener, Martin, Royden and
others. The boundary defined by Royden (see [5]) is one of the most fruitful
concepts in the theory. For a given Riemann surface R its Royden com-
pactification R* is a space which satisfies the following conditions (see also
[7], Chapter III.):

(Rl) R* is a compact Hausdorff space.
(R2) R* contains R as an open dense subspace.
(R3) Every function from the Royden algebra BD(R) extends to a

continuous function on R*.
(R4) The Royden algebra BD(R) separates points in R*.
It is known that the compactification R* of R exists and is unique up to a

homeomorphism fixing R pointwise.
An analogous theory is developed in [8] and [9] for graphs instead of

Riemann surfaces (or for more general structures called electrical networks),
where the above is also true. The Gelfand theory of representations of
commutative Banach algebras yields the existence of the Royden compacti-
fication for an infinite connected graph. It is identified with the Gelfand
space of the Royden algebra BD. The general theory doesn't say, however,
how the compactification looks. In general, there are no known examples of
the Royden compactification for graphs.
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The purpose of this paper is to show a method of constructing the
compactification for the discrete space Z of integers, which can be thought of
as a graph consisting of one infinite line. The construction shows that the
Royden compactification $Z of Z is in a sense similar to the Cech-Stone
compactification βZ.

In section 2 we consider the Royden algebra BD of bounded, Dirichlet
finite functions. We study there some basic examples of elements in it and
some useful constructions.

Section 3 contains the construction of the Royden compactification &tZ as
the Gelfand space of the commutative Banach algebra BD. It also shows
some basic properties of its elements.

In section 4 we briefly recall basic facts about the Cech-Stone com-
pactification βZ.

In section 5 we define an equivalence relation on βZ. As a main result
we show in Theorem 5.3 how the quotient space may be identified with the
Royden compactification $Z.

Section 6 contains an explicit description of the equivalence relation
(Theorem 6.1) and of the quotient topology (Theorem 6.4).

2. Royden Algebra BD

We shall consider real-valued functions on the topological discrete space
Z of integers (which are simply real doubly infinite sequences). For each such
function /, we define the Dirichlet sum D ( f ) as:

*>(/) = Σ |/(n+l)-/(n)|2. (1)
neZ

The space BD, introduced by H. L. Royden for open Riemann surfaces
(see [4], Chapters III. IV), consists of bounded real-valued functions on Z
which have finite Dirichlet sum. The operations of pointwise addition and
multiplication of functions provide the structure of a real commutative unital
algebra on BD, where the constant function / is the identity element. We
introduce the following norm on BD:

i i / i i HI/HOC +0(/)12, (2)
where \\f\\n is the usual sup norm.

PROPOSITION 2.1. With the \\ \\-norm the space BD is a real commutative
unital Banach algebra.

The proof of the Proposition is a simple use of Minkowski's inequality
and we omit it here (it can be found in [8], Theorem 6.2 or [9], Theorem 2.1).
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Trivial examples of elements of BD are functions which are constant out
of a finite subset of Z. A more concrete example we get by defining the
following function α. Let J0 = {4lfel : k E Z}, J{ = {2 - 4\k\ : fe e Z} and define

if \n\ € JQ,

"linearly" between.

The graph of α is (discrete) piecewise linear between succesive values 0
and 1. One easily observes that the Dirichlet sum for α is a geometric
progression, thus α e BD.

The above example can be generalized in the following way. Let (αn) be
a bounded sequence of real numbers and r = (rπ) a strictly increasing sequence
of integers satisfying the following "lacunary-like" condition:

Define

"linearly" between rn's. v '

Then the sup norm of/is that of (αn) and the Dirichlet sum of/is bounded by
a constant multiple of S(r). Hence we get an embedding of ί°° into BD.

Another useful construction is given by the following LINEARIZATION
process. Let / be a given BD-function and let r be a strictly increasing
sequence of positive integers (which may, or may not, satisfy the above
condition (3)). We define a new function/ by assuming that it has the same
values as / does at all integers of the form rn for n e Z and between these
points we wish / to be linear. Then a simple use of the Schwarz inequality
shows that D(f) < D(f). Therefore the mapping / \->f is norm decreasing
on BD.

3. Royden compactification of Z

Let ?̂Z = 0ί be the space of all bounded complex-valued multiplicative
linear functionals φ on BD normalized by φ(l) = 1. We call such a φ a
character. We endow 0t with the weak* -topology, so the net {φj converges
to φ if for every / 6 BD the net of numbers { ψ i ( f } } converges to φ(f). This
turns out to be the Gelfand topology and, by Tychonoff's Theorem, $
becomes a compact Hausdorff space. Every integer n e Z defines a character
on BD by φ n ( f ) =f(n) and identifying n with φn we get Z a $, as an open
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dense subspace. Every / e BD may be considered as a continuous function
defined on $ by f ( φ ) = φ(f). It follows easily that 0t is the Royden
compactification of Z.

REMARK 3.1. The details of the proof that $ is indeed the Royden
compactification can be found in the monograph by Sario and Nakai [7],
Chapter III, §2B, (for Riemann surfaces or manifolds), or in the book of Soardi
[8], Theorem 6.4. (for graphs and electrical networks).

We shall now study the properties of the characters on BD. First we
observe that φ(f) is always a real number.

PROPOSITION 3.2. Let φ e 02 and f e BD, then φ(f) is a real number.

PROOF. To the contrary, assume that, for some / e BD, we have φ(f) =

a + bi then for F = —r^ one gets φ(F) = ί, hence φ(F2 + /) = 0. However,
b

the element F2 -f / is invertible in BD because it is separated from 0 (is greater
than or equal to 1). Therefore no φ e ̂  can vanish on it, hence a contra-
diction. Π

It follows that for the point-mass functions δn it must be φ(δn) E {0,1}.
If φ(δn) = 1, for some n e Z, then φ(f) = φ(f)φ(δn) = φ(fδn) = φ(f(n)δn) =
/(«), for all / e BD, and therefore φ = φn, which is the trivial case.

In what follows we shall assume that φ(δk) = 0 for all k e Z. The set Z
of integers splits into the positive part TV and the negative part Z\N and the
characteristic functions of these sets, say /+ and 1-, are both J5D-functions.
By considering the value of φ on the sum and on the product of them, one
easily gets that

φ(7+), <?(/-) e {0,1}

and

φ(l+) = 1 iff φ(l-) = 0 (and vice versa).

This implies that, for an arbitrary f e BD, the value of φ(f] is equal
either to φ(f+) or to φ(/_), where we define /+=/•/+ and / _ = / 7_.
Therefore we can restrict our considerations to N instead of Z, and the
Royden compactification of Z will be the sum of two homeomorphic copies
of that of N.

From now on we shall consider only the subspace BD+ of all BD-
functions supported on TV. From the above assumption on φ it follows that
the value φ(f) does not depend on any finite number of terms of the sequence
{f(n) : n > 0}. We are going to show that, as a matter of fact, it equals a
limit of a subsequence /(n^). We start with the following
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PROPOSITION 3.3. If f € BD+ and lim / = 0, then φ(f) = 0.

PROOF. We begin the proof with a useful definition.

DEFINITION 3.4. For an arbitrary n e N, let fn stand for the function equal
to f on the interval [n, +00) and zero elsewhere.

Now take / and φ as in the hypothesis. Then φ(/) = φ(/π), indepen-
dently of n. For every ε > 0, there exists an n e TV such that both sup norm

p

and the square root of the Dirichlet sum of fn are less than -. Hence also

\\fn\\ < ε. This means that ||/π|| — > 0 in BD and therefore, by continuity of φ,
we get φ(f) = φ(fn) -> 0. Hence φ(f) = 0. D

PROPOSITION 3.5. /// e BD+ and f > 0 then φ(f) > 0.

PROOF. For an ε > 0, define gε = \// + ε.
Then gε is a bounded function, which is bounded from below by \fί.

Moreover,

2 \/

implies that gεεBD+. Furthermore, φ(gε) is a real number, so

0 < φ(gε)
2 = φ(g2

ε) = φ(f + ε) = φ(f) + ε.

Hence 0 < φ(f) + ε for any positive ε, so finally we get 0 < φ ( f ) . D

COROLLARY 3.6. 1. // lim sup / = 0 then φ(f) < 0.
2. // liminf / = 0 then φ(f) > 0.

PROOF. Let us prove 1. For an arbitrary ε > 0 there exists ne N such
that fn < ε, whence /„ — ε < 0. Therefore, φ(f) — ε = φ(fn — ε) < 0. This
proves 1., and 2. is obtained by taking — / instead of /. Π

DEFINITION 3.7. For a bounded function /, let fd denote the set of all
cluster points of the sequence {f(n) : n e N}. In other words, fd consists of all
real numbers p which are limits of the form p = limk_+oo f(nk) for some
increasing sequence (n^) of positive integers.

Obviously, the set fd is a closed subset of the real line and it turns out
that, for a BD-function, it is a closed interval.

PROPOSITION 3.8. For any f e BD+ we have fd= [lim inf/, lim sup/].

PROOF. If there was a gap in fd of length, say, ε > 0, then the Dirichlet
sum for / would contain infinitely many terms greater than ε2, because there
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would be infinitely many terms of the sequence {f(n}} above as well as below
the gap (at least those converging to liminf/ and to limsup/). Hence
D(f) = +00, which would contradict the assumption / e BD. Π

To end this section we formulate a useful property of characters on BD+,
which is valid in the general setting of an alebra of bounded continuous real-
valued functions on a completely regular space, which contains constant
functions and separates points and closed sets. For this purpose we introduce
a notation.

DEFINITION 3.9. Let f e BD, then we define

f+(n\ =

and /-=/-/+.

PROPOSITION 3.10. // φ(f) = 0, then φ(f+) = 0 and φ(f~) = 0. In
particular, φ(\f\) = 0.

The proof follows the same arguments as used in the discussion of φ(/+)
and φ(l~), so there is no need to repeat it here.

4. Cech-Stone compactification βN

In this section, we briefly recall basic facts about the Cech-Stone
compactification of the discrete topological space N of positive integers. For
the details we encourage the reader to see the nice paper by W. Rudin
([6]). As a general source book for the theory of ultrafilters we recommend
the monograph ([!]).

Recall first that the Cech-Stone compactification βN of N can be
identified with the space of all ultrafilters on N with the topology given by the
following basis of open sets:

V(E) = {ΩeβN:EεΩ} (5)

where E c N is arbitrary. An ultrafilter on TV is a family Ω of nonempty
subsets of N with the following properties:

1. If A, B e Ω, then A Π B e Ω.
2. If A E Ω and B ID A, then B e Ω.
3. For every A c TV, we have A e Ω <=> N\A φ Ω.
A non-empty family satisfying only 1. and 2. is called a filter on N and

the condition 3. is equivalent to maximality of Ω with respect to the ordering
given by set inclusion. An ultrafilter is called free if it does not contain any
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finite set. On the other hand, if an ultrafilter Ω contains a finite subset, then

it must contain also exactly one single point set {n} for some n e TV; in this
case it consists of all subsets of N that contain {n} and is denoted by Ωn. By

identifying every ne N with Ωn one gets an inclusion N c βN as a dense

discrete open subspace.

With the above topology the Cech-Stone compactification βN can

be also identified with the Gelfand space of the commutative Banach algebra
ί°° of all bounded sequences with the sup norm ([3] Theorem 3.2.11. and

example A.2.1). The action of an ultrafilter Ω on a bounded sequence / is
the generalized limit defined in the following way.

DEFINITION 4.1. Ω(f)=p if, for every positive ε, all the sets {n:

\f(n) -p\ < ε} belong to Ω.

REMARK 4.2. It is known that the generalized limit Ω ( f ) exists for every

/ e /°° and Ωe βN.

REMARK 4.3. A family & of subsets of N can be extended to an ultrafilter

if and only if it has the finite intersection property, that is every finite collection

of elements of 0* has non-empty intersection (see [1], Theorem 2.2).

5. Royden compactification 3%+ as a quotient space of the Cech-Stone
compactification βN

Now we are going to define an equivalence relation on βN which will be

essential in the description of the Royden compactification.

DEFINITION 5.1. For Ω, Ω' e βN we write Ω ~ Ω' i f Ω ( f ) = Ω ' ( f ] for all

fεBD.

Observe that Ω ( f ) is well defined because the function / is bounded.
The following Proposition is considered as a standard topological fact and

we give it without proof.

PROPOSITION 5.2. The relation "~" is an equivalence on βN, so the

quotient S = βN/^ is a compact Hausdorff space including N as an open dense

subset. The topology on S is given by the basis:

W(E) = {[Ω]^ :EεΩ}, EaN. (6)

The main result of this section is the following.

THEOREM 5.3. The Royden compactification &+ is homeomorphic to the

quotient space S.
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Before starting the proof we would like to justify this approach. It is
important, although quite easy, to see that the restriction of Ω e βN to BD+ is
a character and that two equivalent ultrafilters have the same restrictions to
BD+. Therefore, an equivalence class [Ω]^eS defines a unique element
φΩ e &+ by

9o(f)=0(f) ίorfeBD, (7)

which does not depend on the choice of a representative from [Ω] „ . What we
need to prove Theorem 5.3 is to show that the mapping

S3 [Ω]^ h-» φΩe&+ (8)

is 1 — 1, onto and continuous, because both spaces are compact! Observe also
that [Ωn]^ = {Ωn} can be identified with φn for every n e N, so we may restrict
our attention to free ultrafilters only.

PROOF, (i) We start with a simple proof of injectivity:
If Ω 76 β', then for some / e BD we have β(/) / β'(/) <=^ φ Ω ( f ) /

φΩ'(f) which implies that φΩ ^ φΩ>.
(ii) To prove the surjectivity, we will show that every φ e @+ can be

extended to an ultrafilter Ω e βN with the restriction to BD+ equal to φ
again. For this purpose we show that every φ uniquely determines a family
9φ of subsets of N which has the finite intersection property.

DEFINITION 5.4. For φ e $+ we define

&* = {{n : |/(n)| < ε} : / e BD, ε > 0, φ(/) = 0}. (9)

The family &φ is non-empty:
(1) if / -> 0, then φ(f) = 0, hence [n, +00) e 0>Φ for neN;
(2) if φ(f) = c then φ(f - c) = 0 and all the sets {n : \f(n) - c\ < ε}

belong to &φ.
The next Lemma is crucial in the proof of the surjectivity.

LEMMA 5.5. Let φ e ^>+. Then for any A, B e &φ there exists C e£Pφ
such that C a AΠ B.

PROOF. Let A = {n : \f(n)\ < ε} and B = {n : \g(n)\ < ε'} for some posi-
tive ε and ε' and/, g e BD+ withφ(f) = φ(g) = 0. Then also φ(\f\) = φ(\g\) —
0; in particular, for h = \f\ + \g\ we have φ(h) = 0, h e BD+ and h > 0. Let
εo ^ min{ε, ε'}, then for any n e N

h(n) < εo 4=^ |/(n)| + \g(n)\ < εo => \f(n}\ < ε Λ \g(n)\ <εf^n

Hence C = {n : h(n) < εo} c A Π B, and obviously C e 0*φ. Π
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COROLLARY 5.6. For every φ e ^2+, the family 0*φ has the finite inter-
section property.

Actually, if we define

Pφ = {DcN:lAePφ A^D}, (10)

then 3Fφ is a filter on N. Any of its maximal extensions can serve as an
ultrafilter containing &φ. This proves the surjectivity.

Let us also observe that, for two distinct φ0 and φ1? the families ^>0 and
^φι are different. To see this assume that there exists / e BD+ such that

PQ = φ0(/) Φ φ\(f] = Pi By taking /' = we may assume that pt = i
Pi - PQ

for ί = 0,1. Then, for sufficiently small ε, the set {n: \f(n)\ < ε}Π
{n : \f(n) - 1| < ε} is finite (possibly empty). However, {n : \f(n)\ < ε} e 0>φo

and for g =f — 1 also {n : \g(n)\ < ε} € ̂ 9l. In view of the above Lemma the
families 0>φo and &φι differ.

(iii) To prove the continuity, let us take an open neighbourhood °U of
some ψ e^+, say:

* = {φ 6 ®+ : |φ(/0 - <K/ι)| < ε 1 } . . . , \φ(fk) - ψ(fk)\ < εfc}, (11)

where /i,..., fk e BD are given and ε i , . . . , εk > 0 are fixed. Let gt =fi — ψ(fi)
for i = 1,..., fc, then also \f/(gi) = 0.

LEMMA 5.7. Let g e BD+, Ω € βN3 φ e #+, ε > 0 be arbitrary. Then:

1. // {n : \g(n)\ < ε} e Ω, then \Ω(g)\ < ε. In particular, if {n :
\g(n)\ < ε} e 0>φ, then |φ(^)|<ε.

2. // \Ω(g)\ < ε, then {n : \g(n)\ < ε} e Ω. In particular, if \φ(g)\ < ε,
then {n: \g(n)\ < ε} e 0>Φ.

PROOF. To prove 1. assume, to the contrary, that \Ω(g)\ = p > ε. There
exists δ > 0 such that the intervals (p — <5,p + δ) and (—ε, ε) are disjoint. Then
also the sets {n : \g(n) — p\ < δ} and {n : \g(ri)\ < ε} are disjoint. However,
both of them should be in Ω, by the assumptions. This is a contradiction,
which proves the first part of 1. The second part follows by taking any
extension Ω of φ.

To prove 2. observe that, by definition, if \Ω(g)\ =p < ε then for suffi-
ciently small δ we have the inclusion {n : \g(n) — p\ < δ} <= {n : \g(n)\ < ε}.
The smaller set is in Ω so the bigger one is there as well. This proves the first
part of 2. and the second part follows by the same argument as in 1. Thus the
lemma is proved. Π

Now, all the sets |n : \gi(n)\ < ̂ j are in ̂ , so, by Lemma 5.5, there
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exists an element E of 9^ included in the intersection of the sets

I n : \Qi(ri)\ < -^\. We shall show that the open subset W(E) of S is mapped

into W. For this purpose take Ω e βN such that EeΩ, (i.e. [Ω]^ e W(E)).

Then all sets containing E, in particular <n : \gt(n)\ < -^j, are in Ω. By the
o. >• £ '

above Lemma, fl(0, ) < -^ < ε/. Hence, φ(gt) < ε, for every i = 1,..., fc. This

proves the continuity and finishes the proof of the theorem. Π

6. An explicit description of ffl+

In this final section we describe more explicitly the Royden compacti-
fication ^+ of N and its relation with the Cech-Stone compactification. We
show how the equivalence relation " ~" on βN can be expressed in terms of
properties of subsets of N. This will help us to show how to construct
ultrafilters equivalent to a given one. We also describe more explicitly the
topology on $+.

Let us start with some simple remarks on subsets of TV. If A, B c N are
infinite and disjoint, A Π B = 0, then we can uniquely represent A and B as
disjoint unions

A=\JAJ9 B = 0 Bh (12)
7=1 ;=1

where

... < min AJ < max Aj < min Bj < max Bj < min Aj+ι < ... (13)

Moreover, the natural numbers

kj = min Bj — max Aj, fcj = min Aj+\ — max Bj (14)

are then also uniquely determined.
It follows that the sets Aj, Bj are finite and ordered in the above sense.

We will call this representation the disjoint representation of the pair (A, B).
The next theorem, the main one in this section, describes which ultra-

filters are not equivalent, which is more natural to formulate than when they
are equivalent.

THEOREM 6.1. Let Ω,Ω'eβN be two arbitrary ultrafilters. Then the
following two conditions are equivalent:

1. Ω<tΩ';
2. There exist two disjoint subsets A € Ω and B e Ω1 such that for the
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disjoint representation of the pair (A, B)

00 4

Σr<+00' and
• • » • * /

7=1 J

PROOF. 2. => 1. Assume that A, B are given as in 2. and define a
function / on N by

{ 0 if n e A,

1 i f n e B ,
"linear between".

Then / is bounded, non-negative, / = 0 on [min A/, max Aj\, f = ί on
[min BJ, max B/] and / is linear between 4/s and B/s. One easily checks that
the Dirichlet sum for / is

so / e BD+. Now, ^4 c= {n :f(n) < ε} implies that {n :f(n) < ε} e Ω and
B a {n: \f(ri) - 1| < ε} implies that {n : \f(n) - 1| < ε} e Ωf for every ε > 0, so
that Ω(f) = 0 and Ω'(f) = 1. Hence (1) follows.

1. => 2. Let β 9^ ί2'. Then there exists / e BD+ for which p = Ω(f) φ

Ω'(f) = p'. By taking /' = — - instead of / we may assume that p = 0
P -P

and p' = 1. For an ε < i define A = {n : \f(n)\ < ε}, B = {n : \f(n) - 1| < ε}.
Then A Π B = 0 and both are infinite (recall that ί2, ί2' are free ultra-
filters!). Take the disjoint decomposition of the pair (A3 B) and consider the
strictly increasing sequence r of positive integers naturally constructed from the
following sequence:

. . . min AJ < max Aj < min Bj < max Bj < min Aj+\ < ____ (16)

Let / be defined by the LINEARIZATION process of / for r (described
at the end of section 2). Then / e BD+ and D(f) < D(f) < +00. However,
the Dirichlet sum for / gives the following estimation:

n=max Bj

hence 2. follows. Π
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It is natural ask the following question: For a given ultrafilter β, how
does one find other elements of its equivalence class [fl]^? As we have seen,
the question is trivially answered in the case of non-free ultrafilters Ωn. For
free ultrafilters, however, we can only give here a method of constructing a set
of the power of the continuum of ultrafilters equivalent to a given one. This
method is not sufficient to describe all such ultrafilters, so the problem of a
complete description remains open.

Our construction is the following. For an arbitrary bijection φ : N —> N
and an ultrafilter Ω e βN we define

φ(Ω) = {φ(A):AeΩ}, (17)

where φ(A) = {φ(ri) : ne A}. It is seen at once that φ(Ω] is an ultrafilter on
N. For special '̂s it turns out to be equivalent to β.

PROPOSITION 6.2. Let Ω e βN be a free ultrafilter. If

sup \φ(n) -n\< +00. (18)
neN

then φ(Ω) ~ β.

PROOF. Assume, to the contrary, that φ(Ω) 76 Ω. Then we can find
A e β and B e Ω' = φ(Ω) such that the disjoint representation of the pair
(A,B) satisfies condition 2. of Theorem 6.1. In particular,

kj = min Bj — max Aj —> +00.

We may assume that B = φ(D) for some D e Ω such that D c= A, because a
subset of B also satisfies the same conditions when paired with A. Let
min BJ = φ(dj). Then the sequence \dj — φ(dj)\ is bounded, by the property
of φ. On the other hand, it tends to +00 because \dj - min B/| >
I max AJ — min Bj\ = kj. This is impossible, hence, by contradiction, the
proposition follows. Π

Another natural and important question is how big is the space &t+. It
will be shown that, in the set-theoretical sense, it has the same power as
the Cech-Stone compactification. For this purpose observe, that, if A e β
then ΩA = {B Π A : B e β} is an ultrafilter on A and then β = {D c N :
3BeΩA BciD}. In general, any free ultrafilter on a given infinite subset A
of N can be uniquely extended to an ultrafilter on TV, in the same way as
above. On the other hand, if A = {TJ} is a sequence which satisfies the
condition S(r) < +00 (see (3) in section 2), then two different ultrafilters on A
are not equivalent, by Theorem 6.1. However, there are as many free ultra-
filters on an infinite (countable) set as on N. Hence we are led to
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PROPOSITION 6.3. There are 2C elements in 31+, where c = continuum is
the power of the set of real numbers.

Now we are going to describe the topology on $+. Recall that its basis
is given by the family of sets

where E c: N. These sets are described in a more explicit way in the
following.

THEOREM 6.4. Let E c TV be arbitrary. Then

W(E) = {φe®+: V/eBD+(jim f(n) = 0 =>φ(/) = θ)j. (19)

The theorem is trivial for finite E, so we only need to prove it for infinite
sets.

PROOF.
(a) "c" Let φe W(E) and / e BD+ satisfy Iimn6£/(n) = 0. Then, by

the definition of W(E)9 there exsists Ω e φ such that E E Ω. For every ε > 0
the set {n:\f(n)\<ε} is in Ω because it contains E (up to, possibly, a
finite number of elements). Hence Ω(/) =0 and therefore φ(f) = Ω(f)
= 0.

(b) "3" Let E e N and assume that a φ e ffl+ satisfies

l im/(ι ι)=0=»φ(/)=0. (20)
netL

Our goal is to find Ω e φ such that E e Ω. This will be done if we show that
the family 9φ U {E} has the finite intersection property. This, in turn, is
equivalent to showing that EΓ\A ^ 0 for all Ae^φj by Lemma 5.5.

Assume, to the contrary, that this is not true, so that there exists g e BD+
such that

1. limne£ g(n) Φ 0,
2. φ(0)=0,

3. EΠ {n : \g(n)\ < ε} = 0, for some ε > 0.
We may assume that g > 0 (by taking \g\, if not), and that gd = [0, 1]. Then
for Aε = {n : \g(n)\ < ε} the pair (AK,E) has the disjoint representation of the
form

E = U Eh Aε = U AεJ.
j i
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{ ε Ί
n : \g(n)\ <-> and let Aε/2J = Aε/2Π A8j. For the sequences

kj = I min AB/2j — min ABj\, kj = |max AB/2j — max Aej\, we have

00 Λ 00 Λ

Σ
l Λ \;—> 1

— <-hoo and ^ ^ — < +00.

However, r/ = |max £; - min AB/2j+\\ > kj and rj = |min £; — max ̂ 4ε/2j| ^ ^j
so the series of inverses of the numbers r/ and rj converge. Therefore, if we
define

if n e ^4ε/2,

if n e E,

"linear between",

then / e BD+ and limne£ f ( n ) = 0. So φ ( f ) = 0 and hence φ(/ + 0) = 0.
β ε

On the other hand, f + g > - implies that φ(f + g) > -=, by Proposition 3.5.

This gives a contradiction, so that (b) follows. Π
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