Нікозніма Матн. J. 27 (1997), 177–188

Higher Specht polynomials

Susumu ARIKI, Tomohide TERASOMA AND Hiro-Fumi YAMADA (Received September 14, 1995)

(Revised February 23, 1996)

ABSTRACT. A basis of the quotient ring S/J_+ is given, where S is the ring of polynomials and J_+ is the ideal generated by symmetric polynomials of positive degree. They are called higher Specht polynomials.

0. Introduction

The purpose of this paper is to give a detailed proof of the result announced in [4], and to give its generalization.

Let $S = \mathbb{C}[x_0, ..., x_{n-1}]$ be the algebra of polynomials of *n* variables $x_0, ..., x_{n-1}$ with complex coefficients, on which the symmetric group \mathfrak{S}_n acts by the permutation of the variables:

$$(\sigma f)(x_0,\ldots,x_{n-1})=f(x_{\sigma(0)},\ldots,x_{\sigma(n-1)})(\sigma\in\mathfrak{S}_n)$$

Let $e_j(x_0, \ldots, x_{n-1}) = \sum_{0 \le i_1 < \cdots < i_j \le n-1} x_{i_1} \ldots x_{i_j}$ be the elementary symmetric polynomial of degree *j* and set $J_+ = (e_1, \ldots, e_n)$, the ideal generated by e_1, \ldots, e_n . The quotient ring $R = S/J_+$ has a structure of an \mathfrak{S}_n -module. Let n_0, \ldots, n_{r-1} be natural numbers such that $n = \sum_{i=0}^{r-1} n_i$. Then the product of symmetric groups $\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}}$ is naturally embedded in \mathfrak{S}_n . By restricting to this subgroup, *R* is an $\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}}$ -module. We give a combinatorial procedure to obtain a basis of each irreducible component of *R*. In view of this construction, these polynomials such obtained might be called higher Specht polynomials. The case $n_0 = n$ is treated in [4]. When $n_0 = \cdots = n_{n-1} = 1$, this basis becomes the descent basis for *R* (see [3]).

As an application, we also give a similar basis for a complex reflection group $G_{r,n} = (\mathbb{Z}/r\mathbb{Z}) \wr \mathfrak{S}_n$. Let S be the symmetric algebra of the natural $G_{r,n}$ representation over C. The ring of invariants $S^{G_{r,n}}$ is known to be isomorphic to a polynomial ring $\mathbb{C}[e_1^{(r)}, \ldots, e_n^{(r)}]$ generated by the elementary symmetric polynomials $e_1^{(r)}, \ldots, e_n^{(r)}$ in x_i^{r} 's. We put $\mathbb{R}^{(r)} = S/J_+$, where $J_+ = (e_1^{(r)}, \ldots, e_n^{(r)})$. As a $G_{r,n}$ -module, it is equivalent to the regular representation. It is also known that the irreducible representations of $G_{r,n}$ are indexed

¹⁹⁹¹ Mathematics Subject Classification. 05E10, 20C30.

Key words and phrases. Reflection groups, Specht polynomials.

by r-tuples of Young diagrams $\Lambda = (\lambda^{(0)}, \ldots, \lambda^{(r-1)})$ with $\sum_{i=0}^{r-1} |\lambda^{(i)}| = n$. We construct a basis for $R^{(r)}$ parametrized by the pairs of standard r-tuples of tableaux (S, T) of the same shape.

After completing this paper, we noticed that E. Allen published a similar construction of the basis for R ([1]). In the present paper, we give a different proof for the linear independence of the higher Specht polynomials.

The authors thank the referee for quite a few comments.

1. The index *r*-tableaux

A partition λ is a non-increasing finite sequence of positive integers $\lambda_1 \geq \cdots \geq \lambda_l$. We write $\lambda \vdash n$ when the sum $\sum_{i=1}^l \lambda_i$ equals *n*. Conversely, given a partition λ , $\sum_{i=1}^{l} \lambda_i$ is called the size of λ . As is usual, a partition is expressed by a Young diagram. Let r be a positive integer and $\Lambda =$ $(\lambda^{(0)}, \ldots, \lambda^{(r-1)})$ be an r-tuple of Young diagrams. We call such a Λ an rdiagram. The sequence of integers $(n_0, \ldots, n_{r-1}) = (|\lambda^{(0)}|, \ldots, |\lambda^{(r-1)}|)$ is called the type of Λ and denoted by $type(\Lambda)$. The sum $n = \sum_{i=0}^{r-1} n_i$ is called the size of Λ . The irreducible representations of $\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}}$ are indexed by the set of r-diagrams of type (n_0, \ldots, n_{r-1}) . By filling each "box" with a non-negative integer, we obtain a tableau (resp. an r-tableau) from a diagram (resp. an r-diagram). The original r-diagram is called the shape of the rtableau. An r-tableau $\mathbf{T} = (T^{(0)}, \dots, T^{(r-1)})$ is said to be standard if the written sequence on each column and each row of $T^{(i)}$ $(0 \le i \le r-1)$ is strictly increasing, and each number from 0 to n-1 appears exactly once. The set of all standard r-tableaux of shape Λ is denoted by $ST(\Lambda)$. The prime (') denotes the transposition of a diagram or a tableau. For an r-diagram $\Lambda = (\lambda^{(0)}, \dots, \lambda^{(r-1)})$ and an r-tableau $\mathbf{T} = (T^{(0)}, \dots, T^{(r-1)})$, we define $\Lambda' =$ $(\lambda^{(r-1)'}, ..., \lambda^{(0)'})$ and $\mathbf{T}' = (T^{(r-1)'}, ..., T^{(0)'})$, respectively.

Figure 1

178

DEFINITION. A standard *r*-tableau is said to be natural if and only if the set of numbers written in $T^{(i)}$ is $\{n_0 + \cdots + n_{i-1}, \ldots, n_0 + \cdots + n_i - 1\}$. The set of natural standard *r*-tableaux of shape Λ is denoted by $NST(\Lambda)$.

On the set $ST(\Lambda)$, we introduce the last letter order "<" as follows. For two r-tableaux $\mathbf{T}_1 = (T_1^{(0)}, \ldots, T_1^{(r-1)})$ and $\mathbf{T}_2 = (T_2^{(0)}, \ldots, T_2^{(r-1)})$ in $ST(\Lambda)$, we write $\mathbf{T}_1 < \mathbf{T}_2$ if and only if there exists $m \ (0 \le m \le n-1)$ such that if m < p, p is written in the same box and m is written either in

- (1) $T_1^{(i)}$ and $T_2^{(j)}$ with i < j, or
- (2) k-th row of $T_1^{(l)}$ and l-th row of $T_2^{(l)}$ with k > l.

REMARK. This definition of the last letter order is different from that in [2].

A sequence of non-negative integers $w = (w_0, ..., w_{n-1})$ is called a word. Set $|w| = \sum_{k=0}^{n-1} w_k$. For a word w, we associate a new word $\hat{w} = (\hat{w}_0, ..., \hat{w}_{n-1})$ arranging w into the non-decreasing order. A word is called a permutation if $\{w_0, ..., w_{n-1}\} = \{0, ..., n-1\}$. Let δ denote the permutation (0, ..., n-1). We define the index i(w) of a permutation w as follows.

(1) If $w_k = 0$, then $i_k = 0$.

(2) If $w_k = i$ and $w_l = i + 1$, then (a) $i_l = i_k$ if k < l, (b) $i_l = i_k + 1$ if k > l. We put $w' = (w_{n-1}, \ldots, w_0)$ if $w = (w_0, \ldots, w_{n-1})$. The coindex j(w) of w is defined by i(w')'. For a standard *r*-tableau **T**, we associate a word $w(\mathbf{T})$ in the following way. First we read each column of the tableau $T^{(0)}$ from the bottom to the top starting from the left. We continue this procedure for the tableau $T^{(1)}$ and so on. Assigning the index i(w) and the coindex j(w) of $w(\mathbf{T})$ to the corresponding box, we get new *r*-tableaux $i(\mathbf{T})$ and $j(\mathbf{T})$ which are called the index *r*-tableau and the coindex *r*-tableau of **T**, respectively.

Figure 2

The following lemma is fundamental for the index and the coindex r-tableaux.

LEMMA 1. Let **T** be a standard r-tableau of shape Λ .

- (1) The index r-tableau i(**T**) (resp. coindex r-tableau j(**T**)) is column strict (resp. row strict), i.e., if (p_1, \ldots, p_l) (resp. (q_1, \ldots, q_m)) is a row (resp. column), then $p_1 \leq \cdots \leq p_l$ (resp. $q_1 \leq \cdots \leq q_m$) and if (q_1, \ldots, q_m) is (resp. (p_1, \ldots, p_l)) a column (resp. row), then $q_1 < \cdots < q_m$ (resp. $p_1 < \cdots < p_l$).
- (2) $j(\mathbf{T}) = i(\mathbf{T}')'$.
- (3) $i(\mathbf{T}) + j(\mathbf{T}) = \mathbf{T}$. Here '+' denotes the elementwise summation.

PROOF. (1) is obvious.

(2) It is obvious if the numbers i and i + 1 appear in different components in **T**. If they appear in the same component $T^{(j)}$, then i + 1 is written in the box either right or lower to that filled with i. In the first case, i + 1 is written in the upper row or the same. Therefore i + 1 is read after i in $w(\mathbf{T})$ and before i in $w(\mathbf{T}')$. The latter case is similar. (3) If $w_k = i$ and $w_l = i + 1$, then $i_l = i_k + 1$ and $j_l = j_k$ if l < k and $j_l = j_k + 1$ if $k < \ell$. In any case, we have $i_l + j_l = i_k + j_k + 1$ and the statement.

2. Higher Specht polynomials and their independence

Let λ be a partition of *n* and *T* be a standard tableau of shape λ . We define the Young symmetrizer e_T of *T* by

$$e_T = \frac{f^{\lambda}}{n!} \sum_{\sigma \in C(T), \tau \in R(T)} sgn(\sigma) \sigma \tau \in \mathbb{C}[\mathfrak{S}_n],$$

where f^{λ} is the number of standard tableaux of shape λ and C(T) (resp. R(T)) is the column (resp. row) stabilizer of T. It is an idempotent in $\mathbb{C}[\mathfrak{S}_n]$ ([2], p. 106, Theorem 3.10). For a subset I of $\{0, \ldots, n-1\}$ of cardinality n_0 and a tableau T_0 of shape $\lambda_0 \vdash n_0$ filled with the numbers in the set I, denote the Young symmetrizer by $e_{T_0} \in \mathbb{C}[\mathfrak{S}(I)]$, where $\mathfrak{S}(I)$ is the symmetric group of the set I.

Let $S = \mathbb{C}[x_0, ..., x_{n-1}]$ be the polynomial ring in variables $x_0, ..., x_{n-1}$ with complex coefficients, J_+ be the ideal generated by elementary symmetric functions $e_1(x_0, ..., x_{n-1}), ..., e_n(x_0, ..., x_{n-1})$ and $R = S/J_+$. For words u and v, we define $x_v^u = x_{v_0}^{u_0} ... x_{v_{n-1}}^{u_{n-1}}$. For standard r-tableaux S, T, we define $x_T^{i(S)} = x_{w(T)}^{i(w(S))}$ and $x_T^{j(S)} = x_{w(T)}^{j(w(S))}$.

DEFINITION. For a standard *r*-tableau $\mathbf{T} = (T^{(0)}, \ldots, T^{(r-1)})$ of shape Λ , $e_{T^{(1)}}$ is defined in the same way as above, though each $T^{(i)}$ is not necessarily standard. (Note that $e_{T^{(1)}}$ is an element in the group ring of permutations

of numbers which appear in $T^{(i)}$.) We set $e_T = e_{T^{(0)}} \dots e_{T^{(r-1)}}$. For T, $S \in ST(A)$, we define the higher Specht polynomial for (T, S) by

$$F_{\mathbf{T}}^{\mathbf{S}} = F_{\mathbf{T}}^{\mathbf{S}}(x_0, \ldots, x_{n-1}) = e_{\mathbf{T}}(x_{\mathbf{T}}^{i(\mathbf{S})}).$$

It is easy to see that $x_{T'}^{i(S')} = x_{T}^{j(S)}$ by Lemma 1 (2). The first main result in this paper is as follows.

THEOREM 1. Fix a sequence $(n_0, ..., n_{r-1})$ such that $\sum_{i=0}^{r-1} n_i = n$. (1) The collection

$$\bigcup_{type(\Lambda)=(n_0,\ldots,n_{r-1})} \{ F_{\mathbf{T}}^{\mathbf{S}} | \mathbf{T} \in NST(\Lambda), \mathbf{S} \in ST(\Lambda) \}$$

forms a C-basis of R.

- (2) For an r-diagram Λ of type $(n_0, ..., n_{r-1})$ and $\mathbf{S} \in ST(\Lambda)$, $\{F_{\mathbf{T}}^{\mathbf{S}} | \mathbf{T} \in NST(\Lambda)\}$ forms a C-basis of $\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}}$ -submodule of R which affords the irreducible representation corresponding to Λ .
- (3) If r = n, $n_j = 1$ $(0 \le j \le n 1)$, then $\{x_{\delta}^{i(w)} | w \text{ is a permutation}\}$ is a **Z**-basis of $\mathbb{Z}[x_0, \ldots, x_{n-1}]/(e_1, \ldots, e_n)$.

REMARK. Case r = 1 is treated in [4]. The basis given in (3) is called the descent basis (see [3]).

To prove (1) and (3), we introduce a pairing \langle , \rangle on R and show that the matrix $(\langle F_{T_1}^{S_1}, F_{T_2}^{S_2'} \rangle)_{(S_1, T_1), (S_2, T_2)}$ is non-singular. Here $T_1, T_2 \in NST(\Lambda)$ and $S_1, S_2 \in ST(\Lambda)$. For an element $f \in R$, we choose a lifting $\tilde{f} \in S$ of f. Define $\langle f, g \rangle$ by

$$\langle f,g\rangle = \left(\frac{1}{\varDelta}\sum_{\sigma \in \mathfrak{S}_n} sgn(\sigma)\sigma(\tilde{f}\tilde{g})\right)|_{x_0 = \cdots = x_{n-1} = 0}.$$

Here Δ is the difference product $\prod_{j < i} (x_i - x_j)$. The right hand side is independent of the liftings \tilde{f} , \tilde{g} since

$$\frac{1}{\Delta}\sum_{\sigma\in\mathfrak{S}_n} sgn(\sigma)\sigma(e_i\tilde{f}) = e_i\frac{1}{\Delta}\sum_{\sigma\in\mathfrak{S}_n} sgn(\sigma)\sigma(\tilde{f}), \qquad e_i|_{x_0=\cdots=x_{n-1}=0} = 0.$$

The following lemma is easy to see.

Lemma 2.

- (1) $\langle \sigma f, g \rangle = sgn(\sigma) \langle f, \sigma^{-1}g \rangle$ for $\sigma \in \mathfrak{S}_n$.
- (2) $\langle e_{\mathbf{T}}f,g\rangle = \langle f,e_{\mathbf{T}'}g\rangle$ for $\mathbf{T} \in ST(\Lambda)$.

For two words $\alpha = (\alpha_0, ..., \alpha_{n-1})$ and $\beta = (\beta_0, ..., \beta_{n-1})$, we say that α is greater than β with respect to the lexicographic order, denoted by $\alpha > \beta$, if there exists an m ($0 \le m \le n-1$) such that $\alpha_j = \beta_j$ for all j = m + 1, ..., n - 1 and $\alpha_m > \beta_m$.

LEMMA 3. Let $\alpha = (\alpha_0, ..., \alpha_{n-1}), \beta = (\beta_0, ..., \beta_{n-1})$ be words and w be a permutation such that $\langle x_w^{\alpha}, x_w^{\beta} \rangle \neq 0$. Then the following statements holds.

- (1) $|\alpha| + |\beta| = n(n-1)/2$, and $\{\alpha_0 + \beta_0, \dots, \alpha_{n-1} + \beta_{n-1}\} = \{0, \dots, n-1\}.$
- (2) $\hat{\alpha} + \hat{\beta} \ge \delta$.
- (3) If $\hat{\alpha} + \hat{\beta} = \delta$, then for any k $(0 \le k \le n-1)$, there exists a unique p such that $\alpha_p + \beta_p = k$ and $\alpha_p = \hat{\alpha}_k$, $\beta_p = \hat{\beta}_k$.
- (4) For a word w, $\hat{i}(w) + \hat{j}(w) = \delta$.

PROOF. (1) If $|\alpha| + |\beta| < n(n-1)/2$, then $\sum_{\sigma \in \mathfrak{S}_n} sgn(\sigma) x_{\sigma(w)}^{\alpha+\beta}$ is an alternating polynomial of degree less than n(n-1)/2. It should be zero. If $|\alpha| + |\beta| > n(n-1)/2$, then $\frac{1}{\Delta} \sum_{\sigma \in \mathfrak{S}_n} sgn(\sigma) x_{\sigma(w)}^{\alpha+\beta}$ is a homogeneous polynomial of positive degree. Therefore it is zero if we put $x_0 = \cdots = x_{n-1} = 0$. Since $\alpha_i + \beta_i$ are distinct, we get the statement.

(2) Assume that there exists an m $(0 \le m \le n-1)$ such that $\hat{\alpha}_j + \hat{\beta}_j = j$ $(m+1 \le j)$ and $\hat{\alpha}_m + \hat{\beta}_m < m$. If $\hat{\alpha}_{\sigma(j)} + \hat{\beta}_{\tau(j)} = j$ for $j = m+1, \ldots, n-1$, then $\hat{\alpha}_{\sigma(j)} = \hat{\alpha}_j$ and $\hat{\beta}_{\tau(j)} = \hat{\beta}_j$. Therefore there exist no $k, l = 0, \ldots, m$ such that $\hat{\alpha}_{\sigma(k)} + \hat{\beta}_{\tau(l)} = m$, which contradicts (1).

(3) Since $\{\alpha_0 + \beta_0, ..., \alpha_{n-1} + \beta_{n-1}\} = \{0, ..., n-1\}$, we find a unique $\sigma \in \mathfrak{S}_n$ such that $\alpha_{\sigma(i)} + \beta_{\sigma(i)} = i$ (i = 0, ..., n-1). The inequality $\sigma \alpha \leq \alpha = \delta - \hat{\beta} \leq \delta - \sigma \beta = \sigma \alpha$ implies $\sigma \alpha = \alpha$, $\sigma \beta = \hat{\beta}$.

(4) If w, i(w) and j(w) are written as $w = (w_0, \ldots, w_{n-1})$, $i(w) = (i_0, \ldots, i_{n-1})$ and $j(w) = (j_0, \ldots, j_{n-1})$ respectively, then $w_k < w_l$ implies $i_k \le i_l$ and $j_k \le j_l$. This implies $\hat{i}(w) + \hat{j}(w) = \delta$.

Since the boxes in Λ are numbered by $\mathbf{T} \in NST(\Lambda)$, the symmetric group \mathfrak{S}_n can be identified with the permutation group of boxes in diagram in Λ . For $\mathbf{S} \in ST(\Lambda)$, the group of permutations which stabilize $i(\mathbf{S})$ (resp. $j(\mathbf{S})$) can be identified with a subgroup $Stab_{\mathbf{T}}(i(\mathbf{S}))$ (resp. $Stab_{\mathbf{T}}(j(\mathbf{S}))$) of \mathfrak{S}_n via the identification given above. Now we are ready to state the following properties for the pairing of higher Specht polynomials.

PROPOSITION 1.

- (1) Let \mathbf{S}_1 , \mathbf{S}_2 be elements of $ST(\Lambda)$ such that $\hat{i}(w(\mathbf{S}_1)) = \hat{i}(w(\mathbf{S}_2))$ and $\mathbf{S}_1 < \mathbf{S}_2$ with respect to the last letter order. Then $\langle F_T^{\mathbf{S}_1}, F_{T'}^{\mathbf{S}_2} \rangle = 0$ for $\mathbf{T} \in NST(\Lambda)$.
- (2) Let $h_c = \#(C(\mathbf{T}) \cap Stab_{\mathbf{T}}(j(\mathbf{S})))$ and $h_r = \#(R(\mathbf{T}) \cap Stab_{\mathbf{T}}(i(\mathbf{S})))$, where $C(\mathbf{T}) = C(T^{(0)}) \times \cdots \times C(T^{(r-1)}), R(\mathbf{T}) = R(T^{(0)}) \times \cdots \times R(T^{(r-1)}).$ Then we have

$$\langle F_{\mathbf{T}}^{\mathbf{S}}, F_{\mathbf{T}'}^{\mathbf{S}'} \rangle = sgn(\mathbf{T}, \mathbf{S}) \frac{f^{\lambda^{(0)}} \cdots f^{\lambda^{(r-1)}}}{n_0! \cdots n_{r-1}!} h_r h_c$$

PROOF. For simplicity, $\hat{i}(w(S))$ and $\hat{j}(w(S))$ are denoted by $\hat{i}(S)$ and $\hat{j}(S)$ respectively. Since $x_T^{i(S')} = x_T^{j(S)}$, by the definition of higher Specht polynomials, we have

(2.2)
$$\langle F_{\mathbf{T}}^{\mathbf{S}_1}, F_{\mathbf{T}'}^{\mathbf{S}_2'} \rangle = \frac{f^{\lambda^{(0)}} \cdots f^{\lambda^{(r-1)}}}{n_0! \cdots n_{r-1}!} \sum_{\sigma \in C(\mathbf{T}), \tau \in R(\mathbf{T})} \langle x_{\mathbf{T}}^{\tau^{-1}i(\mathbf{S}_1)}, x_{\mathbf{T}}^{\sigma^{-1}j(\mathbf{S}_2)} \rangle.$$

Suppose that $S_1 < S_2$ and $\langle x_T^{\tau^{-1}i(S_1)}, x_T^{\sigma^{-1}j(S_2)} \rangle \neq 0$ for $\sigma \in C(\mathbf{T}), \tau \in R(\mathbf{T})$. Assume that all the numbers from m + 1 to n - 1 are written in the same boxes of S_1 and S_2 , respectively, and the number m is written in the different places in S_1 and S_2 . Let b_{m+1}, \ldots, b_{n-1} be the places where the numbers m + 1, $\ldots, n - 1$ are written on S_1 and S_2 . For $k \ge m$, let $i(S_1^{(k)}), j(S_2^{(k)})$ and $\mathbf{T}^{(k)}$ be the r-tableaux obtained by removing boxes b_{k+1}, \ldots, b_{n-1} from $i(S_1), j(S_2)$ and \mathbf{T} , respectively. First we prove the following (A_k) for $m + 1 \le k \le n - 1$ by descending induction on k.

(A_k) the numbers written on
$$b_k$$
 in r-tableaux $\tau^{-1}(i(\mathbf{S}_1))$ and $\sigma^{-1}(j(\mathbf{S}_2))$ equal the numbers $\hat{i}(\mathbf{S}_1)_k$ and $\hat{j}(\mathbf{S}_2)_k$, respectively.
(Here $\sigma \in C(\mathbf{T})$ and $\tau \in R(\mathbf{T})$ act as permutations of boxes.)

For an r-tableau S, $l \ge 0$, let Supp(S, l) be the boxes where l is written. Since

$$R(\mathbf{T})(Supp(i(\mathbf{S}_1), \hat{i}(\mathbf{S}_1)_{n-1})) \cap C(\mathbf{T})(Supp(j(\mathbf{S}_2), \hat{j}(\mathbf{S}_2)_{n-1})) = \{b_{n-1}\},\$$

 (A_{n-1}) holds by Lemma 3 (3). $(\hat{i}(\mathbf{S}_1) = \hat{i}(\mathbf{S}_2)$ implies $\hat{i}(\mathbf{S}_1) + \hat{j}(\mathbf{S}_2) = \delta$ by Lemma 1 (3) and Lemma 3 (4).) By the induction hypothesis, the numbers $\hat{i}(\mathbf{S}_1)_{k+1}, \ldots, \hat{i}(\mathbf{S}_1)_{n-1}$ (resp. $\hat{j}(\mathbf{S}_2)_{k+1}, \ldots, \hat{j}(\mathbf{S}_2)_{n-1}$) are already used to fill the places b_{k+1}, \ldots, b_{n-1} of $\tau^{-1}(i(\mathbf{S}_1))$ (resp. $\sigma^{-1}(j(\mathbf{S}_2))$). Therefore the *r*-tableaux $i(\mathbf{S}_1^{(k)})$ and $j(\mathbf{S}_2^{(k)})$ should be filled with the numbers $\hat{i}(\mathbf{S}_1)_1, \ldots, \hat{i}(\mathbf{S}_1)_k$ and $\hat{j}(\mathbf{S}_2)_1, \ldots, \hat{j}(\mathbf{S}_2)_k$, respectively. Since

 $R(\mathbf{T}^{(k)})(Supp(i(\mathbf{S}_1^{(k)}), \hat{i}(\mathbf{S}_1)_k)) \cap C(\mathbf{T}^{(k)})(Supp(j(\mathbf{S}_2^{(k)}), \hat{j}(\mathbf{S}_2)_k)) = \{b_k\},\$

 (A_k) holds by Lemma 3 (3). This completes the proof of (A_k) for $m + 1 \le k \le n - 1$. By the inequality with respect to the last letter order, we have

$$R(\mathbf{T}^{(m)})(Supp(i(\mathbf{S}_1^{(m)}), \hat{i}(\mathbf{S}_1)_m)) \cap C(\mathbf{T}^{(m)})(Supp(j(\mathbf{S}_2^{(m)}), \hat{j}(\mathbf{S}_2)_m)) = \emptyset.$$

This contradicts the assumption $\langle x_T^{\tau^{-1}i(S_1)}, x_T^{\sigma^{-1}j(S_2)} \rangle \neq 0$ and completes the statement (1).

In the case $\mathbf{S}_1 = \mathbf{S}_2 = \mathbf{S}$, the summation (2.2) vanishes unless $\sigma \in C(\mathbf{T}) \cap$ $Stab_{\mathbf{T}}(j(\mathbf{S}_1))$ and $\tau \in R(\mathbf{T}) \cap Stab_{\mathbf{T}}(i(\mathbf{S}_2))$. In this case, $\langle x_{\mathbf{T}}^{\tau^{-1}i(\mathbf{S})}, x_{\mathbf{T}}^{\sigma^{-1}j(\mathbf{S})} \rangle = sgn(\mathbf{S}, \mathbf{T})$. Thus we complete the proof the proposition.

The following two lemmas can be found in literature (e.g. [2]).

LEMMA 4. For tableaux T_1 , T_2 , we define the last letter order in the same way. Let T_1 , T_2 be standard tableaux of the same shape λ of size n. If $T_1 < T_2$ with respect to the last letter order, then $e_{T_1}e_{T_2} = 0$.

PROOF. For a standard tableau T, set $H_T = \sum_{\sigma \in R(T)} \sigma$ and $V_T = \sum_{\sigma \in C(T)} sgn(\sigma)\sigma$. We prove $H_{T_1}V_{T_2} = 0$ by induction on the size n. For n = 1, it is obvious since there is only one tableau. We assume the case where the size is n - 1. By taking off the box filled with the number n from T_1 and T_2 , we get tableaux T_1^* and T_2^* . If the shape of T_1^* and T_2^* are the same, then, by the induction hypothesis, we have $H_{T_1^*}V_{T_2^*} = 0$. Note that

$$H_{T_1} = (1 + (p_1, n) + \dots + (p_t, n))H_{T_1^*},$$

$$V_{T_2} = V_{T_2^*}(1 - (q_1, n) - \dots - (q_s, n)),$$

where p_1, \ldots, p_t (resp. q_1, \ldots, q_s) are all the numbers which appear in the same row (resp. column) as n in T_1 (resp. T_2). If the shapes of T_1^* and T_2^* are different, by the definition of the last letter order, $T_1^* > T_2^*$ with respect to the lexicographic order. Therefore there exists (p, q) which belongs to the same row in T_1^* and the same column in T_2^* ([5] p. 94, combinatorial lemma). Hence, we have

$$H_{T_1^*}V_{T_2^*} = H_{T_1^*}(p, q)V_{T_2^*} = -H_{T_1^*}V_{T_2^*}$$

As a consequence, we have

 $H_{T_{1}^{*}}V_{T_{2}^{*}}=0.$

LEMMA 5. Let $\{T_i\}_{1 \le i \le f^{\lambda}}$ be the set of standard tableaux such that $e_{T_i}e_{T_j} = 0$ if i < j. We write $T_i = \sigma_i T_1$ ($\sigma_i \in \mathfrak{S}_n$). Then $\{\sigma_i e_{T_1}\}$ is a basis of $\mathbb{C}[\mathfrak{S}_n]e_{T_1}$.

PROOF. Since the dimension of $\mathbb{C}[\mathfrak{S}_n]e_{T_1}$ and the number of standard tableaux of shape λ are both f^{λ} ([2]), it is sufficient to prove the independence. Suppose $\sum_{i=1}^{f^{\lambda}} c_i \sigma_i e_{T_1} = 0$. We prove that $c_1 = \cdots = c_k = 0$ by induction on k. Under the induction hypothesis, we have the equation $0 = e_{T_{k+1}}(\sum c_i \sigma_i e_{T_1}) = \sum c_i e_{T_{k+1}} e_{T_i} \sigma_i = c_{k+1} e_{T_{k+1}} \sigma_{k+1}$.

Now we return to the properties of higher Specht polynomials.

PROPOSITION 2. Let \mathbf{T}_1 , \mathbf{T}_2 be elements in $NST(\Lambda)$. If $\mathbf{T}_1 > \mathbf{T}_2$ with respect to the last letter order, then

$$\langle F_{\mathbf{T}_1}^{\mathbf{S}_1}, F_{\mathbf{T}_2'}^{\mathbf{S}_2'} \rangle = 0.$$

PROOF. By the definition of natural standard tableaux and the last letter order, there exists a number *m* such that $T_1^{(m)} > T_2^{(m)}$ with respect to the last letter order. Note that $e_{T_2}e_{T_1} = e_{T_2^{(m)}}e_{T_1^{(m)}}\prod_{j \neq m} e_{T_2^{(j)}}e_{T_1^{(j)}} = 0$.

PROOF OF THEOREM 1. (1) To compute the "Gramian" of the pairing \langle , \rangle with respect to $\{F_T^S\}$ and $\{F_{T'}^{S'}\}$, we introduce a total order "<" on the set $NST(\Lambda) \times ST(\Lambda)$. For two elements $(\mathbf{T}_1, \mathbf{S}_1)$ and $(\mathbf{T}_2, \mathbf{S}_2)$ of $NST(\Lambda) \times ST(\Lambda)$, $(\mathbf{T}_1, \mathbf{S}_1) < (\mathbf{T}_2, \mathbf{S}_2)$ if and only if

- (1) $T_1 > T_2$ with respect to the last letter order, or
- (2) $\mathbf{T}_2 = \mathbf{T}_2$ and $\hat{i}(\mathbf{S}_1) < \hat{i}(\mathbf{S}_2)$ with respect to the lexicographic order, or

(3) $\mathbf{T}_1 = \mathbf{T}_2$, $\hat{i}(\mathbf{S}_1) = \hat{i}(\mathbf{S}_2)$ and $\mathbf{S}_1 < \mathbf{S}_2$ with respect to the last letter order. Then by Proposition 1 and 2, we have $\langle F_{\mathbf{T}_1}^{\mathbf{S}_1}, F_{\mathbf{T}_2}^{\mathbf{S}_2} \rangle = 0$ if $(\mathbf{T}_1, \mathbf{S}_1) < (\mathbf{T}_2, \mathbf{S}_2)$ and $\langle F_{\mathbf{T}}^{\mathbf{S}}, F_{\mathbf{T}'}^{\mathbf{S}'} \rangle$ is a non-zero rational number. Thus the Gramian with respect to $\{F_{\mathbf{T}}^{\mathbf{S}}\}$ and $\{F_{\mathbf{T}}^{\mathbf{S}'}\}$ is a non-zero rational number.

Since if the shapes of \mathbf{T}_1 and \mathbf{T}_2 are different, $\langle F_{T_1}^{\mathbf{S}_1}, F_{T_2}^{\mathbf{S}_2} \rangle = 0$ and the cardinality of $\prod_{A} NST(A) \times ST(A)$ equals *n*!, the collection

$$\bigcup_{type(\Lambda)=(n_0,\ldots,n_{r-1})} \{ F_{\mathbf{T}}^{\mathbf{S}} | \mathbf{T} \in NST(\Lambda), \mathbf{S} \in ST(\Lambda) \}$$

forms a basis for R.

(2) We use Lemma 5 and

$$\sigma F_{\mathbf{T}}^{\mathbf{S}} = \sigma e_{\mathbf{T}} x_{\mathbf{T}}^{i(\mathbf{S})}$$
$$= \sigma e_{\mathbf{T}} \sigma^{-1} x_{\sigma \mathbf{T}}^{i(\mathbf{S})}$$
$$= e_{\sigma \mathbf{T}} x_{\sigma \mathbf{T}}^{i(\mathbf{S})}$$
$$= F_{\sigma \mathbf{T}}^{\mathbf{S}}$$

to conclude that $\sum_{T \in NST(\Lambda)} CF_T^S = C[\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}}]F_{T_1}^S$, where T_1 is the minimum element in $NST(\Lambda)$ with respect to the last letter order.

(3) In this case, the values $\langle F_T^S, F_{T'}^{S'} \rangle$ are ± 1 by Proposition 1 (2). Hence we can see that $\{F_{T_1}^S\}$ forms a Z-basis of $\mathbb{Z}[x_0, \ldots, x_{n-1}]/(e_1, \ldots, e_n)$.

3. An application to wreath products

Let $T = (\mathbb{Z}/r\mathbb{Z})^n$ and $\varphi_a \in Hom(\mathbb{Z}/r\mathbb{Z}, \mathbb{C}^{\times})$ be a character defined by $\varphi_a(x \pmod{r}) = exp(2\pi i x a/r)$. Then an element $\varphi \in \hat{T} = Hom(T, \mathbb{C}^{\times})$ can be written as

$$\varphi = \varphi_{a_0 \dots a_{n-1}} = \varphi_{a_0} \boxtimes \dots \boxtimes \varphi_{a_{n-1}}.$$

Let n_j be the cardinality of $\{p|a_p = j\}$. We call the sequence (n_0, \ldots, n_{r-1}) the type of the character $\varphi_{a_0 \ldots a_{n-1}} \in \hat{T}$. Conversely, for a given sequence (n_0, \ldots, n_{r-1}) such that $\sum_{i=0}^{r-1} n_i = n$, the character $\varphi^{(n_0, \ldots, n_{r-1})}$ is defined as $\varphi_{a_0 \ldots a_{n-1}}$, where $a_i = j$ if $\sum_{p=0}^{j-1} n_p \le i \le \sum_{p=0}^{j} n_p - 1$. The wreath product $G_{r,n} = (\mathbb{Z}/r\mathbb{Z}) \wr \mathfrak{S}_n$ is defined as the semi-direct product $\mathfrak{S}_n \ltimes T$. The group $(\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}}) \ltimes T$ is regarded as a subgroup of $G_{r,n}$ by identifying the

group \mathfrak{S}_{n_j} with the permutation group for the set of numbers $\{i|\sum_{p=0}^{j-1} n_p \leq i \leq \sum_{p=0}^{j} n_p - 1\}$. Let $\lambda^{(0)}, \ldots, \lambda^{(r-1)}$ be Young diagrams of size n_0, \ldots, n_{r-1} , respectively. For representations $V^{\lambda^{(0)}}, \ldots, V^{\lambda^{(r-1)}}$ of $\mathfrak{S}_{n_0}, \ldots, \mathfrak{S}_{n_{r-1}}$, respectively and a character $\varphi^{(n_0,\ldots,n_{r-1})}$, set

$$V_{A} = Ind_{\mathfrak{S}_{n_{0}} \times \cdots \times \mathfrak{S}_{n_{r-1}} \ltimes T}^{G_{r,n}}(V^{\lambda^{(0)}} \boxtimes \cdots \boxtimes V^{\lambda^{(r-1)}} \boxtimes \varphi^{(n_{0},\dots,n_{r-1})}),$$

where $\Lambda = (\lambda^{(0)}, \ldots, \lambda^{(r-1)})$. It is known that all the irreducible representations of $G_{r,n}$ are obtained in this way, and that two representations V_{Λ_1} and V_{Λ_2} are isomorphic if and only if $\Lambda_1 = \Lambda_2$. A representation space W of $G_{r,n}$ is decomposed as $W = \bigoplus_{\varphi \in \hat{T}} W_{\varphi}$, where $W_{\varphi} = \{v \in W | tv = \varphi(t)v \text{ for all } t \in T\}$. The symmetric group \mathfrak{S}_n acts on the character group \hat{T} . It is easy to see that V_{Λ} is decomposed into

$$V_{\Lambda} = \bigoplus_{g \in \mathfrak{S}_{n}/\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}}} g(V_{\Lambda,\varphi}),$$

with $g(V_{\Lambda,\varphi}) = V_{\Lambda,g\varphi}$. By the definition of the induced module, for an element $g \in \mathfrak{S}_n$, $V_{\Lambda,g\varphi}$ becomes a $g(\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}})g^{-1}$ -module and the following diagram commutes:

DEFINITION. Let T, S be elements in $ST(\Lambda)$. We define the higher Sprecht polynomial \hat{F}_{T}^{S} for $G_{r,n}$ by

$$\widehat{F}^{\mathbf{S}}_{\mathbf{T}}(x_0,\ldots,x_{n-1})=F^{\mathbf{S}}_{\mathbf{T}}(x_0^r,\ldots,x_{n-1}^r)\cdot\prod_{j=0}^{r-1}\left(\prod_{m\in T^{(j)}}x_m\right)^j.$$

Here $F_{\rm T}^{\rm S}$ is the higher Specht polynomial defined in §2.

Let STP be the union $\bigcup_{\Lambda} ST(\Lambda) \times ST(\Lambda)$.

THEOREM 2.

- (1) The ring of invariants $\mathbb{C}[x_0, \ldots, x_{n-1}]^{G_{r,n}}$ of $S = \mathbb{C}[x_0, \ldots, x_{n-1}]$ under the natural action of $G_{r,n}$ is the polynomial ring of $e_1^{(r)}, \ldots, e_n^{(r)}$, where $e_i^{(r)}$ is the j-th elementary symmetric function of x_0^r, \ldots, x_{n-1}^r .
- (2) The set $\{\hat{F}_{T}^{S}|(T, S) \in STP\}$ is a basis for $R^{(r)} = S/(e_{1}^{(r)}, \ldots, e_{n}^{(r)})$, and for a fixed $S \in ST(\Lambda)$, the set $\{\hat{F}_{T}^{S}|S \in ST(\Lambda)\}$ spans an irreducible representation of $G_{r,n}$ over C.
- (3) The set $\{\hat{F}_{\mathbf{T}}^{\mathbf{S}}|(\mathbf{T},\mathbf{S})\in STP\}$ forms a free basis of S over $S^{G_{r,n}}$, and for a fixed $\mathbf{S}\in ST(\Lambda)$, the set $\{\hat{F}_{\mathbf{T}}^{\mathbf{S}}|\mathbf{S}\in ST(\Lambda)\}$ spans an irreducible representation of $G_{r,n}$ over $S^{G_{r,n}}$.

PROOF. (1) Since $C[x_0, ..., x_{n-1}]^T = C[x_0^r, ..., x_{n-1}^r]$, it reduces to the fundamental theorem of symmetric functions. The statement (3) is a direct consequence of (2). Therefore we prove (2).

The space $R^{(r)} = S/(e_1^{(r)}, \ldots, e_n^{(r)})$ is known to be isomorphic to the regular representation, and for a character $\varphi_{a_0\dots a_{n-1}}$ of T of type (n_0,\dots,n_{r-1}) , $R_{\varphi_{a_0\dots a_{n-1}}}^{(r)}$ is the subspace $\mathbb{C}[x_0^r,\dots,x_{n-1}^r]/(e_1^{(r)},\dots,e_n^{(r)}) \cdot \prod_{i=0}^{n-1} x_i^{a_i}$ of $R^{(r)}$. Let $g \in \mathfrak{S}_n$ be given by (a) $a_{g(i)} = j$ for $\sum_{p=0}^{j-1} n_p \le i \le \sum_{p=0}^{j} n_p - 1$ and (b) g(i) < g(k) if $\sum_{p=0}^{j-1} n_p \le i < k \le \sum_{p=0}^{j} n_p - 1$. Since $g\varphi^{(n_0,\dots,n_{r-1})} = \varphi_{a_0\dots a_{n-1}}$, $R_{\varphi_{a_0\dots a_{n-1}}}^{(r)}$, becomes a $g(\mathfrak{S}_{n_0} \times \dots \times \mathfrak{S}_{n_{r-1}})g^{-1}$ -module. In Theorem 1, we considered the action of $\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}}$ on $\mathbb{C}[x_0^r, \dots, x_{n-1}^r]/(e_1^{(r)}, \dots, e_n^{(r)})$. To apply this theorem, we should consider the action of $g(\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}})g^{-1}$. Let $NST(g, \Lambda)$ be the set of r-tableaux $\mathbf{T} = (T^{(0)}, \dots, T^{(r-1)})$ such that the number j is filled in the tableau $T^{(i)}$ if j = g(k) with $\sum_{p=0}^{i-1} n_p \le k \le \sum_{p=0}^{i} n_p - 1$. Then by Theorem 1, we have the following.

(1) The collection

$$\bigcup_{type(\Lambda)=(n_0,\ldots,n_{r-1})} \{ \widehat{F}_{\mathbf{T}}^{\mathbf{S}} | \mathbf{T} \in NST(g,\Lambda), \mathbf{S} \in ST(\Lambda) \}$$

forms a basis for $R_{\varphi_{a_0}\cdots a_{n-1}}^{(r)}$. (2) For a fixed $\mathbf{S} \in ST(\Lambda)$, $\{\widehat{F}_{\mathbf{T}}^{\mathbf{S}} | \mathbf{T} \in NST(g, \Lambda)\}$ spans the irreducible representation $V^{\lambda^{(0)}} \boxtimes \cdots \boxtimes V^{\lambda^{(r-1)}}$ of $g(\mathfrak{S}_{n_0} \times \cdots \times \mathfrak{S}_{n_{r-1}})g^{-1}$. Therefore the collection

 $\bigcup_{type(\Lambda)=(n_0,\dots,n_{r-1})} \{ \widehat{F}_{\mathbf{T}}^{\mathbf{S}} | \mathbf{T} \in ST(\Lambda), \mathbf{S} \in ST(\Lambda) \}$

spans the irreducible representation V_A .

References

- [1] E. Allen, A conjecture of Procesi and a new basis for the decomposition of the graded left regular representation of S_n , Adv. Math. 100 (1993), 262-292.
- [2] G. James-A. Kerber, The Representation Theory of the Symmetric Group, 1981, Addison-Wesley.
- [3] A. M. Garsia-D. Stanton, Group actions on Stanley-Reisner rings and invariants of permutation groups, Adv. Math. 51 (1984), 107-201.
- [4] T. Terasoma-H. Yamada, Higher Specht polynomials for the symmetric group, Proc. Jap. Acad. 69 (1993), 41-44.
- [5] B. L. van der Waerden, Algebra, vol II, 5-th ed. 1991, Springer-Verlag.

Susumu Ariki Division of Mathematics, Tokyo University of Mercantile Marine, 2-1-6, Etchujima, Koto-ku, Tokyo, 135, Japan.

Tomohide Terasoma Department of Mathematical Sciences, University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153, Japan.

> Hiro-Fumi Yamada Department of Mathematics, Faculty of Science, Hokkaido University, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo, Hokkaido, 060, Japan.