Higher Specht polynomials

Susumu Ariki, Tomohide Terasoma and Hiro-Fumi Yamada
(Received September 14, 1995)
(Revised February 23, 1996)

Abstract

A basis of the quotient ring S / J_{+}is given, where S is the ring of polynomials and J_{+}is the ideal generated by symmetric polynomials of positive degree. They are called higher Specht polynomials.

0. Introduction

The purpose of this paper is to give a detailed proof of the result announced in [4], and to give its generalization.

Let $S=\mathbf{C}\left[x_{0}, \ldots, x_{n-1}\right]$ be the algebra of polynomials of n variables x_{0}, \ldots, x_{n-1} with complex coefficients, on which the symmetric group \Im_{n} acts by the permutation of the variables:

$$
(\sigma f)\left(x_{0}, \ldots, x_{n-1}\right)=f\left(x_{\sigma(0)}, \ldots, x_{\sigma(n-1)}\right)\left(\sigma \in \mathbb{S}_{n}\right)
$$

Let $e_{j}\left(x_{0}, \ldots, x_{n-1}\right)=\sum_{0 \leq i_{1}<\ldots<i_{j} \leq n-1} x_{i_{1}} \ldots x_{i_{j}}$ be the elementary symmetric polynomial of degree j and set $J_{+}=\left(e_{1}, \ldots, e_{n}\right)$, the ideal generated by e_{1}, \ldots, e_{n}. The quotient ring $R=S / J_{+}$has a structure of an Θ_{n}-module. Let n_{0}, \ldots, n_{r-1} be natural numbers such that $n=\sum_{i=0}^{r-1} n_{i}$. Then the product of symmetric groups $\mathfrak{S}_{n_{0}} \times \cdots \times \mathfrak{S}_{n_{r-1}}$ is naturally embedded in \mathbb{S}_{n}. By restricting to this subgroup, R is an $\mathbb{S}_{n_{0}} \times \cdots \times \mathbb{S}_{n_{r-1}}$-module. We give a combinatorial procedure to obtain a basis of each irreducible component of R. In view of this construction, these polynomials such obtained might be called higher Specht polynomials. The case $n_{0}=n$ is treated in [4]. When $n_{0}=\cdots=$ $n_{n-1}=1$, this basis becomes the descent basis for R (see [3]).

As an application, we also give a similar basis for a complex reflection group $G_{r, n}=(\mathbf{Z} / r \mathbf{Z})<\Theta_{n}$. Let S be the symmetric algebra of the natural $G_{r, n}$ representation over C. The ring of invariants $S^{G_{r, n}}$ is known to be isomorphic to a polynomial ring $\mathbf{C}\left[e_{1}^{(r)}, \ldots, e_{n}^{(r)}\right]$ generated by the elementary symmetric polynomials $e_{1}^{(r)}, \ldots, e_{n}^{(r)}$ in x_{i}^{r} 's. We put $R^{(r)}=S / J_{+}$, where $J_{+}=$ $\left(e_{1}^{(r)}, \ldots, e_{n}^{(r)}\right)$. As a $G_{r, n}$-module, it is equivalent to the regular representation. It is also known that the irreducible representations of $G_{r, n}$ are indexed

[^0]by r-tuples of Young diagrams $\Lambda=\left(\lambda^{(0)}, \ldots, \lambda^{(r-1)}\right)$ with $\sum_{i=0}^{r-1}\left|\lambda^{(i)}\right|=n$. We construct a basis for $R^{(r)}$ parametrized by the pairs of standard r-tuples of tableaux (S, T) of the same shape.

After completing this paper, we noticed that E. Allen published a similar construction of the basis for R ([1]). In the present paper, we give a different proof for the linear independence of the higher Specht polynomials.

The authors thank the referee for quite a few comments.

1. The index r-tableaux

A partition λ is a non-increasing finite sequence of positive integers $\lambda_{1} \geq \cdots \geq \lambda_{l}$. We write $\lambda \vdash n$ when the sum $\sum_{i=1}^{l} \lambda_{i}$ equals n. Conversely, given a partition $\lambda, \sum_{i=1}^{l} \lambda_{i}$ is called the size of λ. As is usual, a partition is expressed by a Young diagram. Let r be a positive integer and $\Lambda=$ $\left(\lambda^{(0)}, \ldots, \lambda^{(r-1)}\right)$ be an r-tuple of Young diagrams. We call such a Λ an r diagram. The sequence of integers $\left(n_{0}, \ldots, n_{r-1}\right)=\left(\left|\lambda^{(0)}\right|, \ldots,\left|\lambda^{(r-1)}\right|\right)$ is called the type of Λ and denoted by type (Λ). The sum $n=\sum_{i=0}^{r-1} n_{i}$ is called the size of Λ. The irreducible representations of $\Theta_{n_{0}} \times \cdots \times \Theta_{n_{r-1}}$ are indexed by the set of r-diagrams of type $\left(n_{0}, \ldots, n_{r-1}\right)$. By filling each "box" with a non-negative integer, we obtain a tableau (resp. an r-tableau) from a diagram (resp. an r-diagram). The original r-diagram is called the shape of the r tableau. An r-tableau $\mathbf{T}=\left(T^{(0)}, \ldots, T^{(r-1)}\right)$ is said to be standard if the written sequence on each column and each row of $T^{(i)}(0 \leq i \leq r-1)$ is strictly increasing, and each number from 0 to $n-1$ appears exactly once. The set of all standard r-tableaux of shape Λ is denoted by $S T(\Lambda)$. The prime (') denotes the transposition of a diagram or a tableau. For an r-diagram $\Lambda=\left(\lambda^{(0)}, \ldots, \lambda^{(r-1)}\right)$ and an r-tableau $\mathbf{T}=\left(T^{(0)}, \ldots, T^{(r-1)}\right)$, we define $\Lambda^{\prime}=$ $\left(\lambda^{(r-1)^{\prime}}, \ldots, \lambda^{(0)^{\prime}}\right)$ and $\mathbf{T}^{\prime}=\left(T^{(r-1)^{\prime}}, \ldots, T^{(0)^{\prime}}\right)$, respectively.

Figure 1

Definition. A standard r-tableau is said to be natural if and only if the set of numbers written in $T^{(i)}$ is $\left\{n_{0}+\cdots+n_{i-1}, \ldots, n_{0}+\cdots+n_{i}-1\right\}$. The set of natural standard r-tableaux of shape Λ is denoted by $\operatorname{NST}(\Lambda)$.

On the set $S T(\Lambda)$, we introduce the last letter order " $<$ " as follows. For two r-tableaux $\mathbf{T}_{1}=\left(T_{1}^{(0)}, \ldots, T_{1}^{(r-1)}\right)$ and $\mathbf{T}_{2}=\left(T_{2}^{(0)}, \ldots, T_{2}^{(r-1)}\right)$ in $S T(\Lambda)$, we write $\mathbf{T}_{1}<\mathbf{T}_{2}$ if and only if there exists $m(0 \leq m \leq n-1)$ such that if $m<p$, p is written in the same box and m is written either in
(1) $T_{1}^{(i)}$ and $T_{2}^{(j)}$ with $i<j$, or
(2) k-th row of $T_{1}^{(i)}$ and l-th row of $T_{2}^{(i)}$ with $k>l$.

Remark. This definition of the last letter order is different from that in [2].
A sequence of non-negative integers $w=\left(w_{0}, \ldots, w_{n-1}\right)$ is called a word. Set $|w|=\sum_{k=0}^{n-1} w_{k}$. For a word w, we associate a new word $\hat{w}=\left(\hat{w}_{0}, \ldots, \hat{w}_{n-1}\right)$ arranging w into the non-decreasing order. A word is called a permutation if $\left\{w_{0}, \ldots, w_{n-1}\right\}=\{0, \ldots, n-1\}$. Let δ denote the permutation $(0, \ldots, n-1)$. We define the index $i(w)$ of a permutation w as follows.
(1) If $w_{k}=0$, then $i_{k}=0$.
(2) If $w_{k}=i$ and $w_{l}=i+1$, then (a) $i_{l}=i_{k}$ if $k<l$, (b) $i_{l}=i_{k}+1$ if $k>l$. We put $w^{\prime}=\left(w_{n-1}, \ldots, w_{0}\right)$ if $w=\left(w_{0}, \ldots, w_{n-1}\right)$. The coindex $j(w)$ of w is defined by $i\left(w^{\prime}\right)^{\prime}$. For a standard r-tableau \mathbf{T}, we associate a word $w(\mathbf{T})$ in the following way. First we read each column of the tableau $T^{(0)}$ from the bottom to the top starting from the left. We continue this procedure for the tableau $T^{(1)}$ and so on. Assigning the index $i(w)$ and the coindex $j(w)$ of $w(\mathbf{T})$ to the corresponding box, we get new r-tableaux $i(\mathbf{T})$ and $j(\mathbf{T})$ which are called the index r-tableau and the coindex r-tableau of \mathbf{T}, respectively.

Figure 2

The following lemma is fundamental for the index and the coindex r-tableaux.
Lemma 1. Let T be a standard r-tableau of shape Λ.
(1) The index r-tableau $i(\mathbf{T})$ (resp. coindex r-tableau $j(\mathbf{T})$) is column strict (resp. row strict), i.e., if $\left(p_{1}, \ldots, p_{l}\right)\left(r e s p .\left(q_{1}, \ldots, q_{m}\right)\right)$ is a row (resp. column), then $p_{1} \leq \cdots \leq p_{l}$ (resp. $\left.q_{1} \leq \cdots \leq q_{m}\right)$ and if $\left(q_{1}, \ldots, q_{m}\right)$ is (resp. $\left(p_{1}, \ldots, p_{l}\right)$) a column (resp. row), then $q_{1}<\cdots<q_{m}$ (resp. $\left.p_{1}<\cdots<p_{l}\right)$.
(2) $j(\mathbf{T})=i\left(\mathbf{T}^{\prime}\right)^{\prime}$.
(3) $i(\mathbf{T})+j(\mathbf{T})=\mathbf{T}$. Here ' + ' denotes the elementwise summation.

Proof. (1) is obvious.
(2) It is obvious if the numbers i and $i+1$ appear in different components in \mathbf{T}. If they appear in the same component $T^{(j)}$, then $i+1$ is written in the box either right or lower to that filled with i. In the first case, $i+1$ is written in the upper row or the same. Therefore $i+1$ is read after i in $w(\mathbf{T})$ and before i in $w\left(\mathbf{T}^{\prime}\right)$. The latter case is similar. (3) If $w_{k}=i$ and $w_{l}=i+1$, then $i_{l}=i_{k}+1$ and $j_{l}=j_{k}$ if $l<k$ and $j_{l}=j_{k}+1$ if $k<\ell$. In any case, we have $i_{l}+j_{l}=i_{k}+j_{k}+1$ and the statement.

2. Higher Specht polynomials and their independence

Let λ be a partition of n and T be a standard tableau of shape λ. We define the Young symmetrizer e_{T} of T by

$$
e_{T}=\frac{f^{\lambda}}{n!} \sum_{\sigma \in C(T), \tau \in R(T)} \operatorname{sgn}(\sigma) \sigma \tau \in \mathbf{C}\left[\varsigma_{n}\right],
$$

where f^{λ} is the number of standard tableaux of shape λ and $C(T)$ (resp. $R(T)$) is the column (resp. row) stabilizer of T. It is an idempotent in $\mathbf{C}\left[\varsigma_{n}\right]$ ([2], p. 106, Theorem 3.10). For a subset I of $\{0, \ldots, n-1\}$ of cardinality n_{0} and a tableau T_{0} of shape $\lambda_{0} \vdash n_{0}$ filled with the numbers in the set I, denote the Young symmetrizer by $e_{T_{0}} \in \mathbf{C}\left[\mathbb{S}_{(I)}\right]$, where $\mathbb{S}(I)$ is the symmetric group of the set I.

Let $S=\mathbf{C}\left[x_{0}, \ldots, x_{n-1}\right]$ be the polynomial ring in variables x_{0}, \ldots, x_{n-1} with complex coefficients, J_{+}be the ideal generated by elementary symmetric functions $e_{1}\left(x_{0}, \ldots, x_{n-1}\right), \ldots, e_{n}\left(x_{0}, \ldots, x_{n-1}\right)$ and $R=S / J_{+}$. For words u and v, we define $x_{v}^{u}=x_{v_{0}}^{u_{0}} \ldots x_{v_{n-1}}^{u_{n-1}}$. For standard r-tableaux \mathbf{S}, T, we define $x_{\mathbf{T}}^{i(\mathbf{S})}=$ $x_{w(\mathbf{T})}^{i(w(\mathbf{S})}$ and $x_{\mathbf{T}}^{j(\mathbf{S})}=x_{w(\mathbf{T})}^{j(\mathbf{S})}$.

Definition. For a standard r-tableau $\mathbf{T}=\left(T^{(0)}, \ldots, T^{(r-1)}\right)$ of shape Λ, $e_{T^{(i)}}$ is defined in the same way as above, though each $T^{(i)}$ is not necessarily standard. (Note that $e_{T^{(i)}}$ is an element in the group ring of permutations
of numbers which appear in $T^{(i)}$.) We set $e_{\mathbf{T}}=e_{T^{(0)}} \ldots e_{T^{(r-1)}}$. For $\mathbf{T}, \mathbf{S} \in$ $S T(\Lambda)$, we define the higher Specht polynomial for (\mathbf{T}, \mathbf{S}) by

$$
F_{\mathbf{T}}^{\mathbf{S}}=F_{\mathbf{T}}^{\mathbf{s}}\left(x_{0}, \ldots, x_{n-1}\right)=e_{\mathbf{T}}\left(x_{\mathbf{T}}^{i(\mathbf{S})}\right)
$$

It is easy to see that $x_{\mathbf{T}^{\prime}}^{i\left(\mathbf{S}^{\prime}\right)}=x_{\mathbf{T}}^{j(\mathbf{S})}$ by Lemma 1 (2). The first main result in this paper is as follows.

Theorem 1. Fix a sequence $\left(n_{0}, \ldots, n_{r-1}\right)$ such that $\sum_{i=0}^{r-1} n_{i}=n$.
(1) The collection

$$
\cup_{t y p e(\Lambda)=\left(n_{0}, \ldots, n_{r-1}\right)}\left\{F_{\mathbf{T}}^{\mathbf{S}} \mid \mathbf{T} \in \operatorname{NST}(\Lambda), \mathbf{S} \in S T(\Lambda)\right\}
$$

forms a C-basis of R.
(2) For an r-diagram Λ of type $\left(n_{0}, \ldots, n_{r-1}\right)$ and $\mathbf{S} \in S T(\Lambda)$, $\left\{F_{\mathbf{T}}^{S} \mid \mathbf{T} \in\right.$ NST(Λ) \} forms a \mathbf{C}-basis of $\Theta_{n_{0}} \times \cdots \times \Theta_{n_{r-1}}$-submodule of R which affords the irreducible representation corresponding to Λ.
(3) If $r=n, n_{j}=1(0 \leq j \leq n-1)$, then $\left\{x_{\delta}^{i(w)} \mid w\right.$ is a permutation $\}$ is a \mathbf{Z}-basis of $\mathbf{Z}\left[x_{0}, \ldots, x_{n-1}\right] /\left(e_{1}, \ldots, e_{n}\right)$.

Remark. Case $r=1$ is treated in [4]. The basis given in (3) is called the descent basis (see [3]).

To prove (1) and (3), we introduce a pairing \langle,$\rangle on R$ and show that the matrix $\left(\left\langle F_{\mathbf{T}_{1}}^{\mathbf{S}_{1}}, F_{\mathbf{T}_{2}^{2}}^{\mathbf{S}_{2}^{\prime}}\right\rangle\right)_{\left(\mathbf{S}_{1}, \mathbf{T}_{1}\right),\left(\mathbf{S}_{2}, \mathbf{T}_{2}\right)}$ is non-singular. Here $\mathbf{T}_{1}, \mathbf{T}_{2} \in N S T(\Lambda)$ and $\mathbf{S}_{1}, \mathbf{S}_{2} \in S T(\Lambda)$. For an element $f \in R$, we choose a lifting $\tilde{f} \in S$ of f. Define $\langle f, g\rangle$ by

$$
\langle f, g\rangle=\left.\left(\frac{1}{\Delta} \sum_{\sigma \in \mathbb{E}_{n}} \operatorname{sgn}(\sigma) \sigma(\tilde{\tilde{g}})\right)\right|_{x_{0}=\cdots=x_{n-1}=0} .
$$

Here Δ is the difference product $\prod_{j<i}\left(x_{i}-x_{j}\right)$. The right hand side is independent of the liftings \tilde{f}, \tilde{g} since

$$
\frac{1}{\Delta} \sum_{\sigma \in \mathbb{E}_{n}} \operatorname{sgn}(\sigma) \sigma\left(e_{i} \tilde{f}\right)=e_{i} \frac{1}{\Delta} \sum_{\sigma \in \mathbb{E}_{n}} \operatorname{sgn}(\sigma) \sigma(\tilde{f}),\left.\quad e_{i}\right|_{x_{0}=\cdots=x_{n-1}=0}=0 .
$$

The following lemma is easy to see.
Lemma 2.
(1) $\langle\sigma f, g\rangle=\operatorname{sgn}(\sigma)\left\langle f, \sigma^{-1} g\right\rangle$ for $\sigma \in \mathfrak{S}_{n}$.
(2) $\left\langle e_{\mathbf{T}} f, g\right\rangle=\left\langle f, e_{\mathbf{T}}, g\right\rangle$ for $\mathbf{T} \in S T(\Lambda)$.

For two words $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ and $\beta=\left(\beta_{0}, \ldots, \beta_{n-1}\right)$, we say that α is greater than β with respect to the lexicographic order, denoted by $\alpha>\beta$, if there exists an $m(0 \leq m \leq n-1)$ such that $\alpha_{j}=\beta_{j}$ for all $j=m+1, \ldots, n-1$ and $\alpha_{m}>\beta_{m}$.

Lemma 3. Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n-1}\right), \beta=\left(\beta_{0}, \ldots, \beta_{n-1}\right)$ be words and w be a permutation such that $\left\langle x_{w}^{\alpha}, x_{w}^{\beta}\right\rangle \neq 0$. Then the following statements holds.
(1) $|\alpha|+|\beta|=n(n-1) / 2$, and $\left\{\alpha_{0}+\beta_{0}, \ldots, \alpha_{n-1}+\beta_{n-1}\right\}=\{0, \ldots, n-1\}$.
(2) $\hat{\alpha}+\hat{\beta} \geq \delta$.
(3) If $\hat{\alpha}+\hat{\beta}=\delta$, then for any $k(0 \leq k \leq n-1)$, there exists a unique p such that $\alpha_{p}+\beta_{p}=k$ and $\alpha_{p}=\hat{\alpha}_{k}, \beta_{p}=\hat{\beta}_{k}$.
(4) For a word $w, \hat{i}(w)+\hat{j}(w)=\delta$.

Proof. (1) If $|\alpha|+|\beta|<n(n-1) / 2$, then $\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) x_{\sigma(w)}^{\alpha+\beta}$ is an alternating polynomial of degree less than $n(n-1) / 2$. It should be zero. If $|\alpha|+$ $|\beta|>n(n-1) / 2$, then $\frac{1}{\Delta} \sum_{\sigma \in \mathbb{E}_{n}} \operatorname{sgn}(\sigma) x_{\sigma(w)}^{\alpha+\beta}$ is a homogeneous polynomial of positive degree. Therefore it is zero if we put $x_{0}=\cdots=x_{n-1}=0$. Since $\alpha_{i}+\beta_{i}$ are distinct, we get the statement.
(2) Assume that there exists an $m(0 \leq m \leq n-1)$ such that $\hat{\alpha}_{j}+\hat{\beta}_{j}=j$ $(m+1 \leq j)$ and $\hat{\alpha}_{m}+\hat{\beta}_{m}<m$. If $\hat{\alpha}_{\sigma(j)}+\hat{\beta}_{\tau(j)}=j$ for $j=m+1, \ldots, n-1$, then $\hat{\alpha}_{\sigma(j)}=\hat{\alpha}_{j}$ and $\hat{\beta}_{\tau(j)}=\hat{\beta}_{j}$. Therefore there exist no $k, l=0, \ldots, m$ such that $\hat{\alpha}_{\sigma(k)}+\hat{\beta}_{\tau(l)}=m$, which contradicts (1).
(3) Since $\left\{\alpha_{0}+\beta_{0}, \ldots, \alpha_{n-1}+\beta_{n-1}\right\}=\{0, \ldots, n-1\}$, we find a unique $\sigma \in$ \Im_{n} such that $\alpha_{\sigma(i)}+\beta_{\sigma(i)}=i \quad(i=0, \ldots, n-1)$. The inequality $\sigma \alpha \leq \hat{\alpha}=\delta-$ $\hat{\beta} \leq \delta-\sigma \beta=\sigma \alpha$ implies $\sigma \alpha=\hat{\alpha}, \sigma \beta=\hat{\beta}$.
(4) If $w, i(w)$ and $j(w)$ are written as $w=\left(w_{0}, \ldots, w_{n-1}\right), i(w)=\left(i_{0}, \ldots, i_{n-1}\right)$ and $j(w)=\left(j_{0}, \ldots, j_{n-1}\right)$ respectively, then $w_{k}<w_{l}$ implies $i_{k} \leq i_{l}$ and $j_{k} \leq j_{l}$. This implies $\hat{i}(w)+\hat{j}(w)=\delta$.

Since the boxes in Λ are numbered by $\mathbf{T} \in \operatorname{NST}(\Lambda)$, the symmetric group \mathfrak{S}_{n} can be identified with the permutation group of boxes in diagram in Λ. For $\mathbf{S} \in S T(\Lambda)$, the group of permutations which stabilize $i(\mathbf{S})$ (resp. $j(\mathbf{S})$) can be identified with a subgroup $\operatorname{Stab}_{\mathbf{T}}(i(\mathbf{S}))$ (resp. $\operatorname{Stab}_{\mathbf{T}}(j(\mathbf{S}))$) of \mathbb{G}_{n} via the identification given above. Now we are ready to state the following properties for the pairing of higher Specht polynomials.

Proposition 1.
(1) Let $\mathbf{S}_{1}, \mathbf{S}_{2}$ be elements of $S T(\Lambda)$ such that $\hat{i}\left(w\left(\mathbf{S}_{1}\right)\right)=\hat{i}\left(w\left(\mathbf{S}_{2}\right)\right)$ and $\mathbf{S}_{1}<\mathbf{S}_{2}$ with respect to the last letter order. Then $\left\langle F_{\mathbf{T}^{\mathbf{S}}}, F_{\mathbf{T}^{\prime}}^{\mathbf{S}^{\prime}}\right\rangle=0$ for $\mathbf{T} \in \operatorname{NST}(\Lambda)$.
(2) Let $h_{c}=\#\left(C(\mathbf{T}) \cap \operatorname{Stab}_{\mathbf{T}}(j(\mathbf{S}))\right)$ and $h_{r}=\#\left(R(\mathbf{T}) \cap \operatorname{Stab}_{T}(i(\mathbf{S}))\right)$, where $C(\mathbf{T})=C\left(T^{(0)}\right) \times \cdots \times C\left(T^{(r-1)}\right), R(\mathbf{T})=R\left(T^{(0)}\right) \times \cdots \times R\left(T^{(r-1)}\right)$. Then we have

$$
\left\langle F_{\mathbf{T}}^{\mathbf{S}}, F_{\mathbf{T}^{\prime}}^{\mathbf{S}^{\prime}}\right\rangle=\operatorname{sgn}(\mathbf{T}, \mathbf{S}) \frac{f^{\lambda(0)} \ldots f^{\lambda(r-1)}}{n_{0}!\ldots n_{r-1}!} h_{r} h_{c}
$$

Proof. For simplicity, $\hat{i}(w(\mathbf{S}))$ and $\hat{j}(w(\mathbf{S}))$ are denoted by $\hat{i}(\mathbf{S})$ and $\hat{j}(\mathbf{S})$ respectively. Since $x_{\mathbf{T}^{\prime}}^{i\left(\mathbf{S}^{\prime}\right)}=x_{\mathbf{T}}^{j(\mathbf{S})}$, by the definition of higher Specht polynomials, we have

$$
\begin{equation*}
\left\langle F_{\mathbf{T}}^{\mathbf{S}_{1}}, F_{\mathbf{T}^{\mathbf{S}}}^{\mathbf{S}_{2}^{\prime}}\right\rangle=\frac{f^{\lambda(0)} \ldots f^{\lambda(r-1)}}{n_{0}!\ldots n_{r-1}!} \sum_{\sigma \in C(\mathbf{T}), \tau \in R(\mathbf{T})}\left\langle x_{\mathbf{T}}^{\tau^{-1} i\left(\mathbf{S}_{1}\right)}, x_{\mathbf{T}}^{\sigma^{-1} j\left(\mathbf{S}_{2}\right)}\right\rangle . \tag{2.2}
\end{equation*}
$$

Suppose that $\mathbf{S}_{1}\left\langle\mathbf{S}_{2}\right.$ and $\left\langle x_{\mathbf{T}}^{\tau^{-1} i\left(\mathbf{S}_{1}\right)}, x_{\mathbf{T}}^{\sigma^{-1} j\left(\mathbf{S}_{2}\right)}\right\rangle \neq 0$ for $\sigma \in C(\mathbf{T}), \tau \in R(\mathbf{T})$. Assume that all the numbers from $m+1$ to $n-1$ are written in the same boxes of \mathbf{S}_{1} and \mathbf{S}_{2}, respectively, and the number m is written in the different places in \mathbf{S}_{1} and \mathbf{S}_{2}. Let b_{m+1}, \ldots, b_{n-1} be the places where the numbers $m+1$, $\ldots, n-1$ are written on \mathbf{S}_{1} and \mathbf{S}_{2}. For $k \geq m$, let $i\left(\mathbf{S}_{1}^{(k)}\right), j\left(\mathbf{S}_{2}^{(k)}\right)$ and $\mathbf{T}^{(k)}$ be the r-tableaux obtained by removing boxes b_{k+1}, \ldots, b_{n-1} from $i\left(\mathbf{S}_{1}\right), j\left(\mathbf{S}_{2}\right)$ and T, respectively. First we prove the following $\left(A_{k}\right)$ for $m+1 \leq k \leq n-1$ by descending induction on k.
$\left(A_{k}\right) \quad$ the numbers written on b_{k} in r-tableaux $\tau^{-1}\left(i\left(\mathbf{S}_{1}\right)\right)$ and $\sigma^{-1}\left(j\left(\mathbf{S}_{2}\right)\right)$ equal the numbers $\hat{i}\left(\mathbf{S}_{1}\right)_{k}$ and $\hat{j}\left(\mathbf{S}_{2}\right)_{k}$, respectively. (Here $\sigma \in C(\mathbf{T})$ and $\tau \in R(\mathbf{T})$ act as permutations of boxes.)

For an r-tableau $\mathbf{S}, l \geq 0$, let $\operatorname{Supp}(\mathbf{S}, l)$ be the boxes where l is written. Since

$$
R(\mathbf{T})\left(\operatorname{Supp}\left(i\left(\mathbf{S}_{1}\right), \hat{i}\left(\mathbf{S}_{1}\right)_{n-1}\right)\right) \cap C(\mathbf{T})\left(\operatorname{Supp}\left(j\left(\mathbf{S}_{2}\right), \hat{j}\left(\mathbf{S}_{2}\right)_{n-1}\right)\right)=\left\{b_{n-1}\right\}
$$

$\left(A_{n-1}\right)$ holds by Lemma 3 (3). $\quad\left(\hat{i}\left(\mathbf{S}_{1}\right)=\hat{i}\left(\mathbf{S}_{2}\right)\right.$ implies $\hat{i}\left(\mathbf{S}_{1}\right)+\hat{j}\left(\mathbf{S}_{2}\right)=\delta$ by Lemma 1 (3) and Lemma 3 (4).) By the induction hypothesis, the numbers $\hat{i}\left(\mathbf{S}_{1}\right)_{k+1}, \ldots, \hat{i}\left(\mathbf{S}_{1}\right)_{n-1}$ (resp. $\left.\hat{j}\left(\mathbf{S}_{\mathbf{2}}\right)_{k+1}, \ldots, \hat{j}\left(\mathbf{S}_{2}\right)_{n-1}\right)$ are already used to fill the places b_{k+1}, \ldots, b_{n-1} of $\tau^{-1}\left(i\left(\mathbf{S}_{1}\right)\right)$ (resp. $\sigma^{-1}\left(j\left(\mathbf{S}_{2}\right)\right)$). Therefore the r-tableaux $i\left(\mathbf{S}_{1}^{(k)}\right)$ and $j\left(\mathbf{S}_{2}^{(k)}\right)$ should be filled with the numbers $\hat{i}\left(\mathbf{S}_{1}\right)_{1}, \ldots, \hat{i}\left(\mathbf{S}_{1}\right)_{k}$ and $\hat{j}\left(\mathbf{S}_{2}\right)_{1}, \ldots, \hat{j}\left(\mathbf{S}_{2}\right)_{k}$, respectively. Since

$$
R\left(\mathbf{T}^{(k)}\right)\left(\operatorname{Supp}\left(i\left(\mathbf{S}_{1}^{(k)}\right), \hat{i}\left(\mathbf{S}_{1}\right)_{k}\right)\right) \cap C\left(\mathbf{T}^{(k)}\right)\left(\operatorname{Supp}\left(j\left(\mathbf{S}_{2}^{(k)}\right), \hat{j}\left(\mathbf{S}_{2}\right)_{k}\right)\right)=\left\{b_{k}\right\}
$$

$\left(A_{k}\right)$ holds by Lemma 3 (3). This completes the proof of $\left(A_{k}\right)$ for $m+1 \leq$ $k \leq n-1$. By the inequality with respect to the last letter order, we have

$$
R\left(\mathbf{T}^{(m)}\right)\left(\operatorname{Supp}\left(i\left(\mathbf{S}_{1}^{(m)}\right), \hat{i}\left(\mathbf{S}_{1}\right)_{m}\right)\right) \cap C\left(\mathbf{T}^{(m)}\right)\left(\operatorname{Supp}\left(j\left(\mathbf{S}_{2}^{(m)}\right), \hat{j}\left(\mathbf{S}_{2}\right)_{m}\right)\right)=\varnothing .
$$

This contradicts the assumption $\left\langle x_{T}^{\tau^{-1} i\left(\mathbf{S}_{1}\right)}, x_{T T}^{\sigma_{T}^{-1} j\left(\mathbf{S}_{2}\right)}\right\rangle \neq 0$ and completes the statement (1).

In the case $\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}=\mathbf{S}$, the summation (2.2) vanishes unless $\sigma \in C(\mathbf{T}) \cap$ $\operatorname{Stab}_{\mathbf{T}}\left(j\left(\mathbf{S}_{1}\right)\right)$ and $\tau \in R(\mathbf{T}) \cap \operatorname{Stab}_{\mathbf{T}}\left(i\left(\mathbf{S}_{\mathbf{2}}\right)\right)$. In this case, $\left\langle x_{\mathbf{T}}^{\tau^{-1} i(\mathbf{S})}, x_{\mathbf{T}}^{\sigma^{-1} j(\mathbf{S})}\right\rangle=$ $\operatorname{sgn}(\mathbf{S}, \mathbf{T})$. Thus we complete the proof the proposition.

The following two lemmas can be found in literature (e.g. [2]).

Lemma 4. For tableaux T_{1}, T_{2}, we define the last letter order in the same way. Let T_{1}, T_{2} be standard tableaux of the same shape λ of size n. If $T_{1}<T_{2}$ with respect to the last letter order, then $e_{T_{1}} e_{T_{2}}=0$.

Proof. For a standard tableau T, set $H_{T}=\sum_{\sigma \in R(T)} \sigma$ and $V_{T}=$ $\sum_{\sigma \in C(T)} \operatorname{sgn}(\sigma) \sigma$. We prove $H_{T_{1}} V_{T_{2}}=0$ by induction on the size n. For $n=1$, it is obvious since there is only one tableau. We assume the case where the size is $n-1$. By taking off the box filled with the number n from T_{1} and T_{2}, we get tableaux T_{1}^{*} and T_{2}^{*}. If the shape of T_{1}^{*} and T_{2}^{*} are the same, then, by the induction hypothesis, we have $H_{T_{1}^{*}} V_{T_{2}^{*}}=0$. Note that

$$
\begin{aligned}
H_{T_{1}} & =\left(1+\left(p_{1}, n\right)+\cdots+\left(p_{t}, n\right)\right) H_{T_{1}^{*}}, \\
V_{T_{2}} & =V_{T_{2}^{*}}\left(1-\left(q_{1}, n\right)-\cdots-\left(q_{s}, n\right)\right),
\end{aligned}
$$

where p_{1}, \ldots, p_{t} (resp. q_{1}, \ldots, q_{s}) are all the numbers which appear in the same row (resp. column) as n in T_{1} (resp. T_{2}). If the shapes of T_{1}^{*} and T_{2}^{*} are different, by the definition of the last letter order, $T_{1}^{*}>T_{2}^{*}$ with respect to the lexicographic order. Therefore there exists (p, q) which belongs to the same row in T_{1}^{*} and the same column in T_{2}^{*} ([5] p. 94, combinatorial lemma). Hence, we have

$$
H_{T_{1}^{*}} V_{T_{2}^{*}}=H_{T_{1}^{*}}(p, q) V_{T_{2}^{*}}=-H_{T_{1}^{*}} V_{T_{2}^{*}}
$$

As a consequence, we have

$$
H_{T_{1}^{*}} V_{T_{2}^{*}}=0
$$

Lemma 5. Let $\left\{T_{i}\right\}_{1 \leq i \leq f^{\lambda}}$ be the set of standard tableaux such that $e_{T_{i}} e_{T_{j}}=0$ if $i<j$. We write $T_{i}=\sigma_{i} T_{1}\left(\sigma_{i} \in \mathfrak{S}_{n}\right)$. Then $\left\{\sigma_{i} e_{T_{1}}\right\}$ is a basis of $\mathbf{C}\left[\mathbb{S}_{n}\right] e_{T_{1}}$.

Proof. Since the dimension of $\mathbf{C}\left[\varsigma_{n}\right] e_{T_{1}}$ and the number of standard tableaux of shape λ are both f^{λ} ([2]), it is sufficient to prove the independence. Suppose $\sum_{i=1}^{f_{i}^{2}} c_{i} \sigma_{i} e_{T_{1}}=0$. We prove that $c_{1}=\cdots=c_{k}=0$ by induction on k. Under the induction hypothesis, we have the equation $0=e_{T_{k+1}}\left(\sum c_{i} \sigma_{i} e_{T_{1}}\right)=$ $\sum c_{i} e_{T_{k+1}} e_{T_{i}} \sigma_{i}=c_{k+1} e_{T_{k+1}} \sigma_{k+1}$.

Now we return to the properties of higher Specht polynomials.
Proposition 2. Let $\mathbf{T}_{1}, \mathbf{T}_{2}$ be elements in NST(4). If $\mathbf{T}_{1}>\mathbf{T}_{2}$ with respect to the last letter order, then

$$
\left\langle F_{\mathbf{T}_{1}}^{\mathbf{S}_{1}}, F_{\mathbf{T}_{2}^{\prime}}^{\mathbf{S}_{2}}\right\rangle=0
$$

Proof. By the definition of natural standard tableaux and the last letter order, there exists a number m such that $T_{1}^{(m)}>T_{2}^{(m)}$ with respect to the last letter order. Note that $e_{\mathbf{T}_{2}} e_{\mathbf{T}_{1}}=e_{T_{2}^{(m)}} \boldsymbol{T}_{T_{1}^{(m)}} \prod_{j \neq m} e_{T_{2}^{(j)}} \boldsymbol{T}_{T_{1}^{(j)}}=0$.

Proof of Theorem 1. (1) To compute the "Gramian" of the pairing \langle,$\rangle with respect to \left\{F_{\mathbf{T}}^{\mathbf{S}}\right\}$ and $\left\{F_{\mathbf{T}^{\prime}}^{\mathbf{S}^{\prime}}\right\}$, we introduce a total order " $<$ " on the set $\operatorname{NST}(\Lambda) \times S T(\Lambda)$. For two elements $\left(\mathrm{T}_{1}, \mathbf{S}_{1}\right)$ and $\left(\mathrm{T}_{2}, \mathbf{S}_{2}\right)$ of $\operatorname{NST}(\Lambda) \times$ $S T(\Lambda),\left(\mathrm{T}_{1}, \mathrm{~S}_{1}\right)<\left(\mathrm{T}_{2}, \mathrm{~S}_{2}\right)$ if and only if
(1) $T_{1}>T_{2}$ with respect to the last letter order, or
(2) $\mathbf{T}_{2}=\mathbf{T}_{2}$ and $\hat{i}\left(\mathbf{S}_{1}\right)<\hat{i}\left(\mathbf{S}_{2}\right)$ with respect to the lexicographic order, or
(3) $\mathbf{T}_{1}=\mathbf{T}_{2}, \hat{i}\left(\mathbf{S}_{1}\right)=\hat{i}\left(\mathbf{S}_{2}\right)$ and $\mathbf{S}_{1}<\mathbf{S}_{2}$ with respect to the last letter order. Then by Proposition 1 and 2, we have $\left\langle F_{\mathbf{T}_{1}}^{\mathbf{S}_{1},}, F_{\mathbf{T}_{2}^{\prime}}^{\mathbf{S}_{2}^{\prime}}\right\rangle=0$ if $\left(\mathbf{T}_{1}, \mathbf{S}_{1}\right)<\left(\mathbf{T}_{2}, \mathbf{S}_{2}\right)$ and $\left\langle F_{\mathbf{T}}^{\mathbf{S}}, F_{\mathbf{T}^{\prime}}^{\mathbf{S}^{\prime}}\right\rangle$ is a non-zero rational number. Thus the Gramian with respect to $\left\{F_{\mathbb{T}}^{\mathbf{S}}\right\}$ and $\left\{F_{\mathbb{T}^{\prime}}^{\mathbf{S}^{\prime}}\right\}$ is a non-zero rational number.

Since if the shapes of \mathbf{T}_{1} and \mathbf{T}_{2} are different, $\left\langle F_{\mathbf{T}_{1}}^{\mathbf{S}_{1}}, F_{\mathbf{T}_{2}^{\prime}}^{\mathbf{S}_{2}}\right\rangle=0$ and the cardinality of $\coprod_{\Lambda} N S T(\Lambda) \times S T(\Lambda)$ equals $n!$, the collection

$$
U_{t y p e(\Lambda)=\left(n_{0}, \ldots, n_{r-1}\right)}\left\{F_{\mathbf{T}}^{\mathbf{S}} \mid \mathbf{T} \in \operatorname{NST}(\Lambda), \mathbf{S} \in S T(\Lambda)\right\}
$$

forms a basis for R.
(2) We use Lemma 5 and

$$
\begin{aligned}
\sigma F_{\mathbf{T}}^{\mathbf{S}} & =\sigma e_{\mathbf{T}} x_{\mathbf{T}}^{i(\mathbf{S})} \\
& =\sigma e_{\mathbf{T}} \sigma^{-1} x_{\sigma \mathbf{T}}^{i(\mathbf{S})} \\
& =e_{\sigma \mathbf{T}} x_{\sigma \mathbf{T}}^{i(\mathbf{S})} \\
& =F_{\sigma \mathbf{T}}^{\mathbf{S}}
\end{aligned}
$$

to conclude that $\sum_{\mathbf{T} \in N S T(1)} \mathbf{C} F_{\mathbf{T}}^{\mathbf{S}}=\mathbf{C}\left[\Xi_{n_{0}} \times \cdots \times \Xi_{n_{r-1}}\right] F_{\mathbf{T}_{1}}^{\mathbf{S}}$, where \mathbf{T}_{1} is the minimum element in $\operatorname{NST}(1)$ with respect to the last letter order.
(3) In this case, the values $\left\langle F_{\mathrm{T}}^{\mathbf{S}}, F_{\mathrm{T}^{\prime}}^{\mathbf{S}^{\prime}}\right\rangle$ are ± 1 by Proposition 1 (2). Hence we can see that $\left\{F_{\mathrm{T}_{1}}^{\mathrm{S}}\right\}$ forms a \mathbf{Z}-basis of $\mathbf{Z}\left[x_{0}, \ldots, x_{n-1}\right] /\left(e_{1}, \ldots, e_{n}\right)$.

3. An application to wreath products

Let $T=(\mathbf{Z} / r \mathbf{Z})^{n}$ and $\varphi_{a} \in \operatorname{Hom}\left(\mathbf{Z} / r \mathbf{Z}, \mathbf{C}^{\times}\right)$be a character defined by $\varphi_{a}(x(\bmod r))=\exp (2 \pi i x a / r)$. Then an element $\varphi \in \hat{T}=\operatorname{Hom}\left(T, \mathbf{C}^{\times}\right)$can be written as

$$
\varphi=\varphi_{a_{0} \ldots a_{n-1}}=\varphi_{a_{0}} \boxtimes \cdots \boxtimes \varphi_{a_{n-1}} .
$$

Let n_{j} be the cardinality of $\left\{p \mid a_{p}=j\right\}$. We call the sequence $\left(n_{0}, \ldots, n_{r-1}\right)$ the type of the character $\varphi_{a_{0} \ldots a_{n-1}} \in \hat{T}$. Conversely, for a given sequence $\left(n_{0}, \ldots, n_{r-1}\right)$ such that $\sum_{i=0}^{r-1} n_{i}=n$, the character $\varphi^{\left(n_{0}, \ldots, n_{r-1}\right)}$ is defined as $\varphi_{a_{0} \ldots a_{n-1}}$, where $a_{i}=j$ if $\sum_{p=0}^{j-1} n_{p} \leq i \leq \sum_{p=0}^{j} n_{p}-1$. The wreath product $G_{r, n}=(\mathbf{Z} / r \mathbf{Z}) \prec \mathfrak{S}_{n}$ is defined as the semi-direct product $\mathfrak{S}_{n} \ltimes T$. The group $\left(\mathfrak{S}_{n_{0}} \times \cdots \times \mathfrak{G}_{n_{r-1}}\right) \ltimes T$ is regarded as a subgroup of $G_{r, n}$ by identifying the
group $\mathfrak{S}_{n_{j}}$ with the permutation group for the set of numbers $\left\{i \mid \sum_{p=0}^{j-1} n_{p} \leq\right.$ $\left.i \leq \sum_{p=0}^{j} n_{p}-1\right\}$. Let $\lambda^{(0)}, \ldots, \lambda^{(r-1)}$ be Young diagrams of size n_{0}, \ldots, n_{r-1}, respectively. For representations $V^{\lambda(0)}, \ldots, V^{\lambda(r-1)}$ of $\Xi_{n_{0}}, \ldots, \mathfrak{S}_{n_{r-1}}$, respectively and a character $\varphi^{\left(n_{0}, \ldots, n_{r-1}\right)}$, set

$$
V_{A}=\operatorname{In} d_{\tilde{G}_{n_{0}} \times \cdots \times \mathcal{G}_{n_{r-1}} \times T}\left(V^{\lambda(0)} \boxtimes \cdots \boxtimes V^{\lambda(r-1)} \boxtimes \varphi^{\left(n_{0}, \cdots, n_{r-1}\right)}\right),
$$

where $\Lambda=\left(\lambda^{(0)}, \ldots, \lambda^{(r-1)}\right)$. It is known that all the irreducible representations of $G_{r, n}$ are obtained in this way, and that two representations $V_{\Lambda_{1}}$ and $V_{\Lambda_{2}}$ are isomorphic if and only if $\Lambda_{1}=\Lambda_{2}$. A representation space W of $G_{r, n}$ is decomposed as $W=\oplus_{\varphi \in \hat{T}} W_{\varphi}$, where $W_{\varphi}=\{v \in W \mid t v=\varphi(t) v$ for all $t \in T\}$. The symmetric group \mathfrak{S}_{n} acts on the character group \hat{T}. It is easy to see that V_{A} is decomposed into
with $g\left(V_{\Lambda, \varphi}\right)=V_{\Lambda, g \varphi}$. By the definition of the induced module, for an element $g \in \mathfrak{S}_{n}, V_{\Lambda, g \varphi}$ becomes a $g\left(\Im_{n_{0}} \times \cdots \times \mathfrak{S}_{n_{r-1}}\right) g^{-1}$-module and the following diagram commutes:

Definition. Let T, \mathbf{S} be elements in $S T(\Lambda)$. We define the higher Sprecht polynomial $\hat{F}_{\mathrm{T}}^{\mathbf{S}}$ for $G_{r, n}$ by

$$
\hat{F}_{\mathbf{T}}^{\mathbf{S}}\left(x_{0}, \ldots, x_{n-1}\right)=F_{\mathbf{T}}^{\mathbf{S}}\left(x_{0}^{r}, \ldots, x_{n-1}^{r}\right) \cdot \prod_{j=0}^{r-1}\left(\prod_{m \in T^{(j)}} x_{m}\right)^{j}
$$

Here $F_{\mathrm{T}}^{\mathrm{S}}$ is the higher Specht polynomial defined in $\S 2$.
Let $S T P$ be the union $U_{\Lambda} S T(\Lambda) \times S T(\Lambda)$.

Theorem 2.

(1) The ring of invariants $\mathbf{C}\left[x_{0}, \ldots, x_{n-1}\right]^{G_{r, n}}$ of $S=\mathbf{C}\left[x_{0}, \ldots, x_{n-1}\right]$ under the natural action of $G_{r, n}$ is the polynomial ring of $e_{1}^{(r)}, \ldots, e_{n}^{(r)}$, where $e_{j}^{(r)}$ is the j-th elementary symmetric function of $x_{0}^{r}, \ldots, x_{n-1}^{r}$.
(2) The set $\left\{\hat{F}_{\mathbf{T}}^{\mathbf{S}} \mid(\mathbf{T}, \mathbf{S}) \in S T P\right\}$ is a basis for $R^{(r)}=S /\left(e_{1}^{(r)}, \ldots, e_{n}^{(r)}\right)$, and for a fixed $\mathbf{S} \in S T(\Lambda)$, the set $\left\{\hat{F}_{\mathbf{T}}^{\mathbf{S}} \mid \mathbf{S} \in S T(\Lambda)\right\}$ spans an irreducible representation of $G_{r, n}$ over \mathbf{C}.
(3) The set $\left\{\hat{F}_{\mathbf{T}}^{\mathbf{S}} \mid(\mathbf{T}, \mathbf{S}) \in S T P\right\}$ forms a free basis of S over $S^{G_{r, n}}$, and for a fixed $\mathbf{S} \in S T(\Lambda)$, the set $\left\{\hat{F}_{\mathbf{T}}^{\mathbf{S}} \mid \mathbf{S} \in \boldsymbol{S T}(\Lambda)\right\}$ spans an irreducible representation of $G_{r, n}$ over $S^{G_{r, n}}$.

Proof. (1) Since $\mathbf{C}\left[x_{0}, \ldots, x_{n-1}\right]^{T}=\mathbf{C}\left[x_{0}^{r}, \ldots, x_{n-1}^{r}\right]$, it reduces to the fundamental theorem of symmetric functions. The statement (3) is a direct consequence of (2). Therefore we prove (2).

The space $R^{(r)}=S /\left(e_{1}^{(r)}, \ldots, e_{n}^{(r)}\right)$ is known to be isomorphic to the regular representation, and for a character $\varphi_{a_{0} \ldots a_{n-1}}$ of T of type $\left(n_{0}, \ldots, n_{r-1}\right), R_{\varphi_{a_{0}} \ldots a_{n-1}}^{(r)}$ is the subspace $\mathbf{C}\left[x_{0}^{r}, \ldots, x_{n-1}^{r}\right] /\left(e_{1}^{(r)}, \ldots, e_{n}^{(r)}\right) \cdot \prod_{i=0}^{n-1} x_{i}^{a_{i}}$ of $R^{(r)}$. Let $g \in \mathbb{S}_{n}$ be given by (a) $a_{g(i)}=j$ for $\sum_{p=0}^{j-1} n_{p} \leq i \leq \sum_{p=0}^{j} n_{p}-1$ and (b) $g(i)<g(k)$ if $\sum_{p=0}^{j-1} n_{p} \leq i<k \leq \sum_{p=0}^{j} n_{p}-1$. Since $g \varphi^{\left(n_{0}, \ldots, n_{r-1}\right)}=\varphi_{a_{0} \ldots a_{n-1}}, R_{\varphi_{a_{0}} \ldots a_{n-1}}^{(r)}$ becomes a $g\left(\mathfrak{S}_{n_{0}} \times \cdots \times \mathfrak{S}_{n_{r-1}}\right) g^{-1}$-module. In Theorem 1, we considered the action of $\Xi_{n_{0}} \times \cdots \times \Theta_{n_{r-1}}$ on $\mathbf{C}\left[x_{0}^{r}, \ldots, x_{n-1}^{r}\right] /\left(e_{1}^{(r)}, \ldots, e_{n}^{(r)}\right)$. To apply this theorem, we should consider the action of $g\left(\Im_{n_{0}} \times \cdots \times \Im_{n_{r-1}}\right) g^{-1}$. Let $\operatorname{NST}(g, \Lambda)$ be the set of r-tableaux $\mathbf{T}=\left(T^{(0)}, \ldots, T^{(r-1)}\right)$ such that the number j is filled in the tableau $T^{(i)}$ if $j=g(k)$ with $\sum_{p=0}^{i-1} n_{p} \leq k \leq \sum_{p=0}^{i} n_{p}-1$. Then by Theorem 1, we have the following.
(1) The collection

$$
\mathrm{U}_{\text {type }(\Lambda)=\left(n_{0}, \ldots, n_{r-1}\right)}\left\{\hat{F}_{\mathbf{T}}^{\mathbf{S}} \mid \mathbf{T} \in N S T(g, \Lambda), \mathbf{S} \in S T(\Lambda)\right\}
$$

forms a basis for $R_{\varphi_{a_{0}} \ldots a_{n-1}}^{(r)}$.
(2) For a fixed $\left.\mathbf{S} \in S T(\Lambda),{ }_{a_{0}} \cdots a_{n}-1 \hat{F}_{\mathbf{T}}^{\mathrm{S}} \mid \mathbf{T} \in \operatorname{NST}(g, \Lambda)\right\}$ spans the irreducible representation $V^{\lambda(0)} \boxtimes \cdots \boxtimes V^{\lambda(r-1)}$ of $g\left(\Im_{n_{0}} \times \cdots \times \Xi_{n_{r-1}}\right) g^{-1}$. Therefore the collection

$$
\cup_{t y p e(\Lambda)=\left(n_{0}, \ldots, n_{r-1}\right)}\left\{\hat{F}_{\mathbf{T}}^{\mathbf{S}} \mid \mathbf{T} \in S T(\Lambda), \mathbf{S} \in S T(\Lambda)\right\}
$$

spans the irreducible representation V_{A}.

References

[1] E. Allen, A conjecture of Procesi and a new basis for the decomposition of the graded left regular representation of S_{n}, Adv. Math. 100 (1993), 262-292.
[2] G. James-A. Kerber, The Representation Theory of the Symmetric Group, 1981, Addison-Wesley.
[3] A. M. Garsia-D. Stanton, Group actions on Stanley-Reisner rings and invariants of permutation groups, Adv. Math. 51 (1984), 107-201.
[4] T. Terasoma-H. Yamada, Higher Specht polynomials for the symmetric group, Proc. Jap. Acad. 69 (1993), 41-44.
[5] B. L. van der Waerden, Algebra, vol II, 5-th ed. 1991, Springer-Verlag.

> Susumu Ariki
> Division of Mathematics, Tokyo University of Mercantile Marine, 2-1-6, Etchujima, Koto-ku, Tokyo, 135, Japan.

Tomohide Terasoma
Department of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153, Japan.
Hiro-Fumi Yamada
Department of Mathematics, Faculty of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo, Hokkaido, 060, Japan.

[^0]: 1991 Mathematics Subject Classification. 05E10, 20C30.
 Key words and phrases. Reflection groups, Specht polynomials.

