Universal R-matrices and the center of the quantum generalized Kac-Moody algebras

Seok-Jin Kang* and Toshiyuki Tanisaki
(Received December 11, 1995)

Abstract

We extend the result in [13] to those for the quantization of generalized Kac-Moody algebras introduced in [10]. The existence of the universal R-matrix is proved, and a structure theorem for the center is given.

0. Introduction

The quantum groups-more precisely, the quantization of the universal enveloping algebras of Kac-Moody algebras-were independently introduced by Drinfel'd ([6]) and Jimbo ([7]) through their investigation of R-matrices which are the solutions to the Yang-Baxter equation. Its importance partly comes from the fact that there exists a solution to the Yang-Baxter equation inside the quantum group, called the universal R-matrix, so that one can obtain various R-matrices as its specialization on the representations of the quantum group.

On the other hand, the notion of Kac-Moody algebras was generalized to the so-called generalized Kac-Moody algebras ([1]), and it was used crucially in Borcherds' proof of the moonshine conjecture ([2]). In [10], the firstnamed author extended the quantum groups to those for the generalized Kac-Moody algebras, and proved some fundamental results on their structures and their representations.

In this paper, we continue the investigation by extending the results in [13] to the quantum groups of generalized Kac-Moody algebras. In the first half of this paper, we construct an analogue of the Killing form and prove the existence of the universal R-matrix. The proofs are very similar to those in [13] and the analogue of the Killing form plays a crucial role. In the second half, we investigate the structure of the center of the quantum groups for generalized Kac-Moody algebras. The case of quantized universal en-

[^0]veloping algebras of ordinary Kac-Moody algebras was already treated in [4], [8], [13]. Hence we restrict ourselves to the non-ordinary case. We show that the center consists only of certain obvious elements in almost all cases. The proof is based on the reduction to the small rank cases.

Acknowledgment

Part of this work was completed while the first-named author was visiting Research Institute for Mathematical Sciences at Kyoto University and Hiroshima University in the summer of 1995 . He would like to express his sincere gratitude to both places for their hospitality.

1. The Quantum Algebra $U_{q}(\mathfrak{g})$

Let \mathbf{F} be a field of characteristic 0 and let $q \in \mathbf{F}$ be transcendental over the prime subfield \mathbf{Q}. We assume that \mathbf{F} contains an n-th root of q for any positive integer n.

Let I be a countable (possibly infinite) index set and let $A=\left(a_{i j}\right)_{i, j \in I}$ be a Borcherds-Cartan matrix with $a_{i j} \in \mathbf{Q}$ for all $i, j \in I$. That is, $A=\left(a_{i j}\right)_{i, j \in I}$ is a rational square matrix satisfying (i) $a_{i i}=2$ or $a_{i i} \leq 0$ for all $i \in I$, (ii) $a_{i j} \leq 0$ for $i \neq j$ and $a_{i j} \in \mathbf{Z}$ if $a_{i i}=2$, (iii) $a_{i j}=0$ implies $a_{j i}=0$. Let $I^{r e}=\left\{i \in I \mid a_{i i}=\right.$ $2\}, I^{i m}=\left\{i \in I \mid a_{i i} \leq 0\right\}$, and let $\underline{m}=\left(m_{i} \mid i \in I\right)$ be a collection of positive integers such that $m_{i}=1$ for all $i \in I^{r e}$. We call \underline{m} the charge of the Borcherds-Cartan matrix A. We denote by $\mathfrak{g}=\mathfrak{g}(A, \underline{m})$ the generalized Kac-Moody algebra associated with the Borcherds-Cartan matrix A and the charge \underline{m} ([1], [9], [10]).

A rational Borcherds-Cartan matrix $A=\left(a_{i j}\right)_{i, j \in I}$ is called symmetrizable if there is a diagonal matrix $D=\operatorname{diag}\left(s_{i} \mid i \in I\right)$ with $s_{i} \in \mathbf{Z}_{>0}$ such that $D A$ is symmetric. From now on, we assume that A is a symmetrizable BorcherdsCartan matrix.

Let $\mathfrak{h}=\left(\bigoplus_{i \in I} \mathbf{Q} h_{i}\right) \oplus\left(\bigoplus_{i \in I} \mathbf{Q} d_{i}\right)$ be the vector space with a basis $\left\{h_{i}, d_{i} \mid i \in I\right\}$, and let

$$
\begin{equation*}
P^{\vee}=\left(\bigoplus_{i \in I} \mathbf{Z} h_{i}\right) \oplus\left(\bigoplus_{i \in I} \mathbf{Z} d_{i}\right) \tag{1.1}
\end{equation*}
$$

be the \mathbf{Z}-lattice of \mathfrak{h}. For each $j \in I$, we define the linear functionals $\alpha_{j} \in \mathfrak{b}^{*}$ by

$$
\begin{equation*}
\alpha_{j}\left(h_{i}\right)=a_{i j}, \quad \alpha_{j}\left(d_{i}\right)=\delta_{i j}(i, j \in I) . \tag{1.2}
\end{equation*}
$$

Set $Q=\bigoplus_{i \in I} \mathbf{Z} \alpha_{i}, Q_{+}=\sum_{i \in I} \mathbf{Z}_{\geq 0} \alpha_{i}$, and $Q_{-}=-Q_{+}$. Let $\rho \in \mathfrak{h}^{*}$ be a linear functional satisfying $\rho\left(h_{i}\right)=\frac{1}{2} a_{i i}$ for all $i \in I$. For each $i \in I^{r e}$, we define the simple reflection $r_{i} \in G L(\mathfrak{h})$ by $r_{i}(h)=h-\alpha_{i}(h) h_{i}$. The subgroup W of $G L(\mathfrak{h})$
generated by the r_{i}^{\prime} 's is called the Weyl group of the above Borcherds-Cartan data. It is a Coxeter group with canonical generator system $\left\{r_{i} \mid i \in I^{r e}\right\}$. We denote its length function by $l: W \rightarrow \mathbf{Z}_{\geq 0}$. The contragredient action of W on \mathfrak{b}^{*} is given by $r_{i}(\lambda)=\lambda-\lambda\left(h_{i}\right) \alpha_{i}$. Since A is symmetrizable, there exists a nondegenerate symmetric bilinear form (\mid) on \mathfrak{h} satisfying $\left(s_{i} h_{i} \mid h\right)=\alpha_{i}(h)$ ($i \in I, h \in \mathfrak{h}$).

For each $i \in I$, let $\xi_{i}=q^{s_{i}}-q^{-s_{i}}, q_{i}=q^{\left(s_{i} a_{i i}\right) / 2}$, and define the q-integer by

$$
[n]_{i}= \begin{cases}\frac{q_{i}^{n}-q_{i}^{-n}}{q_{i}-q_{i}^{-1}} & \text { if } a_{i i} \neq 0 \\ n & \text { if } a_{i i}=0\end{cases}
$$

We also define $[n]_{i}!=\prod_{k=1}^{n}[k]_{i}$.
Definition 1.1. ([10]) The quantum algebra $U_{q}(\mathrm{~g})$ associated with a symmetrizable Borcherds-Cartan matrix $A=\left(a_{i j}\right)_{i, j \in I}$ and a charge $\underline{m}=\left(m_{i} \mid i \in I\right)$ is an associative algebra with 1 over \mathbf{F} generated by the elements $q^{h}\left(h \in P^{\vee}\right)$, $e_{i k}, f_{i k}\left(i \in I, k=1,2, \cdots, m_{i}\right)$ with the defining relations
(R1) $q^{0}=1, q^{h} q^{h^{\prime}}=q^{h+h^{\prime}}\left(h, h^{\prime} \in P^{\vee}\right)$,
(R2) $q^{h} e_{i k} q^{-h}=q^{\alpha_{i}(h)} e_{i k}\left(h \in P^{\vee}, i \in I, k=1,2, \ldots, m_{i}\right)$,
(R3) $q^{h} f_{i k} q^{-h}=q^{-\alpha_{i}(h)} f_{i k}\left(h \in P^{\vee}, i \in I, k=1,2, \ldots, m_{i}\right)$,
(R4) $\left[e_{i k}, f_{j l}\right]=\delta_{i j} \delta_{k l} \frac{K_{i}-K_{i}^{-1}}{\xi_{i}}$, where $K_{i}=q^{s_{i} h_{i}}\left(i, j \in I, k=1,2, \ldots, m_{i}\right.$, $\left.l=1,2, \ldots, m_{j}\right)$,
(R5) $\sum_{s+t=1-a_{i j}}(-1)^{s} e_{i k}^{(s)} e_{j l} e_{i k}^{(t)}=0$ if $a_{i i}=2$ and $i \neq j(k=1, l=1,2, \ldots$, m_{j}), where $e_{i k}^{(n)}=e_{i k}^{n} /[n]_{i}!$,
(R6) $\sum_{s+t=1-a_{i j}}(-1)^{s} f_{i k}^{(s)} f_{j l} f_{i k}^{(t)}=0$ if $a_{i i}=2$ and $i \neq j(k=1, l=1,2, \ldots$, m_{j}), where $f_{i k}^{(n)}=f_{i k}^{n} /[n]_{i}!$,
(R7) $\left[e_{i k}, e_{j l}\right]=0$ if $a_{i j}=0$.
(R8) $\left[f_{i k}, f_{j l}\right]=0$ if $a_{i j}=0$.
The algebra $U_{q}(\mathrm{~g})$ has a Hopf algebra structure with comultiplication Δ, counit ε, and antipode S defined by

$$
\begin{align*}
& \Delta\left(q^{h}\right)=q^{h} \otimes q^{h}, \\
& \Delta\left(e_{i k}\right)=e_{i k} \otimes 1+K_{i} \otimes e_{i k}, \\
& \Delta\left(f_{i k}\right)=f_{i k} \otimes K_{i}^{-1}+1 \otimes f_{i k}, \\
& \varepsilon\left(q^{h}\right)=1, \quad \varepsilon\left(e_{i k}\right)=\varepsilon\left(f_{i k}\right)=0, \tag{1.3}\\
& S\left(q^{h}\right)=q^{-h}, \\
& S\left(e_{i k}\right)=-K_{i}^{-1} e_{i k}, \quad S\left(f_{i k}\right)=-f_{i k} K_{i}
\end{align*}
$$

for $h \in P^{\vee}, i \in I, k=1, \cdots, m_{i}$. We denote by U^{0} the subalgebra of $U=U_{q}(\mathfrak{g})$ with 1 generated by $q^{h}\left(h \in P^{\vee}\right)$ and U^{+}(resp. U^{-}) the subalgebra of U generated by the elements $e_{i k}$ (resp. $f_{i k}$) for $i \in I, k=1, \ldots, m_{i}$. We also denote by $U^{\geq 0}$ (resp. $U^{\leq 0}$) the subalgebra of U generated by the elements q^{h} and $e_{i k}$ (resp. $f_{i k}$) for $h \in P^{\vee}, i \in I, k=1, \ldots, m_{i}$. For each $\beta \in Q_{+}$, let

$$
U_{ \pm \beta}^{ \pm}=\left\{x \in U^{ \pm} \mid q^{h} x q^{-h}=q^{ \pm} \beta^{(h)} x \text { for all } h \in P^{\vee}\right\}
$$

Then we have:
Proposition 1.2. ([10])
(a) $U \cong U^{-} \otimes U^{0} \otimes U^{+}$.
(b) $\quad U^{0}=\bigoplus_{h \in P^{\nu}} \mathbf{F} q^{h}$.
(c) $U^{ \pm}=\bigoplus_{\beta \in Q_{+}} U_{ \pm \beta}^{ \pm}$.
(d) (R5) and (R7) (resp. (R6) and (R8)) are the fundamental relations for U^{+}(resp. U^{-}).

Define a structure of directed set on Q_{+}by $\beta_{1} \geq \beta_{2}$ if and only if $\beta_{1}-$ $\beta_{2} \in Q_{+}$, and set $U^{+, \beta}=\bigoplus_{\gamma \in Q_{+}, \gamma \nless \beta} U_{\gamma}^{+}$for $\beta \in Q_{+}$. We define a completion \hat{U} of U by

$$
\hat{U}=\lim _{\overleftarrow{\beta}} U / U U^{+, \beta}
$$

Then \hat{U} is an algebra containing U. The comultiplication Δ and the counit ε are naturally extended to those of \hat{U} ([13]).

A $U_{q}(\mathrm{~g})$-module V is called a highest weight module with highest weight $\lambda \in \mathfrak{b}^{*}$ if there is a nonzero vector $v_{\lambda} \in V$ such that (i) $e_{i k} v_{\lambda}=0$ ($i \in I, k=$ $1, \cdots, m_{i}$), (ii) $q^{h} v_{\lambda}=q^{\lambda(h)} v_{\lambda}\left(h \in P^{\vee}\right)$, (iii) $V=U_{q}(\mathfrak{g}) v_{\lambda}$. Let $\lambda \in \mathfrak{b}^{*}$ and consider the left ideal $I(\lambda)$ of $U_{q}(\mathrm{~g})$ generated by $e_{i k}\left(i \in I, k=1, \ldots, m_{i}\right)$ and $q^{h}-q^{\lambda(h)} 1$ $\left(h \in P^{\vee}\right)$. Let $M(\lambda)=U_{q}(\mathrm{~g}) / I(\lambda)$ and define a $U_{q}(\mathrm{~g})$-module structure on $M(\lambda)$ by the left multiplication. Then $M(\lambda)$ becomes a highest weight module with highest weight λ and highest weight vector $v_{\lambda}=1+I(\lambda)$. The $U_{q}(\mathrm{~g})$-module $M(\lambda)$ is called the Verma module and it has a unique maximal submodule $J(\lambda)$. Hence the quotient $V(\lambda)=M(\lambda) / J(\lambda)$ is irreducible.

Let T denote the set of all imaginary roots $\alpha_{i}\left(i \in I^{i m}\right)$ counted with multiplicity m_{i}.

Proposition 1.3. ([1], [10]) Suppose $\lambda\left(h_{i}\right) \geq 0$ for all $i \in I$ and $\lambda\left(h_{i}\right) \in \mathbf{Z}$ for all $i \in I^{r e}$. Then we have
(a)
(b)

$$
\begin{gathered}
\operatorname{ch} M(\lambda)=\frac{e^{\lambda}}{\prod_{\alpha \in \Lambda_{+}}\left(1-e^{-\alpha}\right)^{\operatorname{dim} g_{\alpha}}}=e^{\lambda} \sum_{\beta \in Q_{+}}\left(\operatorname{dim} U_{-\beta}^{-}\right) e^{-\beta}, \\
\operatorname{ch~} V(\lambda)=\frac{\sum_{\substack{w \in W \\
F \in T}}(-1)^{l(w)+|F|} e^{w(\lambda+\rho-s(F))-\rho}}{\prod_{\alpha \in \Lambda_{+}}\left(1-e^{-\alpha}\right)^{\operatorname{dim} g_{\alpha}}}
\end{gathered}
$$

where Δ_{+}denotes the set of all positive roots of $\mathfrak{g}, \mathfrak{g}_{\alpha}$ denotes the root space, and F runs over all the finite subsets of T such that $\lambda\left(h_{i}\right)=0$ for $\alpha_{i} \in F$ and that $\alpha_{i}\left(h_{j}\right)=0$ for $\alpha_{i}, \alpha_{j} \in F$ with $i \neq j$. We denote by $|F|$ the number of elements in F and $s(F)$ the sum of elements in F.

Corollary 1.4. Let $\gamma=\sum_{i \in I} n_{i} \alpha_{i} \in Q_{+}$. Suppose $\lambda\left(h_{i}\right)>0$ for all $i \in I$, $\lambda\left(h_{i}\right) \in \mathbf{Z}$ for all $i \in I^{r e}$, and $\lambda\left(h_{i}\right) \geq n_{i}$ for all $i \in I^{r e}$. Then we have a linear isomorphism $U_{-\gamma}^{-} \underset{\rightarrow}{\boldsymbol{\sim}} V(\lambda)_{\lambda-\gamma}$ given by $u \mapsto u v_{\lambda}$.

Proof. The surjectivity of the map $U_{-\gamma}^{-} \rightarrow V(\lambda)_{\lambda-\gamma}$ is obvious. Hence it suffices to show $\operatorname{dim} U_{-\gamma}^{-}=\operatorname{dim} V(\lambda)_{\lambda-\gamma}$. By our assumption, we have

$$
\text { ch } \begin{aligned}
V(\lambda) & =\frac{\sum_{w \in W}(-1)^{l(w)} e^{w(\lambda+\rho)-\rho}}{\prod_{\alpha \in A_{+}}\left(1-e^{-\alpha}\right)^{\operatorname{dim} \mathrm{g}_{\alpha}}} \\
& =\left(\sum_{w \in W}(-1)^{l(w)} e^{w(\lambda+\rho)-\rho}\right)\left(\sum_{\beta \in Q_{+}}\left(\operatorname{dim} U_{-\beta}^{-}\right) e^{-\beta}\right) .
\end{aligned}
$$

Therefore, it suffices to show that if $w(\lambda+\rho)-\rho-\beta=\lambda-\gamma$ for $w \in W, \beta \in$ Q_{+}, then $w=1$. Equivalently, if $w \neq 1$, then $\gamma+w(\lambda+\rho)-(\lambda+\rho) \notin Q_{+}$. Let us prove this by induction on the length $l(w)$ of w. If $w=r_{i}\left(i \in I^{r e}\right)$, then

$$
\gamma+r_{i}(\lambda+\rho)-(\lambda+\rho)=\gamma-\left(\lambda\left(h_{i}\right)+1\right) \alpha_{i} \notin Q_{+} .
$$

If $w=w^{\prime} r_{i}$ and $l(w)=l\left(w^{\prime}\right)+1$, then

$$
\begin{aligned}
\gamma+w(\lambda+\rho)-(\lambda+\rho) & =\gamma+w^{\prime} r_{i}(\lambda+\rho)-(\lambda+\rho) \\
& =\gamma+w^{\prime}(\lambda+\rho)-(\lambda+\rho)-\left(\lambda\left(h_{i}\right)+1\right) w^{\prime}\left(\alpha_{i}\right) \notin Q_{+}
\end{aligned}
$$

which completes the proof.

2. The Killing Form on $U_{q}(\mathfrak{g})$

The Hopf algebra structure of $U_{q}(\mathrm{~g})$ defines an algebra structure on $\left(U^{\geq 0}\right)^{*}$ with the multiplication given by $\left(\phi_{1} \phi_{2}\right)(x)=\left(\phi_{1} \otimes \phi_{2}\right)(\Delta(x))$ for $\phi_{1}, \phi_{2} \in\left(U^{\geq 0}\right)^{*}$, $x \in U^{\geq 0}$. For $h \in P^{\vee}$ and $i \in I, k=1,2, \ldots, m_{i}$, we define the linear functionals $\phi_{h}, \psi_{i k} \in\left(U^{\geq 0}\right)^{*}$ by

$$
\begin{align*}
\phi_{h}\left(x q^{h^{\prime}}\right) & =\varepsilon(x) q^{-\left(h \mid h^{\prime}\right)} \quad\left(x \in U^{+}, h^{\prime} \in P^{\vee}\right), \\
\psi_{i k}\left(x q^{h}\right) & =0 \quad\left(x \in U_{\beta}^{+}, \beta \in Q_{+} \backslash\left\{\alpha_{i}\right\},\right. \tag{2.1}\\
\psi_{i k}\left(e_{i l} q^{h}\right) & =\delta_{k l} .
\end{align*}
$$

Then it is easy to verify that there is an algebra homomorphism $\zeta: U^{\leq 0} \rightarrow$ $\left(U^{\geq 0}\right)^{*}$ given by $\zeta\left(q^{h}\right)=\phi_{h}, \zeta\left(f_{i k}\right)=-\frac{1}{\xi_{i}} \psi_{i k}\left(h \in P^{\vee}, i \in I, k=1, \ldots, m_{i}\right)$. Define
a bilinear form (|): $U^{\geq 0} \times U^{\leq 0} \rightarrow \mathbf{F}$ by

$$
\begin{equation*}
(x \mid y)=\langle\zeta(y), x\rangle \quad\left(x \in U^{\geq 0}, y \in U^{\leq 0}\right) . \tag{2.2}
\end{equation*}
$$

Then we have:
Proposition 2.1. The bilinear form (|) on $U^{\geq 0} \times U^{\leq 0}$ defined by (2.2) satisfies

$$
\begin{align*}
\left(x \mid y_{1} y_{2}\right) & =\left(\Delta(x) \mid y_{1} \otimes y_{2}\right) \quad\left(x \in U^{\geq 0}, y_{1}, y_{2} \in U^{\leq 0}\right) \\
\left(x_{1} x_{2} \mid y\right) & =\left(x_{2} \otimes x_{1} \mid \Delta(y)\right) \quad\left(x_{1}, x_{2} \in U^{\geq 0}, y \in U^{\leq 0}\right) \\
\left(q^{h} \mid q^{h^{\prime}}\right) & =q^{-\left(h \mid h^{\prime}\right)} \quad\left(h, h^{\prime} \in P^{\vee}\right), \tag{2.3}\\
\left(q^{h} \mid f_{i k}\right) & =0, \quad\left(e_{i k} \mid q^{h}\right)=0 \\
\left(e_{i k} \mid f_{j i}\right) & =-\frac{1}{\xi_{i}} \delta_{i j} \delta_{k i}
\end{align*}
$$

for $i, j \in I, k=1,2, \cdots, m_{i}, l=1,2, \cdots, m_{j}$.
Moreover, the bilinear form on $U^{\geq 0} \times U^{\leq 0}$ satisfying (2.3) is uniquely determined.

The proof is similar to that of [13, Proposition 2.1.1].
The following lemmas can be proved inductively using (2.3).
Lemma 2.2.
(a) $(S(x) \mid S(y))=(x \mid y)$ for $x \in U^{\geq 0}, y \in U^{\leq 0}$.
(b) $\left(x q^{h} \mid y q^{h^{\prime}}\right)=q^{-\left(h \mid h^{\prime}\right)}(x \mid y)\left(h, h^{\prime} \in P^{\vee}, x \in U^{+}, y \in U^{-}\right)$.
(c) $\quad\left(U_{\gamma}^{+} \mid U_{-\beta}^{-}\right)=0$ if $\gamma \neq \beta$.

For $n \in \mathbf{Z}_{>0}$, we denote by $\Delta_{n}: U_{q}(\mathfrak{g}) \rightarrow U_{q}(\mathfrak{g})^{\otimes(n+1)}$ the algebra homomorphism defined by $\Delta_{1}=\Delta, \Delta_{n}=(\Delta \otimes 1) \circ \Delta_{n-1}$, and we write

$$
\Delta_{n}(x)=\sum_{(x)_{n}} x_{(0)} \otimes x_{(1)} \otimes \cdots \otimes x_{(n)} .
$$

Lemma 2.3. For $x \in U^{\geq 0}, y \in U^{\leq 0}$, we have

$$
\begin{align*}
& y x=\sum_{(x)_{2},(y)_{2}}\left(x_{(0)} \mid S\left(y_{(0)}\right)\right)\left(x_{(2)} \mid y_{(2)}\right) x_{(1)} y_{(1)}, \tag{2.4}\\
& x y=\sum_{(x)_{2},(y)_{2}}\left(x_{(0)} \mid y_{(0)}\right)\left(x_{(2)} \mid S\left(y_{(2)}\right)\right) y_{(1)} x_{(1)} .
\end{align*}
$$

The following lemma is an immediate consequence of Corollary 1.4.
Lemma 2.4. Let $\beta \in Q_{+} \backslash\{0\}$ and $y \in U_{-\beta}^{-}$. If $e_{i k} y=y e_{i k}$ for all $i \in I, k=$ $1,2, \cdots, m_{i}$, then $y=0$.

Now we can state the main theorem of this section.

Theorem 2.5. For $\beta \in Q_{+}$, the bilinear form $(\mid): U_{\beta}^{\geq 0} \times U_{-\beta}^{\leq 0} \rightarrow \mathbf{F}$ defined by (2.2) is nondegenerate.

The proof is the same as that of [13, Proposition 2.1.4].

3. Universal R-matrix

In this section, we would like to give an explicit formula for the universal R-matrix of the quantum algebra $U_{q}(\mathfrak{g})$. We first recall the definition of quasi-triangular Hopf algebras and the pre-triangular Hopf algebras ([6], [13]). A Hopf algebra \mathscr{H} together with an element $\mathscr{R} \in \mathscr{H} \otimes \mathscr{H}$ is called a quasi-triangular Hopf algebra if it satisfies:
(T1) \mathscr{R} is invertible,
(T2) $\mathscr{R} \circ \Delta(a)=\Delta^{\prime}(a) \circ \mathscr{R}$ for all $a \in \mathscr{H}$,
(T3) $(\Delta \otimes 1)(\mathscr{R})=\mathscr{R}_{13} \mathscr{R}_{23}$,
(T4) $(1 \otimes \Delta)(\mathscr{R})=\mathscr{R}_{13} \mathscr{R}_{12}$,
where $\Delta^{\prime}=\tau \circ \Delta$ with $\tau(a \otimes b)=b \otimes a(a, b \in \mathscr{H})$ and $\mathscr{R}_{i j}$ is an element of $\mathscr{H} \otimes \mathscr{H} \otimes \mathscr{H}$ such that the (i, j) component is given by \mathscr{R} and the remaining component is 1 . The element \mathscr{R} is called the universal R-matrix of \mathscr{H} since it satisfies the Yang-Baxter equation

$$
\mathscr{R}_{12} \mathscr{R}_{13} \mathscr{R}_{23}=\mathscr{R}_{23} \mathscr{R}_{13} \mathscr{R}_{12} .
$$

A Hopf algebra together with an element $\mathscr{C} \in \mathscr{H} \otimes \mathscr{H}$ and an algebra automorphism $\Phi: \mathscr{H} \otimes \mathscr{H} \rightarrow \mathscr{H} \otimes \mathscr{H}$ is called a pre-triangular Hopf algebra if it satisfies:
(P1) \mathscr{C} is invertible,
(P2) $\mathscr{C} \circ \Delta(a)=\Phi\left(\Delta^{\prime}(a)\right) \circ \mathscr{C}$ for all $a \in \mathscr{H}$,
(P3) $\Phi_{23} \circ \Phi_{13}\left(\mathscr{C}_{12}\right)=\mathscr{C}_{12}$,
(P4) $\Phi_{12} \circ \Phi_{13}\left(\mathscr{C}_{23}\right)=\mathscr{C}_{23}$,
(P5) $\Phi_{23}\left(\mathscr{C}_{13}\right) \circ \mathscr{C}_{23}=(\Delta \otimes 1)(\mathscr{C})$,
(P6) $\quad \Phi_{12}\left(\mathscr{C}_{13}\right) \circ \mathscr{C}_{12}=(1 \otimes \Delta)(\mathscr{C})$.
A pre-triangular Hopf algebra \mathscr{H} becomes a quasi-triangular Hopf algebra if there is an invertible element $\mathscr{Z} \in \mathscr{H} \otimes \mathscr{H}$ satisfying

$$
\begin{align*}
\Phi(a \otimes b) & =\mathscr{Z}(a \otimes b) \mathscr{Z}^{-1}, \\
(\Delta \otimes 1)(\mathscr{Z}) & =\mathscr{Z}_{23} \mathscr{Z}_{13}, \tag{3.1}\\
(1 \otimes \Delta)(\mathscr{Z}) & =\mathscr{Z}_{12} \mathscr{Z}_{13} .
\end{align*}
$$

In this case, the universal R-matrix is given by $\mathscr{R}=\mathscr{Z}^{-1} \mathscr{C}$.
We define an algebra automorphism $\Phi: U \otimes U \rightarrow U \otimes U$ by

$$
\begin{align*}
& \Phi\left(q^{h} \otimes q^{h^{\prime}}\right)=q^{h} \otimes q^{h^{\prime}}, \\
& \Phi\left(e_{i k} \otimes 1\right)=e_{i k} \otimes K_{i}, \quad \Phi\left(1 \otimes e_{i k}\right)=K_{i} \otimes e_{i k}, \tag{3.2}\\
& \Phi\left(f_{i k} \otimes 1\right)=f_{i k} \otimes K_{i}^{-1}, \quad \Phi\left(1 \otimes f_{i k}\right)=K_{i}^{-1} \otimes f_{i k} .
\end{align*}
$$

It can be shown that Φ can be naturally extended to an automorphism of $\hat{U} \hat{\otimes} \hat{U}=(U \otimes U)$.

For $\beta=\sum_{i \in I} n_{i} \alpha_{i} \in Q_{+}$, we denote by $C_{\beta} \in U_{\beta}^{+} \otimes U_{\beta}^{+}$the canonical element of the bilinear form (\mid): $U_{\beta}^{+} \times U_{-\beta}^{-} \rightarrow \mathbf{F}$, and let $h_{\beta}=\sum_{i \in I} n_{i} s_{i} h_{i}, K_{\beta}=q^{h_{\beta}}$ so that $\left(h_{\beta} \mid h\right)=\beta(h)\left(h \in P^{\vee}\right)$. We define

$$
\begin{equation*}
\mathscr{C}=\sum_{\beta \in Q_{+}} q^{\left(h_{\beta} \mid h_{\beta}\right)}\left(K_{\beta}^{-1} \otimes K_{\beta}\right) C_{\beta} \in \hat{U} \hat{\otimes} \hat{U} \tag{3.3}
\end{equation*}
$$

We would like to show that ($\hat{U}, \mathscr{C}, \Phi$) satisfies the conditions (P1)-(P6).
By direct calculations, we can prove the following lemmas.

Lemma 3.1.

(a) $\mathscr{C} \Delta\left(q^{h}\right)=\Phi\left(\Delta^{\prime}\left(q^{h}\right)\right) \mathscr{C} \quad\left(h \in P^{\vee}\right)$.
(b) $\left(\Phi_{23} \circ \Phi_{13}\right)\left(\mathscr{C}_{12}\right)=\mathscr{C}_{12}$,
(c) $\left(\Phi_{12} \circ \Phi_{13}\right)\left(\mathscr{C}_{23}\right)=\mathscr{C}_{23}$.

Lemma 3.2. Let

$$
\mathscr{C}^{\prime}=\sum_{\beta \in Q_{+}} q^{\left(h_{\beta} \mid h_{\beta}\right)}\left(1 \otimes K_{\beta}\right)(S \otimes 1) C_{\beta} \in \hat{U} \hat{\otimes} \hat{U}
$$

Then $\mathscr{C} \mathscr{C}^{\prime}=\mathscr{C}^{\prime} \mathscr{C}=1$ if and only if for any $\beta \in Q_{+}$we have

$$
\begin{align*}
& \sum_{\substack{\gamma, \delta \in Q_{+} \\
\gamma+\delta=\beta}} C_{\gamma}\left(K_{\delta} \otimes 1\right)(S \otimes 1)\left(C_{\delta}\right)=\delta_{\beta, 0} \tag{3.4}\\
& \sum_{\substack{\gamma, \delta \in \in Q_{+} \\
\gamma+\delta=\beta}}\left(K_{\gamma} \otimes 1\right)(S \otimes 1)\left(C_{\gamma}\right) C_{\delta}=\delta_{\beta, 0}
\end{align*}
$$

Lemma 3.3. We have

$$
\mathscr{C} \Delta\left(e_{i k}\right)=\Phi\left(\Delta^{\prime}\left(e_{i k}\right)\right) \mathscr{C}, \quad \mathscr{C} \Delta\left(f_{i k}\right)=\Phi\left(\Delta^{\prime}\left(f_{i k}\right)\right) \mathscr{C}^{\prime}
$$

if and only if

$$
\begin{align*}
& {\left[1 \otimes e_{i k}, C_{\beta+\alpha_{i}}\right]=C_{\beta}\left(e_{i k} \otimes K_{i}^{-1}\right)-\left(e_{i k} \otimes K_{i}\right) C_{\beta}} \tag{3.5}\\
& {\left[f_{i k} \otimes 1, C_{\beta+\alpha_{i}}\right]=C_{\beta}\left(K_{i} \otimes f_{i k}\right)-\left(K_{i}^{-1} \otimes f_{i k}\right) C_{\beta}}
\end{align*}
$$

Lemma 3.4. We have

$$
\Phi_{23}\left(\mathscr{C}_{13}\right) \mathscr{C}_{23}=(\Delta \otimes 1) \mathscr{C}, \quad \Phi_{12}\left(\mathscr{C}_{13}\right) \mathscr{C}_{12}=(1 \otimes \Delta) \mathscr{C}
$$

if and only if

$$
\begin{align*}
& (\Delta \otimes 1)\left(C_{\beta}\right)=\sum_{\substack{\gamma, \delta \delta \in Q_{+} \\
\gamma+\delta=\beta}} q^{-\left(h_{\gamma}, h_{\delta}\right)}\left(K_{\delta} \otimes 1 \otimes 1\right)\left(C_{\gamma}\right)_{13}\left(C_{\delta}\right)_{23}, \tag{3.6}\\
& (1 \otimes \Delta)\left(C_{\beta}\right)=\sum_{\substack{\gamma, \delta \in Q_{+} \\
\gamma+\delta=\beta}} q^{-\left(h_{\gamma}, h_{\delta}\right)}\left(1 \otimes 1 \otimes K_{-\delta}\right)\left(C_{\gamma}\right)_{13}\left(C_{\delta}\right)_{12}
\end{align*}
$$

Hence, in order to show that $(\hat{U}, \mathscr{C}, \Phi)$ satisfies the conditions (P1)-(P6), it remains to show that (3.4), (3.5), and (3.6) hold. But they can be proved in an almost the same manner as in [13, Proposition 4.3.3]. Therefore, we have:

Theorem 3.5. Let $\Phi: \hat{U} \hat{\otimes} \hat{U}$ be the algebra automorphism defined by (3.2), and let \mathscr{C} be the element of $\hat{U} \hat{\otimes} \hat{U}$ defined by (3.3). Then the triple $(\hat{U} . \mathscr{C}, \Phi)$ satisfies the conditions (P 1$)-(\mathrm{P} 6)$.

Remark. Let $\left\{h_{i}, d_{i} \mid i \in I\right\}$ and $\left\{h^{i}, d^{i} \mid i \in I\right\}$ be the dual bases of \mathfrak{h} with respect to the bilinear form (\mid) and set $\mathscr{Z}=q^{\sum h_{i} \otimes h^{i}+\sum d_{i} \otimes d^{i}}$. Then $\mathscr{R}=\mathscr{Z}^{-1} \mathscr{C}$ gives rise to an R-matrix for any \mathfrak{b}-diagonalizable integrable representation V of the quantum algebra $U_{q}(\mathfrak{g})$. Therefore, the formula (3.3) can be viewed as an explicit formula for the universal R-matrix of $U_{q}(\mathrm{~g})$.

4. The center of $U_{q}(\mathfrak{g})$

In this section, we will describe the center of the quantum algebra $U_{q}(\mathrm{~g})$. Let us denote by $\mathfrak{z}(U)$ the center of $U=U_{q}(\mathfrak{g})$. For each $i \in I$ with $a_{i i} \neq 0$, define the simple reflection $r_{i} \in G L(\mathfrak{h})$ by

$$
\begin{equation*}
r_{i}(h)=h-\frac{2}{a_{i i}} \alpha_{i}(h) h_{i}, \tag{4.1}
\end{equation*}
$$

and let $\tilde{W}=\left\langle r_{i} \mid i \in I, a_{i i} \neq 0\right\rangle$ be the subgroup of $G L(\mathfrak{h})$ generated by the r_{i} 's ($i \in I, a_{i i} \neq 0$). Let $\left(U^{0}\right)^{\mathscr{W}}$ be the subspace of U^{0} consisting of the elements $\sum_{h \in P^{\vee}} c_{h} q^{h}\left(c_{h} \in \mathbf{F}\right)$ such that $c_{h} \neq 0$ implies $w(h) \in P^{\vee}$ and $c_{w(h)}=c_{h}$ for any $w \in \tilde{W}$. We define an algebra automorphism $\phi: U^{0} \rightarrow U^{0}$ by $\phi\left(q^{h}\right)=q^{-\rho(h)} q^{h}$ ($h \in P^{\vee}$), and let η be the linear map given by

$$
\begin{equation*}
\eta: U \xrightarrow[\rightarrow]{\sim} U^{-} \otimes U^{0} \otimes U^{+} \xrightarrow{\varepsilon \otimes 1 \otimes \varepsilon} U^{0} . \tag{4.2}
\end{equation*}
$$

The linear map $\left.\xi: \phi \circ\left(\left.\eta\right|_{3}\right):\right\} \rightarrow U^{0}$ is called the Harish-Chandra homomorphism.
Proposition 4.1.
(a) ξ is an algebra homomorphism.
(b) ξ is injective.
(c) $\operatorname{Im}(\xi) \subset\left(U^{0}\right)^{\tilde{W}}$.

Proof. (a) can be proved in a standard way (for example, see [Di]), and (b) can be proved as in [13, Theorem 3.1.2].

For (c), let $M(\lambda)$ be the Verma module over $U_{q}(\mathrm{~g})$ with highest weight λ. Then it is easy to see that $\left.z\right|_{M(\lambda)}=\chi_{\lambda+\rho}(\xi(z)) I$ for all $z \in 3$, where $\chi_{\lambda}: U^{0} \rightarrow$ $\mathbf{F}\left(\lambda \in \mathfrak{h}^{*}\right)$ is the algebra homomorphism defined by $\chi_{\lambda}\left(q^{h}\right)=q^{\lambda(h)}\left(h \in P^{\vee}\right)$.

Moreover, if $a_{i i} \neq 0$ and $(\lambda+\rho)\left(h_{i}\right) \in \frac{a_{i i}}{2} \mathbf{Z}_{\geq 0}$, then $\operatorname{Hom}_{U}\left(M\left(r_{i}(\lambda+\rho)-\rho\right)\right.$, $M(\lambda)) \neq 0$. Indeed, if v_{λ} is a highest weight vector of $M(\lambda)$ with highest weight λ, then $f_{i k}^{\left(2 / a_{i j}\right)(\lambda+\rho)\left(h_{i}\right)} v_{\lambda}$ is a highest weight vector with highest weight $r_{i}(\lambda+\rho)-\rho$.

Let $i \in I$ be such that $a_{i i} \neq 0$ and let $z \in \mathcal{Z}$. Then $\chi_{\lambda}(\xi(z))=\chi_{r_{i}(\lambda)}(\xi(z))=$ $\chi_{\lambda}\left(r_{i}(\xi(z))\right)$ for any $\lambda \in \mathfrak{h}^{*}$ such that $\lambda\left(h_{i}\right) \in \frac{a_{i i}}{2} \mathbf{Z}_{\geq 0}$. Hence $\chi_{\lambda}\left(\xi(z)-r_{i} \xi(z)\right)=0$ for any $\lambda \in \mathfrak{h}^{*}$ such that $\lambda\left(h_{i}\right) \in \frac{a_{i i}}{2} \mathbf{Z}_{\geq 0}$, which implies $\xi(z)=r_{i}(\xi(z))$ for all $i \in I$ with $a_{i i} \neq 0$.

For $J \subset\left\{(i, k) \mid i \in I, k=1,2, \cdots, m_{i}\right\}$, let $U_{J}=\left\langle e_{i k}, f_{i k}, U^{0} \mid(i, k) \in J\right\rangle$ be the subalgebra of U generated by U^{0} and $e_{i k}, f_{i k}$ with $(i, k) \in J$. We denote by z_{J} the center of U_{J} and $\xi_{J}:{\beta_{J}} \rightarrow U^{0}$ the Harish-Chandra homomorphism for U_{J}. We would like to show $\operatorname{Im}(\xi) \subset \operatorname{Im}\left(\xi_{J}\right)$. Let U_{J}^{+}(resp. U_{J}^{-}) be the subalgebra of U_{J} generated by $e_{i k}$ (resp. $f_{i k}$) with $(i, k) \in J$, and set

$$
\begin{align*}
& R_{J}^{+}=\left\{x \in U^{+} \mid\left(x \mid U_{J}^{-}\right)=0\right\}=\left\{x \in U^{+} \mid\left(x \mid U_{J}^{-} U^{0}\right)=0\right\} \\
& R_{J}^{-}=\left\{y \in U^{-} \mid\left(U_{J}^{+} \mid y\right)=0\right\}=\left\{y \in U^{-} \mid\left(U^{0} U_{J}^{+} \mid y\right)=0\right\} \tag{4.3}\\
& R_{J}=R_{J}^{-} U^{0} U^{+}+U^{-} U^{0} R_{J}^{+}
\end{align*}
$$

Then we have:
Lemma 4.2.
(a) $U=U_{J} \oplus R_{J}$,
(b) $U_{J} R_{J} U_{J} \subset R_{J}$,
(c) $(\varepsilon \otimes 1 \otimes \varepsilon)\left(R_{J}\right)=0$.

Proof. (a) It suffices to show $U_{\gamma}^{+}=U_{J, \gamma}^{+} \oplus R_{J, \gamma}^{+}$for any $\gamma \in Q_{+}$. Since

$$
\begin{gathered}
R_{J, \gamma}^{+}=\operatorname{Ker}\left(U_{\gamma}^{+} \stackrel{\sim}{\rightarrow}\left(U_{-\gamma}^{-}\right)^{*} \rightarrow\left(U_{J,-\gamma}^{-}\right)^{*}\right), \\
\operatorname{dim} R_{J, \gamma}^{+}=\operatorname{dim} U_{\gamma}^{+}-\operatorname{dim} U_{J, \gamma}^{-}=\operatorname{dim} U_{\gamma}^{+}-\operatorname{dim} U_{J, \gamma}^{+}
\end{gathered}
$$

Since (\mid) is nondegenerate on $U_{J, \gamma}^{+} \times U_{J,-\gamma}^{-}$, we have $R_{J, \gamma}^{+} \cap U_{J, \gamma}^{+}=\{0\}$.
(b) First, note that R_{J}^{+}(resp. R_{J}^{-}) is a two-sided ideal of U^{+}(resp. U^{-}), and that $U^{0} R_{J}^{ \pm}=R_{J}^{ \pm} U^{0}$. Hence it suffices to show

$$
\begin{equation*}
U_{J}^{+} R_{J}^{-} \subset R_{J}^{-} U, \quad R_{J}^{+} U_{J}^{-} \subset U R_{J}^{+} \tag{4.4}
\end{equation*}
$$

Let $y \in R_{J,-\gamma}^{-}$. For $(i, k) \in J$, by Lemma 2.3, we have

$$
\begin{aligned}
e_{i k} y= & \sum_{(y)_{2}}\left(e_{i k} \mid y_{(0)}\right)\left(1 \mid S\left(y_{(2)}\right)\right) y_{(1)}+\sum_{(y)_{2}}\left(K_{i} \mid y_{(0)}\right)\left(1 \mid S\left(y_{(2)}\right)\right) y_{(1)} e_{i k} \\
& +\sum_{(y)_{2}}\left(K_{i} \mid y_{(0)}\right)\left(e_{i k} \mid S\left(y_{(2)}\right)\right) y_{(1)} K_{i} .
\end{aligned}
$$

Hence it suffices to show

$$
\begin{aligned}
& \left(x \mid \sum_{(y)_{2}}\left(e_{i k} \mid y_{(0)}\right)\left(1 \mid S\left(y_{(2)}\right)\right) y_{(1)}\right)=0 \\
& \left(x \mid \sum_{(y)_{2}}\left(K_{i} \mid y_{(0)}\right)\left(1 \mid S\left(y_{(2)}\right)\right) y_{(1)}\right)=0 \\
& \left(x \mid \sum_{(y)_{2}}\left(K_{i} \mid y_{(0)}\right)\left(e_{i k} \mid S\left(y_{(2)}\right)\right) y_{(1)}\right)=0
\end{aligned}
$$

for all $x \in U_{J}^{+}$. Indeed, we have, for example,

$$
\begin{aligned}
\left(x \mid \sum_{(y)_{2}}\left(K_{i} \mid y_{(0)}\right)\left(e_{i k} \mid S\left(y_{(2)}\right)\right) y_{(1)}\right) & =\sum_{(y)_{2}}\left(K_{i} \mid y_{(0)}\right)\left(e_{i k} \mid S\left(y_{(2)}\right)\right)\left(x \mid y_{(1)}\right) \\
& =\sum_{(y)_{2}}\left(K_{i} \otimes x \otimes S^{-1}\left(e_{i k}\right) \mid \Delta^{(2)}(y)\right) \\
& =\left(S^{-1}\left(e_{i k}\right) x K_{i} \mid y\right)=0 .
\end{aligned}
$$

The other cases can be proved in a similar way.
(c) Clear.

Proposition 4.3. $\operatorname{Im}(\xi) \subset \operatorname{Im}\left(\xi_{J}\right)$.
Proof. Let $z \in \mathcal{Z}$ and write $z=z_{1}+z_{2}$ with $z_{1} \in U_{J}, z_{2} \in R_{J}$. By Lemma 4.2 (b), $\left.z_{1} \in\right\}_{J}$, and hence by Lemma 4.2 (c), $\xi(z)=\xi_{J}\left(z_{1}\right) \in \operatorname{Im}\left(\xi_{J}\right)$.

We now consider the special cases when $|I|=1$ or $|I|=2$. By a direct calculation, we have:

Proposition 4.4. Suppose $I=\{i\}$ and $m_{i}=1$.
(a) If $a_{i i} \neq 0$, then

$$
\mathfrak{z}=\left\langle f_{i, 1} e_{i, 1}+\frac{1}{\xi_{i}\left(q_{i}-q_{i}^{-1}\right)}\left(q_{i} K_{i}+q_{i}^{-1} K_{i}^{-1}\right), q^{h} \mid \alpha_{i}(h)=0\right\rangle .
$$

(b) If $a_{i i}=0$, then $\} \subset U^{0}$.

Proposition 4.5. Assume either
(a) $I=\{i\}$ with $a_{i i}<0, m_{i}=2$, or
(b) $I=\{i, j\}$ with $a_{i i}<0, a_{i j}<0, a_{i j}<0$, and $m_{i}=m_{j}=1$.

Then $\mathfrak{z} \subset U^{0}$.
Proof. Set $e=e_{i, 1}, e^{\prime}=e_{i, 2}, f=f_{i, 1}, f^{\prime}=f_{i, 2}$ in case (a), and $e=e_{i, 1}$, $e^{\prime}=e_{j, 1}, f=f_{i, 1}, f^{\prime}=f_{j, 1}$ in case (b). Then the subalgebra $U^{+}=\left\langle e, e^{\prime}\right\rangle=$ $\bigoplus_{n=0}^{\infty} U_{n}^{+}$(resp. $U^{-}=\left\langle f, f^{\prime}\right\rangle=\bigoplus_{n=0}^{\infty} U_{-n}^{-}$) is the free associative algebra over F generated by the elements e, e^{\prime} (resp. f, f^{\prime}), where U_{n}^{+}(resp. U_{-n}^{-}) is the homogeneous subspace of degree n (resp. $-n$). Then, for $n \geq 1$, we have $U_{n}^{+}=U_{n-1}^{+} e \oplus U_{n-1}^{+} e^{\prime}$.

Let $z \in \mathcal{Z} \cap\left(\bigoplus_{k=0}^{n} U^{-} U^{0} U_{k}^{+}\right)$, and let $\left\{x_{\lambda}\right\}$ be a basis of U_{n-1}^{+}. Then

$$
z=\sum_{\lambda} \sum_{h \in P^{v}} y_{\lambda, h} q^{h} x_{\lambda} e+\sum_{\lambda} \sum_{h \in P^{v}} y_{\lambda, h}^{\prime} q^{h} x_{\lambda} e^{\prime}+y,
$$

where $y \in \sum_{k=0}^{n-1} U^{-} U^{0} U_{k}^{+}, y_{\lambda, h}, y_{\lambda, h}^{\prime} \in U^{-}$. Hence we have

$$
e z=\sum_{\lambda} \sum_{h \in P^{v}} y_{\lambda, h} q^{-\alpha_{i}(h)} q^{h} e x_{\lambda} e+\sum_{\lambda} \sum_{h \in P^{v}} y_{\lambda, h}^{\prime} q^{-\alpha_{i}(h)} q^{h} e x_{\lambda} e^{\prime}+z^{\prime},
$$

and

$$
z e=\sum_{\lambda} \sum_{h \in P^{v}} y_{\lambda, h} q^{h} x_{\lambda} e^{2}+\sum_{\lambda} \sum_{h \in P^{v}} y_{\lambda, h}^{\prime} q^{h} x_{\lambda} e^{\prime} e+z^{\prime \prime}
$$

where $z^{\prime}, z^{\prime \prime} \in \sum_{k=0}^{n} U^{-} U^{0} U_{k}^{+}$. Hence $y_{\lambda, h}^{\prime}=0$ for all λ and h. Similarly, $y_{\lambda, h}=0$ for all λ and h. Therefore, $z \in \mathcal{B} \cap\left(\bigoplus_{k=0}^{n-1} U^{-} U^{0} U_{k}^{+}\right)$, and hence, by induction, we see that $\mathfrak{z}=\mathfrak{z} \cap U^{-} U^{0}=\mathfrak{z} \cap U^{0}$.

Proposition 4.6. Assume that $I=\{i, j\}$ and $a_{i i}=2, a_{j j}<0, a_{i j}<0$, and $m_{j}=1$. Then we have $3 \subset U^{0}$.

Proof. Let $V^{\prime}=\mathbf{Q} h_{i} \oplus \mathbf{Q} h_{j}$ and $V=\left\{h \in \mathfrak{h} \mid \alpha_{i}(h)=\alpha_{j}(h)=0\right\}$. Then $\mathfrak{h}=$ $V \oplus V^{\prime}$. Note that \tilde{W} preserves V and V^{\prime} and that

$$
\operatorname{det}\left(\begin{array}{cc}
a_{i i} & a_{i j} \\
a_{j i} & a_{j j}
\end{array}\right)=a_{i i} a_{j j}-a_{i j} a_{j i}<0
$$

We would like to show $\operatorname{Im}(\xi) \subset \bigoplus_{h \in V \cap P^{v}} F q^{h}$. Since $\operatorname{Im}(\xi) \subset\left(U^{0}\right)^{\tilde{W}}$, it suffices to show $h \in \mathfrak{h}$ and $|\tilde{W}(h)|<\infty$ if and only if $h \in V$. Hence we need only to show if $\bar{h} \in \mathfrak{h} / V \cong V^{\prime},|\tilde{W}(\bar{h})|<\infty$, then $\bar{h}=0$. Therefore, it suffices to show that the eigenvalues of $\left.r_{i} r_{j}\right|_{V^{\prime}}$ are not roots of unity. Since the characteristic polynomial of $\left.r_{i} r_{j}\right|_{V^{\prime}}$ is $t^{2}-\left(\frac{2 a_{i j} a_{j i}}{a_{j j}}-2\right) t+1,\left.r_{i} r_{j}\right|_{V^{\prime}}$ has an eigenvalue that is a root of unity if and only if $\frac{2 a_{i j} a_{j i}}{a_{j j}}=0,1,2,3,4$, which is a contradiction to our assumption.

Lemma 4.7. Assume that the Borcherds-Cartan matrix $A=\left(a_{i j}\right)_{i, j \in I}$ is indecomposable. If there is a nonempty subset J of $\left\{(i, k) \mid i \in I, k=1, \ldots, m_{i}\right\}$ such that $\mathfrak{3}_{J} \subset U^{0}$, then \mathfrak{z} is contained in U^{0}.

Proof. Let $\bar{J}=\{i \in I \mid(i, k) \in J$ for some $k\}$. Then we have

$$
3 \cap U^{0}=\bigoplus_{\substack{h \in P^{v} \\ \alpha_{i}(h)=0(i \in I)}} \mathbf{F} q^{h}, \quad z_{J} \cap U^{0}=\bigoplus_{\substack{h \in P^{v} \\ \alpha_{i}(h)=0(i \in \bar{J})}} \mathbf{F} q^{h}
$$

For $i \in I$, set $T_{i}=\bigoplus_{\substack{h \in p^{\nu} \\ \alpha_{i}(h)=0}} \mathbf{F} q^{h}$. We would like to show $\operatorname{Im}(\xi) \subset \bigcap_{i \in I} T_{i} . \quad$ By Proposition 4.3, we have $\operatorname{Im}(\xi) \subset \operatorname{Im}\left(\xi_{J}\right) \subset \bigcap_{i \in \bar{J}} T_{i}$.

If $a_{i i}=0$, then by Proposition $4.4(\mathrm{~b}), \operatorname{Im}(\xi) \subset \operatorname{Im}\left(\xi_{\{(i, 1)\}}\right) \subset T_{i}$. Hence it suffices to show that if $a_{j i} \neq 0, a_{j j} \neq 0$, then $T_{i} \cap\left(U^{o}\right)^{\tilde{W}} \subset T_{j}$.

Let $x=\sum_{\substack{h \in P^{\vee} \\ \alpha_{i}(h)=0}} c_{h} q^{h} \in T_{i} \cap\left(U^{0}\right)^{\tilde{W}}$. Then $x=r_{j}(x)=\sum_{\substack{h \in P^{\vee} \\ \alpha_{i}(h)=0}} c_{h} q^{r_{j}(h)}$. Hence if $c_{h} \neq 0$, then $\alpha_{i}\left(r_{j}(h)\right)=\alpha_{i}(h)=0$, which implies $\alpha_{j}(h)=0$.

By Proposition 4.4-Lemma 4.7, we have the following theorem.
Theorem 4.8. Suppose that the Borcherds-Cartan matrix $A=\left(a_{i j}\right)_{i, j \in I}$ is indecomposable and $I^{i m} \neq \phi$. Then

$$
\mathfrak{z}(U)=\bigoplus_{\substack{h \in P^{V} \\ \alpha_{i}(h)=0(i \in I)}} F q^{h} \subset U^{0}
$$

except for the case I consists of a single element i with $a_{i i}<0$ and $m_{i}=1$.

References

[1] R. E. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988), 501-512.
[2] R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444.
[3] J. H. Conway, S. Norton, Monstrous moonshine, Bull. Lond. Math. Soc. 11 (1979), 308-339.
[4] C. De Concini, V. G. Kac, Representations of quantum groups at roots of 1, Progress in Mathematics 92, Birkhäuser, 1994, pp. 471-506.
[5] J. Dixmier, Algébres Enveloppantes, Gauthier-Vilars, Paris, 1974.
[6] V. G. Drinfel'd, Hopf algebra and the Yang-Baxter equation, Soviet Math. Dokl. 32 (1985), 254-258.
[7] M. Jimbo, A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63-69.
[8] A. Joseph, G. Letzter, Local finiteness for the adjoint action for quantized enveloping algebras, J. Algebra 153 (1992), 289-318.
[9] V. G. Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, 1990.
[10] S.-J. Kang, Quantum deformations of generalized Kac-Moody algebras and their modules, J. Algebra 175 (1995), 1041-1066.
[11] G. Lusztig, Introduction to Quantum Groups, Birkhäuser, 1993.
[12] M. Rosso, Analogues de la forme de Killing et du théorèm d'Harish-Chandra pour les groupes quantiques, Ann. Ec. Norm. Sup. 23 (1990), 445-467.
[13] T. Tanisaki, Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras, Inter. J. Mod. Phys. A7, Suppl. 1B (1992), 941-961.

Department of Mathematics
Seoul National University
Seoul 151-742, Korea
and
Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima 739, Japan

[^0]: * Supported in part by Basic Science Research Institute Program, Ministry of Education of Korea, BSRI-95-1414 and GARC-KOSEF at Seoul National University, Korea.
 1991 Mathematics Subject Classification. 17B37, 17B35, 81R50, 82B23
 Key words and phrases. Quantum groups, Generalized Kac-Moody algebras, R-matrices.

