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ABSTRACT. Nonlinear perturbations of once integrated semigroups are treated in terms

of nonlinear semigroup theory. Given an integrated semigroup W(t) with generator

A in a Banach space X, two general classes of nonlinear perturbations of the form

A + B are introduced. In order to define local quasidissipativity of A + B and restrict

the growth of solutions of the associated semilinear evolution equation (SE): u'(t) =

(A -I- B}u(t\ a lower semicontinuous convex functional φ: X -> [0, oo] is employed.

Necessary and sufficient conditions are given for a semilinear operator A + B to

generate a nonlinear semigroup S(t) in X such that for v e D(B) the X-valued function

S( )v gives a unique weak solution. Application of the first main result to age-

dependent population dynamics is discussed.

0. Introduction

The present paper is concerned with nonlinear semigroups which provide
weak solutions to the semilinear problems of the form

(SP) ^ιι(f) = (Λ + B)ιι(f), ί>0; ιι(0) = υ

in a real Banach space (X, | |). Here A is assumed to be the generator of
an integrated semigroup [W(t):t>ϋ] in X and B is a nonlinear operator
from a convex subset C of X into X.

The importance of semilinear problems of the type (SP) has constantly
been recognized for many years in various branches of mathematical analysis.
In this paper we introduce two general classes of nonlinear perturbations of
linear integrated semigroups and discuss necessary and sufficient conditions
on A + B for the solutions of (SP) to exist in a global sense.
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The notion of integrated semigroup is a natural extension of the notion
of semigroup of class (C0) and the generation theory is applied to a variety
of partial differential equations in an operator theoretic fashion. This new
theory of operator semigroups developed in Arendt [1], Neubrander [21],
Tanaka and Miyadera [26] is closely related to the theory of exponential
distribution semigroups advanced in Lions [17] as well as that of semigroups
of classes (C(k}) introduced by Oharu [22], although it is an important feature
that the generators of integrated semigroups need not be densely defined. In
fact, Da Prato and Sinestrari [5] treated typical differential operators with
non-dense domains which are eventually generators of integrated semigroups.
Also, Kellermann and Hieber established in [15] a characterization theorem
of a specific but natural class of integrated semigroups in terms of the corre-
sponding generators in the sense of Arendt and showed that their results can
be applied to various types of linear partial differential equations.

On the other hand, there has been a substantial development in the
theory of nonlinear semigroups associated with semilinear problems (SP) in
which A is assumed to be the infinitestimal generator of a (C0)-semigroup in
X. We here focus our attention to nonlinear perturbations of (C0)-semigroups
which are treated in Oharu and Takahashi [23]. In their treatise various
types of characterizations of nonlinear semigroups providing weak solutions
of semilinear problems of the form (SP) are obtained in terms of the corre-
sponding semilinear infinitestimal generators. Their arguments contain three
features: Firstly a lower semicontinuous functional φ: X -> [0, oo] is employed
to define a local quasidissipativity of A + B and the growth of solutions to
(SP) is restricted in terms of the nonnegative function φ(u( )). In case of
concrete partial differential equations the use of such functional corresponds
to a priori estimates or energy estimates which ensure the global existence
of the solutions as well as their asymptotic properties. Secondly, the semi-
linear operator A + B is assumed to be quasidissipative on φ-bounded sets.
Thirdly, A 4- B is assumed to satisfy the so-called implicit subtangential condi-
tion or explicit subtangential condition. Because of the simplicity and univer-
sality of these conditions it is possible to apply the perturbation theory to
various evolution problems.

Therefore it is important from both theoretical and practical points of
view to discuss semilinear problems (SP) in terms of nonlinear perturbations
of integrated semigroups. Here we consider a class of integrated semigroups
treated in [15] and investigate nonlinear perturbations of such integrated
semigroups from the same point of view as in [23]. Locally Lipschitz pertur-
bations of such integrated semigroups have been studied in [28] and the
uniqueness of the associated weak solutions is discussed in [20]. Our results
are affected by those works.
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This paper is organized as follows: In Section 1 a class of integrated
semigroups treated in [15] by Kellermann and Hieber is introduced and the
basic results are outlined so that they may be directly applied to nonlinear
perturbation problems. In Section 2, two generalized notions of solutions to
(SP) and a notion of nonlinear semigroups associated with semilinear problems
(SP) are discussed. Furthermore, a natural notion of semilinear infinitestimal
generator is introduced for such nonlinear semigroups. Section 3 contains
our first main result (Theorem 3.1) which gives a characterization of nonlinear
semigroups providing weak solutions to (SP) under the implicit subtangential
conditions. This result may be regarded as a nonlinear version of the charac-
terization theorem for integrated semigroups due to Kellermann and Hieber.
In Iwamiya [13], a time-dependent nonlinear perturbation theorem is given
for (C0)-semigroups. Section 4 discusses an extension of his result to the
case of integrated semigroups. The extension is applied to obtain our second
main result (Theorem 5.1) which gives a characterization of nonlinear semi-
groups providing weak solutions to (SP) under the explicit subtangential condi-
tions. This result is given in Section 5 in connection with a perturbation
result due to Thieme [28].

Section 6 is devoted to the application of the first main theorem to
semilinear problems with semilinear constraints. The result may be regarded
as an existence theorem for weak solutions to abstract initial-boundary prob-
lems for semilinear evolution equations. Finally, in Section 7, the result ob-
tained in Section 6 is applied to a typical mathematical model arising in the
study of population dynamics.

1. A class of integrated semigroups

In this section we introduce a class of integrated semigroups and discuss
a characterization of such integrated semigroups as well as some basic facts
on the corresponding generators.

In what follows, (X*91 |) denotes the dual space of X. For xeX and
fεX* the value of / at x is written as <x, />. The duality mapping of X
is denoted by &*. For x, y e X the symbol <x, yX stands for the infimum
of the set {<x, />:/e ^(y)}. In (SP) the operator A is assumed to be a
closed linear operator in X whose domain is not necessarily dense in X. We
write A* for the dual operator of A. If A is densely defined in X, then A*
is defined as a closed linear operator in X*. If the domain D(A) is not
dense in X, then A* is multi-valued and the identity <Ax, /> = <x, 0> holds
for xeD(A), feD(A*) and g e A*f; hence the value <x, #> does not depend
upon the choice of g e A*f. It follows immediately that <x, #> does not
depend upon the choice of g e A*f provided that x e 7, where Y is the closure
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of D(A):

TEE D(A).

Hence for j e Y and feD(A*) it is justified and convenient to introduce the
notation

<*Λ*/> = <Λ0X geA*f.

In concrete cases it may be difficult to characterize the set-valued operator
A*. In order to overcome this difficulty, we here introduce the notion of
,4-total set which is an essential part of D(A*) and makes it easier to formulate
the notion of weak solution to the problem (SP).

A subset D of D(A*) is said to be A -total, if for λ sufficiently small the set

(/ - λA*)D = {f-λg:feD9ge A*f}

separates points in Y in the sense that x e Y equals 0 whenever <x, /ι> = 0
for he (I — λA*)D. In the case that a complex number λ is contained in
the resolvent set p(A\ an A -total set can be easily constructed: Take any
subset Z of X* which separates points in K Then £) = [(/ — λA)~1~]*(Z) is
A -total. The point of this concept consists in the fact that one can equiva-
lently replace D(A*) by an A -total subset of D(A*) in the notion of weak
solution to (SP) which is discussed later. In many applications it will be
possible to choose an A -total subset of D(A*) on which A* has a nice
representation while this is not the case on the whole of D (A*).

To describe the notion of once integrated semigroup in conjunction with
linear evolution equations in X, we begin by considering the initial-value
problem

(IVP)φ u'(t) = Au(t) + ψ(t), ί>0; u(0) = ΌeX,

where A is a closed linear operator in X, ψ( ) e#((0, oo); X)Γ\Lloc(Q, oo; X)
and v is an initial-value given in X. For the problem (IVP)V we may employ
the following three kinds of notions of generalized solution. The first notion
was first employed in Da Prato and Sinestrari [5].

DEFINITION 1.1. An X -valued function on [0, oo) is said to be an integral
solution of (IVP)V, if tt( )e<P((0, oo); JjQnL^O, oo; X), f0u(s)dseD(A) and

\ u(s)ds +
Jo Jo

u(t) = v + A\ u(s)ds + φ(s)ds for t > 0.
Jo Jo

Moreover, a function u( )e#([0, oo); X) is called a ^-solution of (IVP)V, if
ιι( ) e <T((0, oo ); X\ u'(t) = Au(t) + ^(ί) for t > 0, and ιι(0) = Ό.
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The following notion of generalized solution to (IVP)φ is due to J. Ball

[2].

DEFINITION 1.2. A function u(-)e #([0, oo); X) is said to be a weαfc solu-
tion of (IVP)φ, if w(0) = υ and for each feD(A*) the scalar- valued function
<M( ), /> is of class (̂O, oo) and satisfies

<u(ί), /> = <u(t\ A*fy + <ψ(t\ /> for ί > 0.

The third notion is similar to that of weak solution but the last relation
being restricted to / in an A-total subset of D of D(A*).

If u(-) is an integral solution of (IVP)V and is continuous at t = 0, then

ί
ί+Λ _

u(s)ds e D(A) for t > 0
ί

and so v = u(0)eD(A). Also, u(-) is an integral solution of (IVP)V if and
only if the indefinite integral w(ί) = f0u(s)ds gives a ^-solution of the initial-
value problem

v+ \
Jo

(1.1) w'(f) = Aw(t) + i? + ^(s)ώ, ί > 0; w(0) = 0.
Jo

Let \l/(i) = 0 in (1.1) and suppose that for each initial-value VEX there exists
a unique integral solution M( ; v) of (IVP)V with \j/(t) = 0. Now for each t > 0
we define an operator W(t) on X by

Jo
ι; = w(r; v)dr for i; e Jf.

Jo

Since (1.1) is an autonomous linear equation, it follows that each W(i) is
linear. Therefore we get a one-parameter family Of = {W(t)} of linear opera-
tors with the properties below:

(w.l) W(0)v = 0 and W(')υe<β([Q,<x>) 9 X ) ίoτveX.

Since w( ) = W(-)v is the unique ^-solution of (1.1) with \l/(i) = 0, we have
the relation

(1.2) W(t)υ = A W(r)vdr + tv for ί > 0 and i; 6 X.
Jo

Let ί > 0 and v E X. Then by assumptions on the existence and uniqueness
of integral solutions of (IVP)Φ with ι/φ) = 0 the function W( )W(t)v is the
unique solution of (1.1) with φ(t) = 0 and v replaced by W(t)v. We next
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consider the function

z(s) = [W(r + t)v - W(r)v]dr
Jo

defined on all of [0, oo). Then z(0) = 0 and (1.2) implies

z'(s) = W(s + t)v - W(s)v

= A W(r)vdr + A W(r)vdr + tv - A W(r)υdr
Jt Jo Jo

[_W(r + t)υ - W(r)υ]dr + W(t)v = Az(s) + W(t)v
o

for 5>0. This shows that z( ) is also a ^-solution of (1.1) with ψ(t) = 0
and υ replaced by W(t)υ. From this we see that if has the following
property:

,»=/•
Jo

(w.2) W(s)W(t)υ = [_W(r + t)v - W(r)υ]dr for s, ί > 0 and v e X.
)o

The above observation leads us to the following

DEFINITION 1.3. A one-parameter family i^ = {W(t): t > 0} of bounded
linear operators is said to be a once integrated semigroup on X if it has
properties (w.l) and (w.2). We say that Of is non-degenerate if W(t)v = 0
for all t > 0 implies v = 0. If there exist constants M > 1 and ω > 0 such that
\W(t)\<Meωt for ί > 0, the once integrated semigroup Of is said to be
exponentially bounded.

Throughout this paper any integrated semigroup is assumed to be non-
degenerate, unless stated otherwise.

As shown in Thieme [27, Section 3] there exists a closed linear operator
A in X such that v e D(A\ and w = Aυ are characterized by the property
that the function W(t)v is continuously differentiate and

^ W(t)v = v+ W(t)w for t > 0.
at

The operator A is called the generator of W and an integrated semigroup
is uniquely determined by its generator.

It is further shown in [27, Section 3] that (1.2) holds for integrated
semigroups and their generators.

PROPOSITION 1.4. Let Hf be an integrated semigroup and A the generator
of ΊIT. Then
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(a) W(t)υ e D(A) and AW(t)v = W(t)Aυ for v e D(A) and t > 0.

(b) W(t)vdt e D(A) and W(f)v = A W(r)vdr + tv for v e X and t > 0.

As shown in [27, Section 3], it is seen that if 1V is exponentially bounded

then the integral

v = ξ\ e~ξt\
Jo

(1.3) R(ξ)v = ξ \ e-ξtW(t)vdt

exists for ξ > ω and veX, and that ξR(ξ) = (/ - λA)'1 for ξ = l/λ > ω. In

what follows, we are mainly concerned with closed linear operators A in X

satisfying the following condition:

(HI) There is a constant ω e R such that for λ > 0 with λω < 1 the resolvent

(/ — λA)'1 exists and satisfies

The class of integrated semigroups treated in this paper is that of once

integrated semigroups whose generators satisfy the above-mentioned conditions

(HI). From condition (HI) we see that the part Aγ of A in the smaller

Banach space Y = D(A) has a dense domain in Y and generates a semigroup

&y = {Tγ(t): t > 0} of class (C0) on Y by the Hille-Yosida theorem. Also, it

has been shown in [11] that a closed linear operator A satisfying (HI) is the

generator of an integrated semigroup 1V = [W(t)\ t > 0} on X. The following

result is a consequence of the results established in [1], [15], [26] and [28]

and gives a characterization of the class of integrated semigroups under

consideration.

THEOREM 1.5. A closed linear operator A in X is the generator of a once

integrated semigroup 1V on X such that

"ί+Λ

(1.4) I W(t + A) - W(t)\ < I eωsds for t, h > 0Γ
if and only if it satisfies condition (HI).

The above theorem follows from Theorem 1.6 below.

At the beginning of this section we observed that an integrated semigroup

was derived from indefinite integrals of integral solutions of (IVP)V with

ψ(t) = 0. One obtains the following structure theorem for integrated semi-

groups which illustrates this observation.

THEOREM 1.6 (Structure Theorem). Let A be a closed linear operator in

X satisfying (HI) and 2ΓΎ the semigroup of class (C0) on Y = D(A) generated



440 Toshitaka MATSUMOTO et al.

by the part Aγ of A in Y. Then the integrated semigroup W generated by
A is represented as

P)v = lim
Uo Jo

(1.5) W(t)v = lim Tγ(s)(I - λA)'lυds for t > 0 and v e X.
UO Jθ

PROOF. We give the proof of this theorem in such a way that the proof
of Theorem 1.5 is also outlined. Let A be a closed linear operator in X.
First assume that (HI) holds for A. Then, by [1, Theorem 4.1], A generates
a once integrated semigroup HΓ such that

lim sup /Γ11 W(t + Λ) - W(t)\ < eωt for t > 0.
Uo

Moreover, it is seen from [1, Proposition 3.3] that ilΓ satisfies (1.2). Let FΎ

be the semigroup of class (C0) on Y generated by Aγ. Taking any λ > 0
with λω < 1 and applying the resolvent (/ — /U)"1 to both sides of (1.2), we
have

•fJo
= AY(I - λAΓ1 W(s)vds

Jo

for t > 0 and v e X. Differentiating both sides with respect to ί, we have

- )v = AY(I - λAΓlW(t)v + (/

Let veX. Since W(G)v = 0, this implies that the function W( )v satisfies the
variation of constants formula

(/ - λAΓlW(t)υ = Tγ(s)(I - λAΓlvds for t > 0.
Jo

Since W(t)v e Y for t > 0 by Proposition 1.4(b), we obtain Formula (1.5) by
letting λ 1 0 in the above identity. Therefore the assertion of the theorem is
obtained. Furthermore, \TY(s)\ < eωs for 5 > 0 and (1.4) follows directly from
(1.5). Next suppose that A is the generator of a once integrated semigroup
'W satisfying (1.4). Then we see from [1, Theorem 4.1] that (1.3) follows
from (1.4) and A satisfies (HI). This means that the assertion of Theorem
1.5 is obtained. The proof is thereby complete.

The above structure theorem is contained in Thieme [28] as a characteris-
tic property of locally Lipschitz once integrated semigroups, although the
proof is different and contains another proof of Theorem 1.5. By means of
this property, Theorem 1.5 may be regarded as a special case of [15, Theorem
2.4] and [26, Theorem 3.1], although to the best of the authors' knowledge
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there is no explicit mention of this fact. For other representations see Lumer
[18]. In [19, Theorem 3.5], Lumer emphasizes the significant role of locally
Lipschitz once integrated semigroups among (multiple) integrated semigroups.
The following simple consequence suggests the terminology of integrated
semigroup.

COROLLARY 1.7. // D(A) is dense in X, then Y = X and &~x becomes a
semigroup of class (C0) on X and W is represented as

-fJo
W(t)υ = Tx(r)vdr for t > 0 and veX.

Jo

We now return to the inhomogeneous initial-value problem (IVP)V which
is the starting point of our considerations. That (IVP)V has a unique integral
solution was shown by Da Prato and Sinestrari [5] and Benilan et al. [3].
We present several explicit formulas for the weak solutions and several alterna-
tive characterizations. At the same time, we give a new proof of the existence
result. The cornerstone of the proof is the following observation.

PROPOSITION 1.8. Let ψ e L1(Q9 τ; X\ τ > 0. Then the function

w(ί) = W(r)\l/(t - r)dr, 0 < t < τ
Jo

is continuously differentiate, takes its values in D(A) and satisfies

(1.6) w'(ί) = Γ W(dr)ψ(t - r)
Jo

\}/(r)dri
= lim Γ

AΦO Jo
Tγ(r)(I - λA)~lψ(t - r)dr.

where the Stieltjes integral makes sense as a uniform limit of Riemann-Stieltjes
integrals. Moreover, we have the estimate

\ e<°'\ψ(t-
Jo

(1.7) |w'(ί)|< e»r\ψ(t-r)\dr.
Jo

PROOF. We first assume that ψ is continuously differentiable on [0, τ).
Then

Γ
Jo

= W(r)ψ'(t - r)dr
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Integration by parts gives the first equality in (1.6), where the Stieltjes integral
is understood to be the limit of Stieltjes sums in the usual way. The estimate
(1.7) follows from (1.4). Moreover, we have

- V(ί) = P
Jo

(1.8) (/ - /U)-V(ί) = I Tγ(r)(I - λAΓl\l/(t - r)dr.
Jo

Finally, by Proposition 1.4, we find

w'(ί)= [A W(s)ds + r]ψ'(t-r)dr.

The second equality is now obtained by integration by parts and the fact
that A is closed. If ψ eL^O, τ; X\ we choose a sequence ψj of continuously
differentiable functions on [0, τ] in such a way that

I\ψj(s)-ψ(s)\ds-+0, ./

Let w7 be given as in the statement of the proposition with ψj replacing ψ.
Then

w/(ί) = P W(dr)M - r).
Jo

If follows from (1.7) that (w/(ί))7 is a Cauchy sequence uniformly in t e [0, τ].
Hence it has a continuous limit which we denote by

P W(dr)ψ(t - r),
Jo

since the limit is independent of the choice of the sequence. Moreover the
estimate (1.7) also holds in the limit. As w, (0) = 0 = w(0), we have uniform
convergence of w, to w and, at the same time, the continuous differentiability
of w. Hence the first equality in (1.6) is obtained. The second equality in
(1.6) now follows from

Γt
φj(s)ds

o

~land the fact that A is closed. Since (1.8) holds for HJ and \TY(r)(I - λA)~
eωr, the relation (1.8) also holds for w. As w'(ί) e Y we can take the limit
as λ -> 0 and obtain the last equality in (1.6). This completes the proof.

The following results illustrate the main points of the above discussions.

THEOREM 1.9. Let τ e [0, oo]. Assume that ψ: [0, τ) -> X and u\ [0, τ) -» Y
be continuous. Let v e Y. Then the following statements are equivalent:
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(i) The function u is a weak solution of (IVP)Ψ in the sense that w(0) = v,
(u(t\ /> is continuously dijferentίable on (0, τ) and

for all 0 < t < τ.
(ii) The function u is a weak solution of (IVP)ψ in the same sense as in (i),
but with f being restricted to elements in an A-total subset of D(A*).
(iii) The function u is an integral solution of (IVP)V in the sense that
]t

0u(s)ds€D(A) and

u(s)ds +
Jo Jo

u(t) = v + A I u(s)ds + I ψ(s)ds, 0 < t < τ.

(iv) w(0) = v and

lim h'l(u(t + h) - Tγ(t)u(t) - W(h)ψ(t)) = 0, 0 < ί < τ.
Uo

(v) u(t) = Tγ(t)υ + I W(dr)ψ(t - r), 0 < t < r.
Jo

(vi) n(ί) = Tγ(t)v + lim Tγ(r)(I - λA)~^(t - r)dr9 0 < t < τ.
A4Ό Jθ

(vii) u(t) = Tγ(t)v + - W(rW(ί - r)dr, 0 < t < τ.

\ W(r)ψ(t - r)dr + |
Jo Jo

(viii) u(ί) = Tγ(t)υ + A W(r)ψ(t - r)dr + ψ(r)dr, 0 < t < τ.
Jo Jo

Moreover the expressions in formulas (v) through (viii) are well-defined and,
simultaneously, provide unique solutions as mentioned in (i) through (iv).

PROOF. It follows from Proposition 1.8 that the expressions in formulas
(v) through (viii) are well-defined and equivalent. Proposition 1.8 also implies
that, for w introduced there, w'(t) is an integral solution of (IVP)V with v = 0.
As z(ί) = Tγ(t)v is an integral solution of (IVP)V with ψ = 0, it follows that
any of the equivalent formulas (v) through (viii) gives solutions to (iii). A
solution in (iii) is also a solution in (i) and (ii). We now show that (v)
implies (iv). By Theorem 1.6, we have

±(u(t + h)-Tγ(t)u(t)-W(h)ιl,(t))

"ί+Λ

Tγ(t + h - r)(I -
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which converges to 0 as A JO because of (HI) and \TY(s)\ < eωs. The proof
of this theorem is complete if we show that any solution stated in (ii) or (iv)
is given by one of the equivalent formulas (v) to (viii). Since we already
know that (v) provides the desired solutions, we only need to show that the
notions stated in (ii) and (iv) are sufficient to imply the uniqueness. Since
the problems are linear, this follows from the following Lemmas. The proof
is now complete.

LEMMA 1.10. Let D be an A-total subset of D(A*) and w: [0, τ)-> Y a
continuous function satisfying w(0) = 0 and (d/dί)<w(ί),/> = <w(ί),,4*/> for
t e (0, τ) and fεD. Then w(ί) = 0 on [0, τ).

PROOF. Take any σ e (0, τ) and define uσ: [0, τ) -> Y by

uσ(t) = w(ί) for t 6 [0, σ] and uσ(t) = Tγ(t - σ)w(σ) for t e [σ, oo).

Then uσ(-) is exponentially bounded and (d/dt)(uσ(t\fy = <uσ(ί),^*/> for ί > 0
and /e D. Integrating by parts shows that ($£ exp(-t/λ)uσ(t)dt,f- λg) = 0
for λ > 0 sufficiently small and /e D. As D is A -total, we have J^ e~tlλuσ(i)dt =
0 for λ > 0 sufficiently small. This implies that uσ = 0 on [0, oo) for any
σ e (0, τ). The definition of uσ now implies the assertion.

LEMMA 1.11. Let w: [0,τ) -> Y be a continuous function satisfying w(0) = 0
and

lim Λ'Vίί + h) - Γy(ί)w(0) = 0.
/4o

Then w(ί) = 0 for te [0, τ).

PROOF. Let wΛ(t) = (/ - λAΓlw(t). Then w'λ(t) = Aγwλ(t). Hence wΛ(ί) =
Γy(ί)wA(0). As wA(ί) -> w(ί) for λ 10 and w(0) = 0, the assertion follows.

REMARK 1.12. The equivalence between (iii) and (v) through (viii) is ver-
ified in the case that ^eL1((0, τ), Y), as seen from the proof of Proposition
1.8. The equivalence between (i), (ii) and (iv) remains true even if "continu-
ously differentiable" is replaced by "absolutely continuous" and the relations
are required to hold for almost all (instead of all) t e (0, τ). Da Prato and
Sinestrari [5] have also shown that (IVP)V can be solved in the sense of
Friedrichs. This generalized notion of solution has the advantage that it
generalizes to the situation where A(t) depends on t. See Da Prato and
Sinestrari [6].

2. Generalized solutions of (SP) and the associated semigroups

In this section we introduce a class of semilinear operators in X and
formulate the associated semilinear problems of the form (SP). We then
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discuss generalized solutions to the semilinear problem (SP) and consider
nonlinear semigroups providing such generalized solutions of (SP). Let A be
a closed linear operator in X and write Y = D(A). Let B be a possibly
nonlinear operator in X which is defined on a convex subset C of the closed
linear subspace Y. If D(A) Π C φ φ, then the sum A + B defines an operator
in X with domain D(A + B) = D(A) Π C. Throughout this paper we call it
a semilinear operator in X determined by A and B. The intersection D(A) Π C
may be empty, but we use the symbol A + B to represent the semilinear
operator determined by a pair of operators A and B even though the domain
may be empty. In order to impose a continuity condition and a localized
quasi-dissipativity condition on B, we employ a lower semicontinuous convex
functional φ: X -> [0, oo] such that C c D(φ) = {v e X: φ(v) < oc}. Choosing
a convex subset C of Y and a functional φ as mentioned above, we introduce
a class of semilinear operators with which we are concerned in this paper.
By a semilinear operator A + B belonging to the class ®(C, φ) is meant the
sum of a closed linear operator A and a possibly nonlinear operator B
satisfying (HI) and the following conditions:

(H2) For each α > 0, the level set CΛ = {v e C: φ(v) < α} is closed in X and
the operator B is continuous on Cα.

(H3) For each α > 0, the semilinear operator A + B is locally quasi-
dissipative in the sense that

((A + B)v -(A + £)w, Ό - w>£ < ωjt? - w|2

for v, w 6 D(A) Π CΛ and some constant ωα e R. The continuity condition (H2)
on the level sets {Cα: α > 0} is much weaker than the continuity on the whole
domain C in general and considerably useful for the application to partial
differential equations. In condition (H3) the intersections D(^l)ΠCα may
be empty; condition (H3) states that the quasi-dissipativity of A + B on CΛ

is assumed whenever D(A) Π CΛ Φ φ. Given a semilinear operator A + B
belonging to the class S(C, φ) we consider the initial-value problem (SP) for
the semilinear evolution equation in X

(SE) ϊ-u(t) = (A + B)u(t), ί>0.
at

DEFINITION 2.1. Let C be the convex set appearing in condition (H2)
and v e C. A strongly continuous function M( ): [0, oo)-+X is said to be a
C-valued weak solution of (SE) on [0, oo) with initial-value v, if w(0) = v,
u(t) e C for t > 0, Bu( ) € #([0, oo); X), and for each /e D(A*) the scalar-valued
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function <w( )>/> is continuously differentiable over [0, oo) and satisfies

(2.1) I<ιι(ίX/> = <ιι(ίχ A*f> + <Bu(t)jy for t > 0.

In concrete cases the notion of weak solution to (SE) as defined above
may be rather cumbersome owing to the difficulty in characterizing the set-
valued operator A*. It follows from Theorem 1.9 that the set D(A*) can be
replaced by A -total subsets.

Because of the localized quasi-dissipativity condition (H3), the semilinear
problem (SP) may admit only local weak solutions. Hence it is necessary
to restrict the growth of the weak solutions in order to discuss the weak
solutions of (SP) on [0, oo). In this paper we employ a typical growth condi-
tion in terms of the real-valued function φ(u(-)\ namely,

(EG) φ(u(t)) < eat(φ(v) + bt\ t > 0,

where a and b are constants. This type of growth condition may be called
the exponential growth condition. For weak solutions satisfying (EG) the fol-
lowing uniqueness theorem is valid (see Martin et al. [20]):

PROPOSITION 2.2. Let A + B be a semilinear operator of the class ®(C, φ).
Let v, w e C α and let u(- v), u( w) be the associated C-valued weak solutions
satisfying the exponential growth condition. Then for each τ > 0 and β >
eaτ(a + bτ) we have

(2.2) |w( ; Ό) - w( ; w)| < exp(ωβt)\v - w\ for t e [0, τ],

where ωβ is the constant provided for β by condition (H3).

A one-parameter family £S = {S(t): t > 0} of possibly nonlinear operators
from C into itself is called a semigroup on C, if it has the two properties below:
(51) S(0)v = v and S(t)S(s)v = S(t + s)v for s, t > 0 and v e C.
(52) For each v e C, S( )v e #([0, oo]; X).
If in particular a semigroup Sf on C provides weak solutions of (SP) in the
sense that for each vεC the function u(- v) defined by

(2.3) u(t; v) = S(t)v for t > 0,

is a C-valued weak solution of (SP) on [0, oo), then we say that ϊf is associated
with the semilinear evolution equation (SE). Under conditions (HI), (H2) and
(H3) a family of solution operators in the sense of (2.3) gives rise to a
semigroup Sf on C, as stated below.

PROPOSITION 2.3. Let A + B be a semilinear operator belonging to the
class S(C, φ). Suppose that for each v e C there is a C-valued weak solution
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u(-\v) of (SP) on [0, oo) satisfying the exponential growth condition (EG). Then
there is a semigroup & = {S(t): t > 0} on C associated with (SE) such that for
α > 0, τ > 0 and β > eaτ(a + bτ\ BS(-)v e C([0, oo); X) and

(2.4) \S(t)υ - S(t)w\ < Qxp(ωβt)\v - w|

/or t;, w 6 Cα, £ e [0, τ] and some constant ωβ e /?.

PROOF. Proposition 2.2 states that u( v) is a unique C-valued weak
solution of (SP) satisfying (EG). Also, Bu(-\ ϋ)e«([0, oo); X) by (EG) and
(H2). Therefore one can define for each t > 0 an operator S(t) from C into
itself by

S(t)v = u(t\ v) for v e C.

By the uniqueness of the C-valued weak solutions, the family S = (S(t): t > 0}
of operators so defined have the properties (SI) and (S2). The local equi-
Lipschitz continuity (2.4) of the semigroup ^ follows from (2.2).

In what follows, we say that a semigroup 9* on C is locally equi-Lipschitz
continuous with respect to φ, if for each α > 0 and τ > 0 there is a number
ω(α, τ) such that

\S(t)v - S(ί)w| < eω(Λ τ*\v - w| for ί 6 [0, τ] and 0, w e Cα.

Proposition 2.3 states that if A + B belongs to the class ®(C, φ) then the
semigroup associated with (SE) is necessarily locally equi-Lipschitz continuous
with respect to φ. In the remainder of this section we investigate the differ-
entiability of the semigroup associated with (SE) and then show that such
a semigroup can be characterized in several ways. In view of the charac-
terization theorem below, we introduce a notion of semilinear infinitestimal
generator.

THEOREM 2.4 (Differentiability Theorem). Let A be a closed linear opera-
tor in X satisfying condition (HI), Y = D(A\ and B a possibly nonlinear operator
defined on a convex subset C of Y. Let ^ = (S(t): t > 0} be a semigroup on
C such that BS( )υ e (̂[0, oo); X) for each v e C. The following are equivalent:

(a) The semigroup 5̂  is associated with (SE) in the sense that the scalar-
valued function <S( )ι>,/> is continuously differentiable over [0, oo) and

jt <S(φ, /> = <S(t)t>, Λ*/> + <BS(ί)ι>, />

for t > 0, v e C and /e D(A*).
(a') The semigroup Sf is associated with (SE) in the sense that for an

arbitrarily given A-total subset D of D(A*) the scalar-valued function (S( )υ, />
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is continuously differentiable over [0, oo) and

<S(t)v,f> = <S(t)v,A*fy + <BS(t)υ,f>

for t >0, t eC, /e/λ
(b) For veC, f0 S(s)vds e D(A) and

S(t)v = Ό + A\ S(s)vds + BS(s)vds for t > 0.
Jo Jo

(c) For veC and t > 0,

S(t)υ = Tγ(t)v + lim \ Tγ(t - s)(I - λAΓ1BS(s)vds,
UO Jθ

where the limit is taken with respect to the norm of X.
(c') For vεC and t > 0,

»+ f
Jo

S(t)Ό = Tγ(t)

where the integral is taken in the sense of Stieltjes.
(d) For vεC, lim/Γ1 [(S(/ι)ι; - Tγ(h)v) - W(h)Bu] = 0.

Uo
(e) For veC and feD(A*)

(e') // D is an arbitrarily given A-total subset of D(A*) and v e C, /e D,

lim</ι-1(S'(/ι)ι?-ι;),/> = <ι?,
Uo

PROOF. Set u(t) = S(t)v and ^(ί) = BS(t)v. The equivalence of (a) to (d)
then follows from Theorem 1.9. Clearly, (a) implies (e) and (e) implies (e'). It
now remains to show that (a') follows from (e'). Suppose that (e') is valid.
Let veC and /eD and let D be an >4-total subset of D(A*). Using the
semigroup property of 5̂ , we get

— <S(ί)t>, /> = <S(ί)ϋ, A*fy + <BS(ί)ι;,/> for ί > 0,

where the left-hand side denotes the right-hand derivative of the function
<5( )ι;,/>. But the right-hand side of the above relation is continuous in
ί>0, and so <S( )u,/> is of class [̂O, oo). This shows that (a;) holds.
The proof of Theorem 2.1 is now complete.
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The above theorem is a straightforward extension of [23, Theorem 3.1]
to the case where A need not be densely defined. The equivalence of condi-
tions (a), (b) and (e) is discussed in [3] in the context that A is a multi-valued
linear operator. The formula given in condition (c) may be regarded as a

straightforward extension of the so-called variation of constants formula for
(SE). In fact, if A is densely defined, (c) is equivalent to the statement that
for v e C, u(t) = S(t)v becomes a usual mild solution.

In the case that D(A) is dense in X, Corollary 1.7 and assertion (d)
together imply that for any v e C the formula

(2.5) lim h~l(S(h)v - Tx(h)v) = Bv
Uo

is valid, which means that A + B is the full infinitestimal generator of & in
the sense of [23]. However, the statement (d) does not seem to be appropriate
for defining a semilinear operator of the semigroup ίf. We here employ the

statement (e) to introduce a notion of semilinear infinitesimal generator of if.

DEFINITION 2.5. Let Sf = {S(t)ι t > 0} be a semigroup on C such that
BS(-)v e #([0, oo); X) for v e C. Then A + B is said to be the full infinitesimal
generator of &*, if

(2.6) lim <h-*(S(h)υ - v), /> = <ι>,Λ*/> + <Λ>, />
/4θ

for veC and feD(A*).

It should be noted that (2.6) holds on all of C and makes sense even if
D(A + B) = D(A)Γ\C = φ. This fact motivates the terminology of full infi-

nitesimal generator. Formula (2.6) may be interpreted as follows: The vector
field generated by A + B is tangential in a weak sense to the continuous
curve S(-)v in X for any υeC.

3. Characterization of nonlinearly perturbed integrated semigroups

In this section a necessary and sufficient condition is given for a semilinear

operator A + B in the class S(C, φ) to generate a semigroup £f on C asso-
ciated with (SE) and satisfying the growth condition (EG).

The following theorem is our first main result;

THEOREM 3.1. Let A + B be a semilinear operator belonging to the class

S(C, φ). Let α, b > 0. Then the following are equivalent:

(I) There exists a semigroup <? = (S(t): t > 0} on C such that for v e C, ί > 0

andfeD(A*\
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(La) the R-valued function (S(-)v, /> is continuously differentίable over [0, oo)
and

I <S(f)ι;, /> = <S(ί)t;, A*/>

(I.b) φ(S(ί)ι>) < e«(φ(ι;) + ftί).

(II) D(4) Π C is dense in C; /or α > 0 ί/im? exists λ0 = λ0((ή > 0 such that
to each veCΛ and each λe(09λ0) there corresponds an element vλeD(A)Γ\C
satisfying

(Π.a) vλ - λ(A + B)vλ = υ,

(Π.b) φfo) < (1 - aλΓl(φ(v) + W).

(III) For each v e C there exist a null sequence (hn) of positive numbers and
a sequence (vn) in D(A)Γ\C such that

(IΠ a) lim h-1 \ vn - hn(A + B)vn -v\=0,
«->oo

(IΠ.b) lim sup h'1 lφ(vn) - φ(v)~\ < aφ(υ) + ft,
Λ-*OO

(III.c) lim \vn-v\ = 0.
n-κχ>

The first statement (I) means the existence of a nonlinear semigroup y
on C such that for v € C the X-valued function u(-) = S( )v gives a C-valued
weak solution of (SP) satisfying the exponential growth condition (EG). Con-
dition (II) is usually called the range condition for the semilinear operator
A + B and guarantees the existence of the resolvents of A + B in a local
sense. The equivalence between (I) and (II) can be restated as a semilinear
version of the Hille-Yosida Theorem. See Theorem 3.3 below. According
to [23, Section 5], condition (III) is called an implicit subtangential condition.
Although (III) is equivalent to the range condition (II), it is often easier to
check (III) than (II). In this regard for instance we refer to a recent paper
by Clement et al. [4].

PROOF. Applying the generation theorem for nonlinear evolution opera-
tors and the argument employed in the proof of the key lemma in [16,
Lemma 3.3], one obtains the implication (III)=>(I) in the same way as in
[23, Section 3.3], one obtains the implication (III)=>(I) in the same way as
in [23, Section 5]. It is easy to check the implication (!!)=> (III). In fact,
let α > 0 and let λ0 be a positive number determined for α by condition (II).
Take any v e CΛ and any null sequence (hn) in the interval (0, λQ). Then
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for each n there is vn e D(A)Γ\ C such that vn — hn(A + B)vn — v and φ(vn) <
(1 — ahn)~^(φ(υ) + bhn). Clearly, the sequence (vn) satisfies (IΠ.a) and (Πl.b).
The third condition (III.c) is verified in the same way as in [23, Remark 5.1].

To show that (I) implies (II), we employ local Laplace transforms of the
semigroup Sf defined as follows: For each h > 0 and each τ > 0 we define
an operator Jhτ from C into X by

(3.1) Λ,τt> = (β* tΓ1 e-t/hS(t)vdt f o r t eC,
Jo

where

ahτ= \ e~t/hdt = h(ί - e~τlh).
' Jo

The operators Jhτ have properties similar to those listed in [23, Proposition
6.1], as mentioned below:
(a) JhtτveD(A)Γ\C and (/— hA)Jhτυ can be written as

υ + h(ah,τΓ
l e~tlhBS(t)vdt - he'τ/h(ahtτΓ

l(S(τ)υ - v).
Jo

(b) Hmh-1\(I-hA)Jh>τv-(v + hBv)\ = Q and lim |J h i ΐ v - v\ = 0.
h lO ' hiO

(c) lim h~l[<p(Jh τv) — φ(v)~\ < aφ(υ) + b and lim φ(Jh τv) = φ(v).
Uo ' Uo
Suppose that (I) holds. First the properties of Jhτ stated above together

imply

(J
α > 0

and hence that D(A) Π C is dense in C. Next, let α > 0 and define

(3.2) λ0 = minίK*)-1, (α(α + 2) + b + I)'1},

where ω* = max{ωα+1, 0}. Then for any λe(0, A0) we have λωa+i < 1 and
2λa < 1. Fix any v e Cα and any λ e (0, A0). Let ε e (0, 1) and define a num-
ber β = j?(ε) by

£ = (1 - (1 + ε)aλΓί((l - aελ)φ(v) + (b + ε)A).

The numbers jS(ε) makes sense for εe(0, 1] since 2aλ < 1. Also, it is easily
seen that β(ε) is written as

(3.3) β = φ(v) + (1 - aελ)'lλlaβ + 6 + ε],

and that β(ε) is monotone increasing and bounded by α + 1 on (0, 1] as a
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function of ε. Moreover, take τ > 0, w e Cβ and put

WΛ = (1 - /ι)JAΛ>τw + hJλh,τv for h e (0, 1].

Then the properties (a) through (c) of Jλh>τ imply that

(3.4) wh e D(A) ΓiC for h e (0,1], lim | WΛ - w| = 0
/4o

and that

(3.5) |W Λ - λhAwh - (w + Aftflw - ftw + Ml

< (1 - ft)|JA/l,tw - λhAJλh,τw - (w

+ h\Jλhtΐv - λhAJλhιτv -(v + λhBv)\

= /lo(ft) + Aft2 |Λ? - Bw| as ft 10.

We then demonstrate that

(3.6) WΛ e Cβ for sufficiently small ft e (0, 1].

By the property (c) of Jλh τ and the convexity of φ we get

) + hφ(Jλhtτv)

-h (1 - αεAft)-Uft(αφ(w) + 6 + ε/2)] -h fc[φ(t?) -h

< (1 - Λ)φ(w) + fc[φ(ι;) + (1 - aελΓlλ(aφ(w) + b + β)]

< (1 - ft)jS + fc[φ(ι;) -h (1 - aελΓiλ(aβ + b + β)] = j8

for ft e (0, 1] sufficiently small. Hence it follows that (3.6) is valid.
We now take the restriction Bβ of B to Cβ and consider the semilinear

operator λA + λBβ — / - f t ; from Cβ into X, where + υ stands for the transla-
tion by v. Then one can show that the semilinear operator λA + λBβ — I + v
belongs to the class

D(λA + λBβ - I + v) = Cβ9

and that the subtangential condition

(3.7) lim /Γ^w, R(I - h(λA + λBβ-I + v))) = 0
Uo

holds for w e C^. In fact, λBβ — I + v is continuous on its domain Cβ and
the semilinear operator λ(A + Bβ) — I + v — (λω* — 1)1 is dissipative on Cβ

by (3.2). This means that the semilinear operator satisfies conditions (HI)
through (H3) with φ and ωα replaced respectively by the trivial functional
φ = 0 and the negative number λω* — 1. Therefore one can assert that the
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semilinear operator belongs to the class &(Cβ, 0). From (3.4) it follows that

the domain D(λA + λBβ — I + v) = D(A)Γ\Cβ is dense in Cβ. Furthermore,

(3.5) implies

lim JΓ1 |wh - hλAwh - (w + hλBβw - fcw + hv)\ = 0.
Uo

Since w e Cβ a 7, (/ — M)"1 w -> w as fe 1 0. Hence VVΛ -» w as h 1 0, since

wh — hλAwh — (w 4- hλBβw — hw 4- to) -> 0 or WΛ — hλAwh — w -» 0 as ft J, 0.

Thus, we obtain

lim sup /i"1 |W Λ — h(λA 4- A5« - / -h ι;)wh - w|

< lim Λ"1 |wh — /ι>L4wh — (w 4- /ι/lB«w — hw 4- fct?)|
Uo

4- lim \λBβwh — λBβw 4- WΛ — w| = 0.
/4o

This shows that (3.7) is valid. Therefore the application of a generation

theorem for nonlinear semigroup implies that λA 4- λBβ — I + v generates a

semigroup 5^ = (Sλ(t)} on C^ such that

(3.8) \Sλ(t)v - SΛ(ί)w| < exp[(Aw* - l)t] |t; - w|

for r, w e Cβ and ί > 0. Because of (3.8) the semigroup ίfλ has a common

fixed point vλ>ε e C^, namely, SA(ί)ι?A>ε = t;Aί£ for ί > 0. Moreover it is seen in

the same way as in the proof of the implication (II) => (I) that ίf^ is associated

with the semilinear problem

(d/dt)uλ(t) = (λA -h λBβ - I)uλ(t) + v, t > 0; uλ(0) = w 6 Cβ.

This together with Theorem 2.4 (b) implies that
f*

0 = lim h~1(Sλ(h)υλtt - v λ j £ ) = lim λAh'1 Sλ(s)vλtεds + (λBβ - I)vλtε -h v.
UO ' ' hlO Jo

Since A is closed, we see that vλtε belongs to D(A)ΓiCβ and satisfies

λ(A -h B)vλε — vλε + v = 0. In view of (3.2), the relation Aωα+1 < 1 and

φ(ι^A,ε) < j? < α + 1, we see that vλ = (I — λ(A + B^^'^v exists and vλtε = vλ

for ε e (0, 1]. Hence vλ — λ(A + J5α+1)t;A = υ and φ(vλ) = φ(vλjε) < β(ε). Let-

ting ε|0, we obtain the estimate φ(vλ) < (1 — aλ)~l\jφ(υ] + bλ]. Consequently,

the element vλ so obtained satisfies (Π.a) and (Π.b). The proof is now

complete.

Combining Theorems 2.4 and 3.1, we obtain the following semilinear

version of the Hille-Yosida theorem.

THEOREM 3.2. Let α, b > 0. A semilinear operator A -h B in the class
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®(C, φ) is the full infinitesimal generator of a semigroup & on C satisfying
the growth condition (EG) for α, b > 0 if and only if the domain D(A) Π C is
dense in C and for each α > 0 there exists a positive number λ0 = λ0(a) such
that for λ e (0, λ0) and β>(l- aλ)'1^ + bλ) the resolvent (I - λ(A + Bβ))'1

exists, the range condition

(3.9) R(I - λ(A + Bβ)) z) CΛ

is satisfied and the growth condition

(3.10) φ((I - λ(A + Bβ)Γlυ) < (1 - aλ)'l(φ(Ό) + bλ)

holds for v e Cα, where Bβ denotes the restriction of B to Cβ.

This theorem is verified in a way parallel to the proof of [4, Theorem 6.1].
Moreover, the semigroup if is determined through the so-called exponen-

tial formula.

THEOREM 3.3 (Exponential Formula). Let A + B be a semilinear operator
in the class ®(C, φ) and let ^ be a semigroup on C satisfying the growth
condition (EG) for some a, b > 0. Suppose that A + B is the full infinitesimal
generator of Sf. Then for α > 0, τ > 0 and β > exp(2ατ)(α + βτ) the exponen-
tial formula

(3.11) S(t)v=lim(I--(A +
n->oo \ n

holds for t e [0, τ] and v e Cα, where Bβ denotes the restriction of B to Cβ.

The proof of Theorem 3.3 is obtained in the same way as in [23, Theorem
7.2].

4. Evolution equations under subtangential conditions

In this section we investigate variants of the implicit subtangential condi-
tion (III) stated in Theorem 3.1. We here treat a modification of the existence
theory due to Iwamiya [13] from our point of view.

L e t O < σ < τ < + o o and consider the nonautonomous semilinear problem

(NSP) —u(t) = Au(t) + B(t,u(t))9 σ<t<τ; u(σ) = v
at

in a Banach space (X, | |). Here B is a nonlinear continuous operator from
a subset C of [σ, τ] x X into X. Assuming that A is the infinitesimal genera-
tor of a nonexpansive semigroup &~x of class (C0) on X, Iwamiya advanced
in [13] a general existence theory for the problem (NSP). We here outline
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a modification of his existence theorem in the case where A is the generator
of a once integrated semigroup if* such that

(4.1) I W(t) - W(s)\ <\t-s\ for s, t > 0.

Condition (4.1) for the generator A is essential in our argument.. How-
ever, the semilinear operators A + B(t, •) are written as (A — ω) + (B(t, •) + ω)
and the same results are obtained if there is ω e R such that A — ω is the
generator of a once integrated semigroup satisfying (4.1) and such that the
function v ι-> g(t, υ) + wt; satisfies condition (g.2).

As seen from Theorem 1.5, a closed linear operator A in X is the
generator of a once integrated semigroup W satisfying (4.1) if and only if
the condition below holds:

(HI)' For λ > 0, (/ — λΛ)~l exists as a nonexpansive operator on X.

For the linear operator A in (NSP) we assume that the above condition
(HI)'. As before, Y denotes the norm closure D(A) of the domain of A. We
assume that C c [σ, τ] x Y and furthermore we impose the following condi-
tions on the nonlinear operator B:
(Cl) If (ίn, ΌH) e C, tn t 1 in [σ, τ] and vn -> v in X, then (ί, ι;) e C.
(C2) For each ί e [σ, τ], set C(t) = {v e X: (ί, v) e C}. Then

lim inf h^d(TΎ(h)v + W(h)B(t, v\ C(t + fc)) = 0 for v e C(t).
/4o

(C3) For (ί, i?), (ί, w) e C and h > 0 we have

\v _ W| < |(l? _ w(h)B(t, v)) - (w - W(fc)B(f, w))| + hg(t, \v - w|),

where g: [σ, τ) x R -> /? is a given function such that
(gl) #(ί, w) satisfies the so-called Caratheodory's condition.
(g2) #(ί, 0) = 0 and the function w(ί) = 0 is a maximal solution to the initial-
value problem

(4.2) w'(ί) = g(t, w(ί)), σ < ί < τ ; w(σ) = 0.

Condition (C2) is nothing but the subtangential condition (ST) introduced
by Thieme [28]. If in particular A is densely defined in X, then it is the
infinitesimal generator of a nonexpansive semigroup 2ΓX of class (C0) on X
and, by Corollary 1.7, condition (C2) is equivalent to the condition

(C2)' lim inf h'ld(Tx(h)Ό + hB(t, v), C(t + h)) = 0 for (ί, t;) 6 C.
Uo

Moreover the denseness of D(A) and (C3) together imply that

(C3)' It; - w| < \(υ - hB(t, v)) - (w - hB(t, w))| + hg(t, \v - w|)
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for (f, υ\ (ί, w) e C. Namely, for each t e [σ, τ), the operator B(t, -): C(t) -> X
is quasidissipative. The converse is not always true, even though A is densely
defined. If in particular the operator B'.C^X is Lipschitz continuous in
the sense that there is a constant ω > 0 and

\B(t, v) - B(t, w)| < ω|ι; - w| for (ί, t;), (ί, w) e C,

then condition (C3) holds for the function g(t, \v — w|) = 3ω\v - w|.
In view of Theorem 2.4 (c), we introduce a notion of mild solution (NSP).

DEFINITION 4.1. Let s e [σ, τ) and v e C(s). A continuous function
u(-): [s, τ)-*X is said to be a mi'/d solution of (NSP) on the interval [s, τ), if
(t,u(t))eC for ίe[s, τ), the function t\-+B(t, u(t)) is continuous from [s, τ)
into X, and u(-) satisfies the equation

lim Γ
Uo Js

(4.3) u(t) = Tγ(t - s)v + lim Tγ(t - ξ)(I - λA)'1B(ξ9 u(ξ))dξ
UO Js

for t e [s, τ), where the limit is taken in X and in the sense of the norm
topology.

Under the conditions as mentioned above, the following modified version
of Iwamiya's existence theorem is obtained.

THEOREM 4.2. Suppose that conditions (HI)', (Cl), (C2) and (C3) are ful-
filled. If C is a connected subset of [σ, τ) x X such that C(t) φ φ for all
t e [σ, τ), then for each initial-value (s, t;) e C, the problem (NSP) has a unique
mild solution u( ) on [5, τ) satisfying u(s) = v.

In Iwamiya's argument most of the estimates are very precise and the
denseness of D(A) is used in many parts of his proof, since he uses the
property that lim,^ T(t)v = v for all v e X. Therefore it is necessary to change
every part of the proof where this property is employed. Although we need
much more delicate estimates, it is possible to overcome this difficulty with
the aid of Theorem 1.6.

From Theorem 4.2 we obtain a generation theorem for nonlinear evolu-
tion operators associated with nonautonomous semilinear problem of the form
(NSP), under the explicit subtangential condition (C2).

5. Explicit subtangential conditions

In this section we establish a characterization of nonlinear semigroups
providing the mild solutions of (SP) through a variant of the explicit sub-
tangential condition (C2) for A + B. In what follows, let A be a closed linear
operator satisfying (HI)' and B a nonlinear operator in X defined on a convex
subset C satisfying (H2).
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In addition to (HI)' and (H2) we assume the following condition which

is a stronger form than (C3):

(H3)' For each α > 0 there exists ωα e R such that

(1 - hωΛ)\υ - w| < \(v - W(h)Bv) - (w - W(h)Bw)\ for h > 0 and v, w e Cα.

Condition (HI)' and (H3)' together imply (H3). Under the above condi-

tions we obtain the characterization theorem below:

THEOREM 5.1. Let a, b > 0. Assume that A and B satisfy conditions

(HI)', (H2) and (H3)'. Then the following are equivalent:

(I)' There exists a nonlinear semigroup & = {S(t): t > 0} on C such that

lim Γ
λlo Jo

(La)' S(t)v = Tγ(t)v + lim I Tγ(t - s)(I - λAΓΐBS(s)vds9
λlO

(I.by φ(S(t)v) < eat[φ(v) + hi], for each veC and t > 0.

(IV) For each v e C there exist a null sequence {hn} of positive numbers and

a sequence {vn} in C such that

(IV.a) lim h~l I T,(h,)v - W(ha)Bv - υn\ = 0,
w-*αo

(IV.b) lim sup h'1 [φ(vn) - φ(ι )] < aφ(υ) -i- b.
w-»oo

Prior to giving the proof of the theorem we make a remark on the

relation between the theorem and Theorem 3.1 and prepare a uniqueness

theorem for mild solutions of (SP) satisfying (EG). It would be interesting

to compare the uniqueness theorems: Proposition 2.2 and Proposition 5.3

below.

REMARK 5.2. If in particular B is assumed to be locally Lipschitz continu-

ous in the sense that

(H3)" for each α > 0 there exists ωα > 0 such that

\Bv — Bw| < COΛ\V — w| for v, w e Cα,

then it follows from Theorem 2.4 and Theorem 3.1 that the statements (I)-(III)

in Theorem 3.1 are equivalent to (IV).

Since \W(h)\ < h for h > 0 by (4.1), it is readily seen that (H3)" implies

(H3)'. Also, (H3)" implies (H3) under condition (Hiy. Hence the application

of Theorem 2.3 implies that condition (I) in Theorem 3.1 is equivalent to

condition (I)' in Theorem 5.1. This shows that conditions (I) through (IV)

are all equivalent.
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PROPOSITION 5.3. Assume that A and B satisfy conditions (HI)', (H2) and
(H3)'. Then given veC there exists at most one mild solution u(-) of the
problem (SP) satisfying (EG).

PROOF. Let α > 0, τ > 0, β = eaτ\& + bτ] and let ωβ a constant provided
for the β by condition (H3)'. Let w, z e Cα and let M( ), t ( ) be the correspond-
ing global mild solutions of (SP) satisfying (EG). Then u(t\ v(t) eCβcY for
ί E [0, τ]. By (H3)' we have

(1 - hωβ)\u(t + h) - v(t + h)\ < \(I - W(h)B)u(t + h) - (I - W(h)B)v(t + λ)|

for t e [0, τ) and h > 0 with t + h<τ. But (/ - W(h)B)u(t + h) is written as

ί
t+h

Tγ(t + h - s)(I - λAΓl[βu(s) - Bu(t + Λ)]έfa

and (/ — W(/ι)B)ι?(ί + Λ) is also written in the same form. Hence we have

ί
t+h

\Bu(s)-Bu(t + h)\ds

Λ ί+Λ

\Bu(s)-Bu(ί+h)\ds

for fe[0, τ) and fte(0, τ-ί]. From this it follows that D+\u(t) - v(t)\ <
ωβ\u(t) — v(t)\ for ίe[0, τ), where D+φ(t) stands for the Dini upper right
derivative of an /^-valued function φ on [0, τ) at ί. Solving this differential
inequality, one obtains

\u(t) - v(t)\ < eω^|w - z| for t e [0, τ) and w, z e Cα.

This implies the desired assertion.

PROOF OF THEOREM 5.1. In view of Proposition 5.3 it suffices to show
that for any τ > 0 and any z e C there exists an X- valued continuous function
u( ) on [0, τ] such that for each t e [0, τ], u(t) e C9

u(t) = Tγ(t)z + lim Γ Tγ(t - s)(I - λAΓ1Bu(s)ds
AΦO Jo

and

φ(u(ί)) < eat[_φ(z) + ftί].

Let τ > 0, ε e (0, 1] and z e C. Set α = eaτ[φ(z) + (b + ε)τ] and let ωα denote
the constant given by (H3)'. Also, for each ί e [0, τ], we write D(t) for the
set {t; e C: φ(v) < eat[φ(z) + (b + ε)ί]} and define an operator B(t) from D(t)
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into X by B(t)v = Bv for v e D(t). Then the following are valid for the opera-
tors B(t\ t e [0, τ]:
( i ) Each of D(t) is closed and D(s) c D(t) for 0 < s < t < τ.

(ii) The mapping (ί, v) -> B(t)v is continuous from 2 = (Jse[o,τ]({s} x ^(s))
into X.

(iii) For each ί e [0, τ], h > 0 and v, w e D(ί), we have

(1 - hωΛ)\v - w| < |(/ - W(h)B(t))υ -(I- W(h)B(t))w\.

Let t e [0, τ) and v e D(t). Then by (IV) there exist sequences {hn} and {vn}
satisfying (IV.a) and (IV.b). Hence, by (IV.b), we have

φ(υn) < φ(υ) + hn[aφ(v) + b + ε/2] < eah»[_φ(υ) + (b + β)ΛJ,

for n sufficiently large. Since φ(r) < eαί[φ(z) -h (b H- ε)ί], it follows that

(fc + fi)ί] + e«*-(fr + ε)Λπ

(b + B)(t + ΛJ]

for π sufficiently large. From this and (IV.a) we infer that for ί e [0, τ) and
v e D(f)

(iv) lim inf h~ld(TY(h)v + W(h)B(t)υ9D(t + Λ)) = 0.
ΛΦO

By virtue of the facts (i)-(iv) mentioned above, we apply Theorem 4.2
to conclude that there exists a function u( )e#([0, τ]; X) such that w(ί)eD(f)
and (La)' holds for t e [0, τ]. Since u(t) e Cα for t e [0, τ], it follows from the
uniqueness of the mild solutions that M( ) is independent of ε. The fact that
u(t) e D(t) for t e [0, τ] means that

φ(u(t)) < eat[_φ(z) + (b 4- ε)ί] for ί e [0, τ] and ε 6 (0, 1].

Taking the limit as ε|0, we have φ(u(t)) < eat[φ(z) + bt] for t e [0, τ]. This
completes the proof.

REMARK 5.4. Let C be a fixed closed convex subset of 7. In Thieme
[28] it is assumed that C = [σ, τ] x C, and that the nonlinear operator
B'.C^X in (NSP) is locally Lipschitz continuous and of linear growth in
the following sense:

(LL) For any t > 0 and v e C there exist positive numbers δ > 0, Γ > 0 such
that

for t < s < t + δ, w, z e C with |w — v\ < δ and |z — v\ < δ.
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(LG) For any τ > 0 there exists a positive number K = κ(τ) > 0 such that

\B(t, v)\ < κ(\ + \v\) for 0 < t < τ and v e C0.

We infer from (4.3) that under the linear growth condition (LG) the
following a priori estimates are obtained for mild solutions u(-) of (NSP):

\u(t)\ < eκ(t-ff)l\v\ + κ(t - <r)] for ί e [σ, τ],

where (σ, v)eC stands for the initial-value given in (NSP).

6. Evolution equations with semilinear constraints

In our main results, Theorems 3.1 and 5.1, the linear operator A is
assumed to be non-densely defined in X. This enables us to treat semilinear
evolution equations with semilinear boundary conditions in the framework of
our theory. We here refer to the work done by Greiner [8, 9] and Thieme
[28] and discuss the construction of semigroup solutions of semilinear prob-
lems subject to semilinear constraints. In the next section, we apply the
result to a mathematical model which describes a specific type of nonlinear
age-dependent population dynamics.

In this section we consider a pair of Banach spaces (X, \ - \x) and (Z, | |z),
a convex subset C of X and a lower semicontinuous convex functional
φ(-): X -> [0, oo] with C c D(φ) = {xe X: φ(x) < oo}. Let A be a linear oper-
ator in X, L a linear operator from D(A) onto Z, F a nonlinear operator
from C into X and let B be a nonlinear operator from C into Z. Then
one can formulate the initial-value problem for the semilinear equation

(SP) u'(t) = Au(t) + Fu(t), ί>0; u(0) = ι>,

subject to the semilinear constraint

(SB) Lu(t) = Bu(t) for t > 0.

On the operators A, L, F and B we put the following conditions:
(s.l) The linear operator A is closed and densely defined in X and the

restriction Aκ of A to Ker L is also densely defined in X. Furthermore,
there exists ωκ e R such that

|(/ - λAκΓ
lυ\x < (1 - λωκ)'1 \v\x for λ e (0, l/c%) and vεX.

(s.2) The operator L: D(A) -> Z is surjective and there exists a constant ωL e R
such that

A|Lz|z > (1 - λωL)\z\x for z e Ker(/ - λA) and Λ, e (0, l/ωL).
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(s.3) For each α > 0, the level set Cα = {v e C: φ(v) < α} is closed in X, the
nonlinear operators F and B are continuous on Cα, and there is ωα e R

such that

(Bv — Bw, /> + <Fι? — Fw, 0> < ωjt? — w\x

for v, w e Cα, fe Z* and 0 e &(v — w) satisfying |/|z* < |t? — w|x, where

& is the duality mapping of X.

(s.4) There exist nonnegative constants a and b such that for each v e C

there exists a null sequence (ftw) in (0, oo) and a sequence (vn) in £>G4) Π C
satisfying

lim h~l \vn - hn(A + F)vn - v\x = 0,

lim \LvH - Bvn\z = 0, lim \vn - v\x = 0,
n-*oo n->oo

lim sup h^l(φ(υΛ) — φ(v)) < aφ(v) + b.
n->oo

Under the above conditions we introduce a product Banach space 3C Ξ

ZxX equipped with the norm ||( , )l l defined by ||(z, t?)|| = |z|z + \v\x for
(z, i?) e #" and convert the semilinear problem (SP) subject to (SB) to the

semilinear problem in 9C. To this end, we define a linear operator j^ in 2£ by

= {0} x D(yl) and j/(0, i?) = (-Lt;, At;) for v 6 D(,4)

and a nonlinear operator J^ in 9C by

= {0} x C and (̂0, u) = (J3w, FM) for i? e C.

By means of the operators stf and $ the semilinear problem (SP) with semi-

linear constraint (SB) can be rewritten as the semilinear problem in 9E\

(SP) u'(ί) = j/u(ί) + ^u(ί), t > 0; u(0) = v = (0, v).

Define a lower semicontinuous functional φ: Z x X -> [0, oo] by ^(v) =

φ(υ) for v = (z, t>) and set % = {v e #: ^(v) < α}.
We shall check that the conditions (HI), (H2) and (H3) stated in Sections

1 and 2 hold for the operator si and $. To this end, we need the following

lemma:

LEMMA 6.1 ([8], [28]). Under (s.l) and (s.2) we have the following.

(a) D(A) = Ker L Θ Ker(/ - λA) for λ~l e p(AK).

(b) Let ω = max{ωi,ω2}. Then we have

(HI) ||(/ - λ^Yl\\ < (1 - Λω)'1 /or λ > 0 wΐίfc Aω < 1.
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PROOF, (a): Let v e D(A) and λ~l e ρ(Aκ). By the definition,
(/ - λAκ)'l(I - λA)v e Ker L and v - (I - λAκ)~l(I - λA)v e Ker(/ - λA).
Moreover, condition (s.l) implies that Ker L Π Ker(/ — λA) = {0}. Hence (a)
is obtained.

(b): Let (/, g) e Z x X, λ> 0, and let λω < 1. Put υ = (/ - λAκ)~lg,
w = (L|Ker(/_A^))~1(A"1/) and u = v + w. Then υ e Ker L and w e Ker(/ — λA).
We now apply (a) to see that u e D(A) and

By the definition of the norm of Z x Jf, we have

which implies (b). The proof is now complete.

Rewriting (s.3) and (s.4) we have the following:

(H2) For each α > 0 there exists an ωα e R such that

<ωα | |v- w||2

for v, w e #α and f e ^(v — w), where 3F denotes the duality mapping of 9E.

(H3) For each v e # there exists a null sequence {hn} of positive numbers
and a sequence {vn} e D(jf)f}(f satisfying

lim h'11|vπ — M^ + ^)vw — v|| = 0, lim ||vπ — v|| = 0,
π-^oo

lim sup hn

 1 |>(vw) - p(v)] < aφ(\) + b.

Applying Theorem 2.4 and Theorem 3.1 to the semilinear problem (SP),
we obtain the theorem below.

THEOREM 6.2. Suppose (s.l)-(s.4). Then there exists a nonlinear semigroup
y = (S(t): t > 0} on C such that for each v € C and each t > 0, f0 S(s)xds e D(A)
and

S(ήv = Ό + A I S(s)vds + I FS(s)vds,= Ό + A \ S(s)vds +
Jo Jo

S(s)vds = BS(s)vds,
Jo Jo

L

φ(S(t)v) <



Nonlinear perturbations of integrated semigroups 463

REMARK 6.3. It is seen in the same way as in [4] that if F and B are
continuously Frechet differentiate on each Cα, then S(-)v gives a strong
solution to the problem (SP)-(SB) provided that v e D(A) Π C and Lv = Bv.

7. An application to population dynamics with pair formation

In this section we make an attempt to apply the result obtained in
Section 6 to a semilinear system modeling nonlinear age-dependent population
dynamics.

Let u(t9 a) represent the single male individuals with age a at time ί,
v(t, ft) the single female individuals with age ft at time t, and p(ί, α, ft, c) the
pairs of age c at time t consisting of a male with age a and a female of age ft.
Obviously the age of a pair (i.e., the time that has passed since the pair was
formed) is less than both the age of the male and the age of the female
individual constituting the pair.

The differential equations take the form

poo

ut(t9 a) + tιβ(f, α) + d^t, a)u(t, α) + p(ί, α, ft, 0)<fft
Jo

POO poo

σ(t9a9b9c)p(t9a9b9c)dbdc9
Jo Jo

poo

vt(t, ft) + υb(t, ft) + d2(t, b)v(t9 ft) + p(ί, α, ft, tyda
Jo(DE) , ,POO POO

σ(ί, α, ft, c)p(ί, 0, ft,.
Jo Jo

p,(f, a, fc, c) + pβ(ί, α, ft, c) + pft(ί, α, ft, c) + pc(ί, α, ft, c)

= -(^(ί, α) + d2(ί, ft) + σ(ί, α, ft, c))p(ί, α, ft, c).

Here d^t.ά) and d2(t,b) denote the respective per capita mortality rates of
males of age α and females of age ft at time ί, σ(ί, α, ft, c) denotes the separation
rate of a pair of age c at time ί where the male has age α and the female
has age ft, and Jo° p(ί, α, ft, 0)dft, e.g., is identical to the rate at which single
males of age a are lost at time t due to the formation of new pairs. Actually
we want to handle an autonomous problem and the time dependence in dί9

d29 σ enters by assuming that these rates depend on the age densities w(£, •)>
v(t, \p(t,-\

dj(t, a) = μfa ιι(ί, •), ι?(ί, •), p(ί, •)), j = 1, 2,

<τ(ί, α, ft, c) = p(α, ft, c, w(ί, •), ι;(f, •), p(ί, •))•
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The differential equations are supplemented by nonlinear boundary
conditions

u(t, 0) = Afe a> b,
J(0,oo)3

f(f> 0) =
J(°'

φ(ί, a, b, c)dadbdc,

j?2(ί, α, b, c)p(t, a, b, c)dadbdc,

(BC)
p(t, 0, b, c) = p(f, α, 0, c) = 0.

p(f, fl, b, 0) = tfr(ί, α, b\

and initial conditions

(1C) ιι(0, a) = u0(a), υ(0, b) = vQ(b\ p(0, α, i, c) = p0(α, *>> c).

The function /^(ί, α, fe, c) denotes the rate at which male offspring is born
at time ί from a pair of age c where the male partner has age a and the
female partner has age b, the function β2(t9 a9b9c) denotes the analogous rate
of female offspring; ψ(t, α, b) gives the rate at which pairs are formed at time
ί where the male partner has age a and the female partner has age b. Again,
the time dependence of βl9 β2 and ψ originates from dependence on the
various age densities

βj(t9 α, fr, c) = α/α, b, c, u(ί, •), v(t, •), p(ί, •))»

This model, without the pair age c, was apparently introduced by Hoppen-
steadt [12] while Staroverov [25] observed that one could also keep track
of pair age. Interest has been rekindled in this model as a prerequisite for
studying the spread of sexually transmitted diseases by Hadeler [10, 11].
A result concerning the global existence and uniqueness of solutions (similar
to ours, but with the rates βj9 σ, dj being independent of the solution)
has been announced by Pruss and Schappacher [24]. For applications to
age-structured population models involving additional structures we refer to
Thieme [29].

We treat the semilinear differential equation (DE) with the semilinear
boundary condition (BC) in the Banach space

X = Lx(0, oo) x L^O, oo) x Ll((09 oo)3),

more precisely, in the non-negative convex cone

C = Lί(0, oo) x Li(0, oo) x Lί((0, oo)3).

We make the following assumptions:
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(Al) There exists a monotone increasing function φ: [0, oo) -» [0, oo) such
that for all a, b, c > 0 and all w e C,

where, for w = (M, v9 p) e X9 the norm of w is defined by

\w\x = max j f°° \u(a)\da, Γ \v(b)\db, ί \p(a9 b, c)\dadbdc\.
UO JO J(0,oo)3 J

There exists a constant v > 0 such that, for a9 b9 c>0 and w> e C,

0 < p(α, fc, c, w>) < v, 0 < 07(0, ft, c, w>) < v.

Furthermore, μj9 p and α7 are uniformly locally Lipschitz in the following
sense: For any γ > 0 there exists Λy such that, for v, w e C with |v|x, |w|x < 7,

v) -

\p(a, b, c, v) - p(a, b, c, w)| < Λy\v - w|x,

lα/fl, ft, c, v) - αj(α, ft, c, w)| < yi y | v - κ>|x.

(A2) The operator Ψ: C->Li((0, oo)2) is locally Lipschitz continuous in the
sense that

ΠJo J(
I Ψ(v)(a9 b) - Ψ(w)(a9 b)\dadb < Λy\v - w\x

for v, w e C with \v\x, \w\x < 7, and there exists a constant M > 0 such that

poo poo

\Ψ(w)(a, b)\dadb<M\w\x, weC.
Jo Jo

Let

Z = R1 x Rl x L^ίO, oo)2), |z|z = |x| + |y| + ί °° f °° |/(α, b)\dadb,
Jo Jo

for z = (x,y,/)eZ. We denote by Γp the trace of pe WIΛ((Q, oo)3) and
denote the restriction of /> to {0} x (0, oo) x (0, oo), (0, oo) x {0} x (0, oo) and
(0, oo) x (0, oo) x {0} by Γ^p, Γ2p and Γ3p9 respectively.

PROPOSITION 7.1. For φεLl((§, oo)2) there exists pe WIΛ((09 oo)3) such
that Γ±p = Γ2p = 0 and Γ3p = φ.

The proof is obtained in a way similar to Giusti [7, Proposition 2.15].
We then define a linear operator T in ^((O, oo)3) by

Tp = -Pa -Pb- pc, D(T) = {pe W^((Q9 rc)3): Γ,p = Γ2p = 0}.



466 Toshitaka MATSUMOTO et al.

Then the operator T is closable. We denote the closure of T by T. In view

of the definition of T9 we have

J (0,00)3

(sgn p(α, b9 c))Tp(a, b, c)dadbdc

= - f
J (0,00)3

dc)\p(a, b, c)\dadbdc = \Γ3p\,.

This shows that Γ3 is continuous with respect to the graph norm of T, and

that it can be extended to D(T). We denote the extension of Γ3 to D(T)

by /3 and define a linear operator by

LEMMA 7.2. The operator T0 is the infinitesimal generator of a strongly

continuous semigroup on Ll((Q, oo)3).

PROOF. Let p e D(T0)9 λ > 0, and take a sequence {pn} e D(T) such that

pn -» p, Tpn -> T0p and Γ3pn -> 0 as n -> oo. Let /„ = (sgn pjlpj^ Then we

have

J(0, OO)3

IP.Iι .(β, b, c)\ dadbdc

Passing to the limit as n -> oo, we obtain

Hence, for each λ > 0, we have

(7.1) |(/ - AToMi > for peD(f0).

This means that the range of (/ — λT0) is closed. Let

(0, oo)3, and set

supp gf

(7.2) p(a, b, c) = λ'1 e-λ~ί(c-®g(a -c + ξ,b-c + ξ, ξ)dξ for λ > 0.
Jo

Then we infer that p e WIΛ((09 oo)3), Γ±p = Γ2p = Γ3p = 0, and that p -

λTp = g. This means that the range of (/ — λT0) is dense. This together

with (7.1) implies that T0 is the infinitesimal generator of a strongly continuous

contraction semigroup.
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We next define a closed linear operator A in X by

Aw = \-ua - T3p(a, b)db, -Όb-\ Γ3p(α, b)da, Tp

D(A) = {»> = (11, υ, p): u, v € W^(Q, oo), p e D(T )},

and define a linear operator L from D(A) into Z by

Lw= [ιι(0), ι>(0), Γ3p].

Let AK be the restriction of A to Ker L. Then

= Wtf'HO, oo) x Wtf 'ίO, oo)

The next proposition follows immediately from Lemma 7.2 and shows

that the linear operator A satisfies condition (s.l) in the previous section.

LEMMA 7.3. The restriction Aκ of A to Ker L is the infinitesimal generator

of a strongly continuous contraction semigroup on X.

We next show that L satisfies (s.2). The surjectivity of L follows from

Proposition 7.1. Let λ > 0 and let w = (u, υ, p) e Ker(/ — λA). Then direct

computations yield

(7.3)

v(b)

u(α) = e-Λ"l"u(0)-r1 Γ Γ e-λ-^-ξ)Γ3
Jo Jo

= έΓA~V))-;Γ1 I \ e-λ-ί(b-ξΨ3

Jo Jo

By the definition of T there exists a sequence pn e D(T) such that pn -> p and

TpH -+Tp as π -> oo. Let pn - Tpπ = /„ for n = 1, 2, .... Multiplying both

sides of these equations by sgn pn and integrating the resultant identities over

(0, oo)3, we have

i Λ l i + λ I (8Λ\PΛ\ + Sb\pn\ + dc\pn\)dadbdc = \ sgn pnfndadbdc.
J(0,oo)3 J(0,c»)3

Applying the boundary conditions Γ1pn = Γ2pπ = 0 and passing to the limit

as n -> oo, we have

(7.4) |plι-

It follows from (7.3) and (7.4) that

This means that
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λ\Lw\z > \w\x for w = [u, v, p] e Ker(/ — λA).

Hence L satisfies (s.2).
We next define nonlinear operators F from C into X and B from C

into Z by

ί
oo Λoo

p(α, b, c, κ>)p(0, b, c)dbdc9

) Jo
Λoo Λoo

F2M>](ί?) = —μ2(b9 w)v(b) + p(α, b, c, w)p(α, b, c)dadc9

Jo Jo
7

3M>](0, b, c) = -(μ^α, w) + μ2(b, w) + p(α, ί?, c, w))p(α, b, c),

5^= (x,l(a,b,c,w)p(a,b,c)dadbdc,
J(0,oo)3

52w = α2(α, b, c, w)p(α, b, c)dadbdc,
J (0,00)3

respectively. For each 7 > 0 we set Cy = {H> e C: | w|x < y}.

LEMMA 7.4. Under conditions (A.1) and (A.2) we have the following:
(a) For γ >Q9 B and F are Lipschitz continuous on the level sets Cy.
(b) For λ>0 with λ(2φ(γ) + v) < 1 and w e Cy we have

(c) Let K = max{v, M}. Then maxd^wl, \B2w\9 1^3^!!} < κ\w\x for weC.

PROOF. Let w and # e Cy. Then we have

Γ lA*i(fl, ^){W(α) -
Jo

+ Γ\{μι(a,*>)-μι(a,
Jo

+ |p(α, b, c, w) {p(α, b, c) - £(α, b, c)} | dadbdc
J(0,c,cχ))3

+ \{p(a, b, c, w) - p(a, b, c, $)}p(a, b, c)\ dadbdc
J (0,00)3

< Φ(y)\u - ύ\ι + Λl"l ι l w - *\χ + V !P - ίli + Λl i l i lw
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Similarly, we have

\F2» - F2w\, < (φ(y) + v + 2yA(γ))\w - *\x,

\F3w - F3Λ\i < (2φ(y) + v + 3yΛ(y))\w - #\x.

Hence we obtain

\Fw - Fw\x < (2φ(y) + v + 3yA(γ))\w - *\x.

In a similar way, one can show that

\B» - Bw\z < (v + (1 + y)A(y))\w - w\x.

We next show that (b) holds. Let λ > 0 with λ(2φ(y) + v) < 1. Then we have

\u + λF^}, < Γ |(1 - λμι(a, w))u(a)\da
Jo

+ A |p(α, b, c, w)p(a, b, c)\dadbdc
J(0,oo)3

Similarly, we have

Therefore we obtain (b). Finally, we show that (c) holds. Let w e C. Then
we have

lα/α, fc, c, w)p(a9 b, c)\dadbdc < v\w\x
J (0,00)3

for j = 1, 2, and

\B3w\ι< Γ Γ\Ψ(»)(a9b)\dadb<M\»\x.
Jo Jo

Thus (c) is obtained and the proof is thereby complete.

LEMMA 7.5. Under the assumption (A.1) and (A.2), the following hold:
(i) (/ - λAκ)~lw e C for λ > 0 and w e C.
(ii) w + λFw 6 C for w e Cy and λ > 0 with λ(2φ(y) + v) < 1.

PROOF. Let (/, g, h) e C and (u, v, p) e D(AK). Suppose that
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u + λua = /, υ + λvb = g and p + λT0p = h.

Then we have

-1 fβ _i U _Λ -1 f* _i l,fc-Λw(α) = λ \ e λ (a ζ)f(ξ)dξ and v(b) = λ \ e ( ζ)<
Jo Jo

This implies that w, υ > 0 a.e. Choose /IΛ 6 QJ°(/?3) so that hn > 0, supp hn c:
(0, oo)3 and hn-^h in L^ίO, oo)3). Using (7.2) with p and 0 replaced, respec-
tively, by pn and Λπ, we have pπ e D(T0), pn - λT0pn = hn and pn > 0. Letting
n -» oo, we obtain p(α, ft, c) > 0 a.e. We next show that (ii) holds. Let w =
(M, t?, p) e C. Let λ be a positive number such that λ(2φ(γ) H- v) < 1. Then
we have

Λoo poo

u(a) — λμ^a, w)w(α) + λ \ p(a, b, c, w)p(α, fc, ι
Jo Jo

> (1 - λφ(γ))u(a) > 0,

ί co /Oo
p(α, b, c, w)p(α, fe, <

> (1 - ^(y))ι;(6) > 0,

(1 - λ(μι(a, w) + μ2(fc, w) + p(α, b, c, w)))p(α, b, c)

> (1 - λ(2φ(y) + v)p(α, ft, c) > 0.

These inequalities together imply the desired result.

For w e C and n > 1, we set

(7.5)
Φnw = \_e~naE^ e-nbB2w, e~ncφn(a -c,b- c)],

where

φn > 0, φm e <C(*2), supp ^π c (0, αo)2, and ^n -> B3 w in Lr((0, α))2).

By Lemma 7.5, we have wn e D(A) Π C for n sufficiently large. It follows from
(7.5) that

wn - w = (I - n~lAK)~lw -w + n~l(I - n~lAK)~lFw + Φnw.

This together with Lemma 7.4 yields

+ \Φnw\x
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Therefore

n-*oo

Noting that (/ - n~lA)Φnw = 0, we infer from (7.5) that

In view of (7.6) and the continuity of F, we have

(7.7) lim n\wn- n~l(A + F)wn - w\x = 0.
w-»oo

Since Ker L = D(AK\ it follows from (7.5) that

Hence we see from (7.6) that

(7.8) lim |Lwn — Bwn\z = 0.
n-*ao

Also, (7.5) and Lemma 7.4 together imply

< (1 + n~lv)\w\x + n~l(κ\w\x + \φn - B3w\J.

This shows that

(7.9) linkup n(\wm\x - \w\x) < (K + v)\w\x.

Thus, in view of Lemma 7.3, Lemma 7.4, (7.4) and (7.6) through (7.9), we
have shown that conditions (s.l) through (s.4) stated in Section 6 are all

satisfied. Theorem 6.2 and Remark 6.3 can now be applied to obtain the

following theorem:

THEOREM 7.6. Let ω = K + v. Suppose that (Al) and (A2) hold. Then
there exists a nonlinear semigroup Sf = {S(t)\ t > 0} on C such that

S(t)w = w + ,4 S(s)wds + FS(s)wds,
Jo Jo

L I * S(s)wds = \ BS(s)ds,
Jo Jo

\S(t)w\x < eωt\w\x, for each weC and t > 0.

If in particular, B and F are continuously Frechet differentiable, then S(t)w
gives a strong solution provided that w e D(A) Π C and Lw = Bw.
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REMARK 7.7. The previous proof shows that the results in Thieme [28]
provide a local semiflow which is global in case that the rates μj is a bounded
function of w e C. The approach presented in this paper allows to remove
the boundedness of this rate which is an unnatural restriction as one should
like to have a generalization of logistic growth in unstructured population
models. Alternatively one can combine the local existence results with a
priori estimates like in Theorem 7.6 to obtain global existence of the semiflow.
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